




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
湖北省襄陽市谷城縣2026屆數(shù)學九年級第一學期期末學業(yè)質(zhì)量監(jiān)測模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題3分,共30分)1.如圖,將矩形ABCD沿對角線BD折疊,點C落在點E處,BE交AD于點F,已知∠BDC=62°,則∠DFE的度數(shù)為()A.31° B.28° C.62° D.56°2.如果拋物線開口向下,那么的取值范圍為()A. B. C. D.3.若將拋物線y=-x2先向左平移3個單位,再向下平移2個單位,得到新的拋物線,則新拋物線的表達式是(
)A. B.C. D.4.將矩形紙片ABCD按如圖所示的方式折疊,恰好得到菱形AECF,若AB=3,則菱形AECF的面積為()A.1 B.2 C.2 D.45.若,則代數(shù)式的值()A.-1 B.3 C.-1或3 D.1或-36.如圖,OA交⊙O于點B,AD切⊙O于點D,點C在⊙O上.若∠A=40°,則∠C為()A.20° B.25° C.30° D.35°7.若關(guān)于的一元二次方程有兩個不相等的實數(shù)根,則的取值范圍()A.且 B. C. D.8.如圖,二次函數(shù)y=ax1+bx+c的圖象與x軸交于點A(﹣1,0),B(3,0).下列結(jié)論:①1a﹣b=0;②(a+c)1<b1;③當﹣1<x<3時,y<0;④當a=1時,將拋物線先向上平移1個單位,再向右平移1個單位,得到拋物線y=(x﹣1)1﹣1.其中正確的是()A.①③ B.②③ C.②④ D.③④9.若關(guān)于x的一元二次方程x2-2x-k=0沒有實數(shù)根,則k的取值范圍是()A.k>-1 B.k≥-1 C.k<-1 D.k≤-110.下列不是中心對稱圖形的是()A. B. C. D.二、填空題(每小題3分,共24分)11.如圖,扇形ABC的圓心角為90°,半徑為6,將扇形ABC繞A點逆時針旋轉(zhuǎn)得到扇形ADE,點B、C的對應(yīng)點分別為點D、E,若點D剛好落在上,則陰影部分的面積為_____.12.在平面直角坐標系中,正方形ABCD的位置如圖所示,點的坐標為,點的坐標為,延長交軸于點,作正方形,延長交軸于點,作正方形,…按這樣的規(guī)律進行下去,第個正方形的面積為_____________.13.有四條線段,分別為3,4,5,6,從中任取三條,能夠成直角三角形的概率是14.以原點O為位似中心,作△ABC的位似圖形△A′B′C′,△ABC與△A′B′C′相似比為,若點C的坐標為(4,1),點C的對應(yīng)點為C′,則點C′的坐標為_____.15.如圖,在平面直角坐標系中,正方形ABCD的三個頂點A、B、D均在拋物線y=ax2﹣4ax+3(a<0)上.若點A是拋物線的頂點,點B是拋物線與y軸的交點,則AC長為_____.16.如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB于點D,如果CD=4,那么AD?BD的值是_____.17.如圖,若一個半徑為1的圓形紙片在邊長為6的等邊三角形內(nèi)任意運動,則在該等邊三角形內(nèi),這個圓形紙片能接觸到的最大面積為_____.18.不透明布袋里有5個紅球,4個白球,往布袋里再放入x個紅球,y個白球,若從布袋里摸出白球的概率為,則y與x之間的關(guān)系式是_____.三、解答題(共66分)19.(10分)某商場銷售一種名牌襯衫,平均每天可售出20件,每件盈利40元,為了擴大銷售,增加盈利,盡量減少庫存,商場決定采取適當?shù)慕祪r措施,經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價1元,商場平均每天可多售出2件,(1)若商場平均每天要盈利1200元,每件襯衫應(yīng)降價多少元?(2)當每件襯衫降價多少元時,商場每天獲利最大,每天獲利最大是多少元?20.(6分)電影《我和我的祖國》在國慶檔熱播,預(yù)售票房成功破兩億,堪稱熱度最高的愛國電影,周老師打算從非常渴望觀影的5名學生會干部(兩男三女)中,抽取兩人分別贈送一張的嘉賓觀影卷,問抽到一男一女的概率是多少?(請你用樹狀圖或者列表法分析)21.(6分)如圖,正方形ABCD中,M為BC上一點,F(xiàn)是AM的中點,EF⊥AM,垂足為F,交AD的延長線于點E,交DC于點N.(1)求證:△ABM∽△EFA;(2)若AB=12,BM=5,求DE的長.22.(8分)如圖,在△ABC中,∠ABC=90°,BD為AC的中線,過點C作CE⊥BD于點E,過點A作BD的平行線,交CE的延長線于點F,在AF的延長線上截取FG=BD,連接BG、DF.(1)求證:四邊形BDFG為菱形;(2)若AG=13,CF=6,求四邊形BDFG的周長.23.(8分)如圖,是內(nèi)接三角形,點D是BC的中點,請僅用無刻度的直尺,分別按下列要求畫圖.(1)如圖1,畫出弦AE,使AE平分∠BAC;(2)如圖2,∠BAF是的一個外角,畫出∠BAF的平分線.24.(8分)某食品代理商向超市供貨,原定供貨價為元/件,超市售價為元/件.為打開市場超市決定在第一季度對產(chǎn)品打八折促銷,第二季度再回升個百分點,為保證超市利潤,代理商承諾在供貨價基礎(chǔ)上向超市返點試問平均每季度返多少個百分點,半年后超市的銷售利潤回到開始供貨時的水平?25.(10分)如圖,中,,以為直徑作半圓交于點,點為的中點,連接.(1)求證:是半圓的切線;(2)若,,求的長.26.(10分)如圖,點是二次函數(shù)圖像上的任意一點,點在軸上.(1)以點為圓心,長為半徑作.①直線經(jīng)過點且與軸平行,判斷與直線的位置關(guān)系,并說明理由.②若與軸相切,求出點坐標;(2)、、是這條拋物線上的三點,若線段、、的長滿足,則稱是、的和諧點,記做.已知、的橫坐標分別是,,直接寫出的坐標_______.
參考答案一、選擇題(每小題3分,共30分)1、D【解析】先利用互余計算出∠FDB=28°,再根據(jù)平行線的性質(zhì)得∠CBD=∠FDB=28°,接著根據(jù)折疊的性質(zhì)得∠FBD=∠CBD=28°,然后利用三角形外角性質(zhì)計算∠DFE的度數(shù).【詳解】解:∵四邊形ABCD為矩形,∴AD∥BC,∠ADC=90°,∵∠FDB=90°-∠BDC=90°-62°=28°,∵AD∥BC,∴∠CBD=∠FDB=28°,∵矩形ABCD沿對角線BD折疊,∴∠FBD=∠CBD=28°,∴∠DFE=∠FBD+∠FDB=28°+28°=56°.故選D.本題考查了平行線的性質(zhì):兩直線平行,同位角相等;兩直線平行,同旁內(nèi)角互補;兩直線平行,內(nèi)錯角相等.2、D【分析】由拋物線的開口向下可得不等式,解不等式即可得出結(jié)論.【詳解】解:∵拋物線開口向下,∴,∴.故選D.本題考查二次函數(shù)圖象與系數(shù)的關(guān)系,解題的關(guān)鍵是牢記“時,拋物線向上開口;當時,拋物線向下開口.”3、A【分析】按“左加右減括號內(nèi),上加下減括號外”的規(guī)律平移即可得出所求函數(shù)的解析式.【詳解】∵將拋物線先向左平移3個單位,再向下平移2個單位,∴y=-(x+3)2-2.故答案為A.本題考查了二次函數(shù)圖象的平移,其規(guī)律是是:將二次函數(shù)解析式轉(zhuǎn)化成頂點式y(tǒng)=a(x-h)2+k
(a,b,c為常數(shù),a≠0),確定其頂點坐標(h,k),在原有函數(shù)的基礎(chǔ)上“h值正右移,負左移;k值正上移,負下移”.4、C【分析】根據(jù)菱形AECF,得∠FCO=∠ECO,再利用∠ECO=∠ECB,可通過折疊的性質(zhì),結(jié)合直角三角形勾股定理求得BC的長,則利用菱形的面積公式即可求解.【詳解】解:∵四邊形AECF是菱形,AB=3,∴假設(shè)BE=x,則AE=3﹣x,CE=3﹣x,∵四邊形AECF是菱形,∴∠FCO=∠ECO,∵∠ECO=∠ECB,∴∠ECO=∠ECB=∠FCO=30°,2BE=CE,∴CE=2x,∴2x=3﹣x,解得:x=1,∴CE=2,利用勾股定理得出:BC2+BE2=EC2,BC===,又∵AE=AB﹣BE=3﹣1=2,則菱形的面積是:AEBC=2.故選C.本題考查折疊問題以及勾股定理.解題過程中應(yīng)注意折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質(zhì),折疊前后圖形的形狀和大小不變,如本題中折疊前后角相等.5、B【分析】利用換元法解方程即可.【詳解】設(shè)=x,原方程變?yōu)椋?,解得x=3或-1,∵≥0,∴故選B.本題考查了用換元法解一元二次方程,設(shè)=x,把原方程轉(zhuǎn)化為是解題的關(guān)鍵.6、B【分析】根據(jù)切線的性質(zhì)得到∠ODA=90°,根據(jù)直角三角形的性質(zhì)求出∠DOA,根據(jù)圓周角定理計算即可.【詳解】解:∵切于點∴∴∵∴∴故選:B本題考查了切線的性質(zhì):圓心與切點的連線垂直切線、圓周角定理以及直角三角形兩銳角互余的性質(zhì),結(jié)合圖形認真推導(dǎo)即可得解.7、A【分析】根據(jù)題意可得k滿足兩個條件,一是此方程是一元二次方程,所以二次項系數(shù)k不等于0,二是方程有兩個不相等的實數(shù)根,所以b2-4ac>0,根據(jù)這兩點列式求解即可.【詳解】解:根據(jù)題意得,k≠0,且(-6)2-36k>0,解得,且.故選:A.本題考查一元二次方程的定義及利用一元二次方程根的情況確定字母系數(shù)的取值范圍,根據(jù)需滿足定義及根的情況列式求解是解答此題的重要思路.8、D【解析】分析:根據(jù)二次函數(shù)圖象與系數(shù)之間的關(guān)系即可求出答案.詳解:①圖象與x軸交于點A(﹣1,0),B(3,0),∴二次函數(shù)的圖象的對稱軸為x==1,∴=1,∴1a+b=0,故①錯誤;②令x=﹣1,∴y=a﹣b+c=0,∴a+c=b,∴(a+c)1=b1,故②錯誤;③由圖可知:當﹣1<x<3時,y<0,故③正確;④當a=1時,∴y=(x+1)(x﹣3)=(x﹣1)1﹣4將拋物線先向上平移1個單位,再向右平移1個單位,得到拋物線y=(x﹣1﹣1)1﹣4+1=(x﹣1)1﹣1,故④正確;故選:D.點睛:本題考查二次函數(shù)圖象的性質(zhì),解題的關(guān)鍵是熟知二次函數(shù)的圖象與系數(shù)之間的關(guān)系,本題屬于中等題型.9、C【解析】試題分析:由題意可得根的判別式,即可得到關(guān)于k的不等式,解出即可.由題意得,解得故選C.考點:一元二次方程的根的判別式點評:解答本題的關(guān)鍵是熟練掌握一元二次方程,當時,方程有兩個不相等實數(shù)根;當時,方程的兩個相等的實數(shù)根;當時,方程沒有實數(shù)根.10、A【分析】根據(jù)中心對稱圖形的定義,逐一判斷選項,即可.【詳解】∵A是軸對稱圖形,不是中心對稱圖形,∴A符合題意,∵B是中心對稱圖形,∴B不符合題意,∵C是中心對稱圖形,∴C不符合題意,∵D是中心對稱圖形,∴D不符合題意,故選A.本題主要考查中心對稱圖形的定義,掌握中心對稱圖形的定義是解題的關(guān)鍵.二、填空題(每小題3分,共24分)11、3π+9.【分析】直接利用旋轉(zhuǎn)的性質(zhì)結(jié)合扇形面積求法以及等邊三角形的判定與性質(zhì)得出S陰影=S扇形ADE﹣S弓形AD=S扇形ABC﹣S弓形AD,進而得出答案.【詳解】解:連接BD,過點B作BN⊥AD于點N,∵將半徑為4,圓心角為90°的扇形BAC繞A點逆時針旋轉(zhuǎn)60°,∴∠BAD=60°,AB=AD,∴△ABD是等邊三角形,∴∠ABD=60°,則∠ABN=30°,故AN=3,BN=3,S陰影=S扇形ADE﹣S弓形AD=S扇形ABC﹣S弓形AD=﹣(﹣×6×3)=3π+9.故答案為3π+9.本題主要考查了扇形的面積求法以及等邊三角形的判定與性質(zhì).正確得出△ABD是等邊三角形是關(guān)鍵.12、【分析】推出AD=AB,∠DAB=∠ABC=∠ABA1=90°=∠DOA,求出∠ADO=∠BAA1,證△DOA∽△ABA1,得出,求出AB,BA1,求出邊長A1C=,求出面積即可;求出第2個正方形的邊長是,求出面積,再求出第3個正方形的面積;依此類推得出第n個正方形的邊長,求出面積即可.【詳解】∵四邊形ABCD是正方形,
∴AD=AB,∠DAB=∠ABC=∠ABA1=90°=∠DOA,
∴∠ADO+∠DAO=90°,∠DAO+∠BAA1=90°,
∴∠ADO=∠BAA1,
∵∠DOA=∠ABA1,
∴△DOA∽△ABA1,
∴,
∵AB=AD=∴BA1=∴第2個正方形A1B1C1C的邊長A1C=A1B+BC=,面積是;同理第3個正方形的邊長是面積是;第4個正方形的邊長是,面積是…,
第n個正方形的邊長是,面積是故答案為:本題考查了正方形的性質(zhì),相似三角形的性質(zhì)和判定,勾股定理的應(yīng)用,解此題的關(guān)鍵是根據(jù)計算的結(jié)果得出規(guī)律,題目比較好,但是一道比較容易出錯的題目13、.【解析】試題分析:能構(gòu)成三角形的情況為:3,4,5;3,4,6;3,5,6;4,5,6這四種情況.直角三角形只有3,4,5一種情況.故能夠成直角三角形的概率是.故答案為.考點:1.勾股定理的逆定理;2.概率公式.14、或【解析】根據(jù)位似變換的性質(zhì)計算即可.【詳解】解:∵△ABC與△A'B'C'相似比為,若點C的坐標為(4,1),∴點C′的坐標為或∴點C′的坐標為或故答案為或本題考查的是位似變換,在平面直角坐標系中,如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應(yīng)點的坐標的比等于k或﹣k.15、1.【解析】試題解析:拋物線的對稱軸x=-=2,點B坐標(0,3),∵四邊形ABCD是正方形,點A是拋物線頂點,∴B、D關(guān)于對稱軸對稱,AC=BD,∴點D坐標(1,3)∴AC=BD=1.考點:1.正方形的性質(zhì);2.二次函數(shù)的性質(zhì).16、1【分析】先由角的互余關(guān)系,導(dǎo)出∠DCA=∠B,結(jié)合∠BDC=∠CDA=90°,證明△BCD∽△CAD,利用相似三角形的性質(zhì),列出比例式,變形即可得答案.【詳解】解:∵∠ACB=90°,CD⊥AB于點D,∴∠BCD+∠DCA=90°,∠B+∠BCD=90°∴∠DCA=∠B,又∵∠BDC=∠CDA=90°,∴△BCD∽△CAD,∴BD:CD=CD:AD,∴AD?BD=CD2=42=1,故答案為:1.本題主要考查相似三角形的判定和性質(zhì),解決本題的關(guān)鍵是要熟練掌握相似三角形的判定和性質(zhì).17、6+π.【分析】根據(jù)直角三角形的面積和扇形面積公式先求出圓形紙片不能接觸到的面積,再用等邊三角形的面積去減即可得能接觸到的最大面積.【詳解】解:如圖,當圓形紙片運動到與∠A的兩邊相切的位置時,過圓形紙片的圓心O作兩邊的垂線,垂足分別為D,E,連接AO,則Rt△ADO中,∠OAD=30°,OD=1,AD=,∴S△ADO=OD?AD=,∴S四邊形ADOE=2S△ADO=,∵∠DOE=120°,∴S扇形DOE=,∴紙片不能接觸到的部分面積為:3(﹣)=3﹣π∵S△ABC=×6×3=9∴紙片能接觸到的最大面積為:9﹣3+π=6+π.故答案為6+π.此題主要考查圓的綜合運用,解題的關(guān)鍵是熟知等邊三角形的性質(zhì)、扇形面積公式.18、x﹣2y=1.【分析】根據(jù)從布袋里摸出白球的概率為,列出=,整理即可得.【詳解】根據(jù)題意得=,整理,得:x﹣2y=1,故答案為:x﹣2y=1.本題考查概率公式的應(yīng)用,熟練掌握概率公式建立方程是解題的關(guān)鍵.三、解答題(共66分)19、(1)每件應(yīng)該降價20元;(2)當每件降價15元時,每天獲利最大,且獲利1250元【分析】(1)設(shè)每件應(yīng)該降價元,則每件利潤為元,此時可售出數(shù)量為件,結(jié)合盈利1200元進一步列出方程求解即可;(2)設(shè)每件降價元時,每天獲利最大,且獲利元,然后進一步根據(jù)題意得出二者的關(guān)系式,最后進一步配方并加以分析求解即可.【詳解】(1)設(shè)每件應(yīng)該降價元,則:,整理可得:,解得:,,∵要盡量減少庫存,在獲利相同的情況下,降價越多,銷售越快,∴每件應(yīng)該降價20元,答:每件應(yīng)該降價20元;(2)設(shè)每件降價元時,每天獲利最大,且獲利元,則:,配方可得:,∵,∴當時,取得最大值,且,即當每件降價15元時,每天獲利最大,且獲利1250元,答:當每件降價15元時,每天獲利最大,且獲利1250元.本題主要考查了一元二次方程與二次函數(shù)的實際應(yīng)用,根據(jù)題意正確找出等量關(guān)系是解題關(guān)鍵.20、【分析】列舉出所有等情況和抽到一男一女的情況數(shù),再根據(jù)概率公式即可得出答案.【詳解】設(shè)三個女生記為,,,兩個男生記為,.列表如下:有且只有以上20種情形,它們發(fā)生的機會均等,抽到一男一女有12種情形,∴(一男一女)=本題考查了用列表法或樹狀圖法求概率.列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回實驗還是不放回實驗.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.21、(1)見解析;(2)4.1【詳解】試題分析:(1)由正方形的性質(zhì)得出AB=AD,∠B=10°,AD∥BC,得出∠AMB=∠EAF,再由∠B=∠AFE,即可得出結(jié)論;(2)由勾股定理求出AM,得出AF,由△ABM∽△EFA得出比例式,求出AE,即可得出DE的長.試題解析:(1)∵四邊形ABCD是正方形,∴AB=AD,∠B=10°,AD∥BC,∴∠AMB=∠EAF,又∵EF⊥AM,∴∠AFE=10°,∴∠B=∠AFE,∴△ABM∽△EFA;(2)∵∠B=10°,AB=12,BM=5,∴AM==13,AD=12,∵F是AM的中點,∴AF=AM=6.5,∵△ABM∽△EFA,∴,即,∴AE=16.1,∴DE=AE-AD=4.1.考點:1.相似三角形的判定與性質(zhì);2.正方形的性質(zhì).22、(1)證明見解析;(2)1.【分析】(1)由BD=FG,BD//FG可得四邊形BDFG是平行四邊形,根據(jù)CE⊥BD可得∠CFA=∠CED=90°,根據(jù)直角三角形斜邊中線的性質(zhì)可得BD=DF=AC,即可證得結(jié)論;(2)設(shè)GF=x,則AF=13﹣x,AC=2x,利用勾股定理列方程可求出x的值,進而可得答案.【詳解】(1)∵AG∥BD,BD=FG,∴四邊形BGFD是平行四邊形,∵CF⊥BD,BD//AG,∴∠CFA=∠CED=90°,∵點D是AC中點,∴DF=AC,∵∠ABC=90°,BD為AC的中線,∴BD=AC,∴BD=DF,∴平行四邊形BGFD是菱形.(2)設(shè)GF=x,則AF=13﹣x,AC=2x,∵在Rt△ACF中,∠CFA=90°,∴AF2+CF2=AC2,即(13﹣x)2+62=(2x)2,解得:x=5,x=﹣(舍去),∵四邊形BDFG是菱形,∴四邊形BDFG的周長=4GF=1.本題考查菱形的判定與性質(zhì)及直角三角形斜邊中線的性質(zhì),熟練掌握直角三角形斜邊中線等于斜邊一半的性質(zhì)是解題關(guān)鍵.23、(1)見解析;(2)見解析【分析】(1)連接OD,延長OD交于E,連接AE,根據(jù)垂徑定理可得,根據(jù)圓周角定理可得∠BAE=∠CAE,即可得答案;(2)連接OD,延長OD交于E,連接AE,反向延長OD,交于H,作射線AH,由(1)可知∠BAE=∠CAE,由HE是直徑可得∠EAH=∠BAE+∠BAH=90°,根據(jù)平角的定義可得∠CAE+∠FAH=90°,即可證明∠BAH=∠FAH,可得答案.【詳解】(1)如圖,連接OD,延長OD交于E,連接AE,∵OE為半徑,D為BC中點,∴,∴∠BAE=∠CAE,∴AE為∠BAC的角平分線,弦即為所求.(2)如圖,連接OD,延長OD交于E,連接AE,反向延長OD,交于H,作射線AH,∵HE是直徑,點A在上,∴∠EAH=∠BAE+∠BAH=90°,∴∠CAE+∠FAH=90°,由(1)可知∠BAE=∠CAE,∴∠BAH=∠FA
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025呼倫貝爾市政務(wù)服務(wù)與數(shù)據(jù)管理局所屬事業(yè)單位引進3名人才考前自測高頻考點模擬試題及參考答案詳解一套
- 2025北京中國熱帶農(nóng)業(yè)科學院椰子研究所第一批次招聘考前自測高頻考點模擬試題有完整答案詳解
- 2025江西交科交通工程有限公司招聘1人考前自測高頻考點模擬試題及一套參考答案詳解
- 2025年日照科技職業(yè)學院公開招聘教師41人考前自測高頻考點模擬試題含答案詳解
- 2025年甘肅省蘭州新區(qū)石化產(chǎn)業(yè)投資集團有限公司急需緊缺專業(yè)技術(shù)崗位招聘14人考前自測高頻考點模擬試題及答案詳解(奪冠)
- 2025巴彥淖爾市能源(集團)有限公司第一批招聘48人模擬試卷(含答案詳解)
- 2025湖南邵陽市新寧縣政協(xié)中心公開選調(diào)工作人員考前自測高頻考點模擬試題附答案詳解(模擬題)
- 2025年荊州市廣電影視文化有限公司招聘和入圍考前自測高頻考點模擬試題及答案詳解(名師系列)
- 2025福建省船舶工業(yè)集團有限公司招聘5人模擬試卷及答案詳解1套
- 2025年牡丹江市市級機關(guān)公開遴選考試真題
- 車位退還協(xié)議書
- 監(jiān)理整改措施方案(3篇)
- 景區(qū)酒店融資方案(3篇)
- GB/T 9948-2025石化和化工裝置用無縫鋼管
- 下肢靜脈血栓疑難病例護理討論
- 農(nóng)行柔性團隊管理辦法
- 預(yù)防性維護與預(yù)測分析
- 重心的講課課件
- DB42∕T 2221-2024 預(yù)制芯樁復(fù)合樁技術(shù)規(guī)程
- 抗癲癇類藥講課件
- 2025三年級科學教學質(zhì)量提升計劃
評論
0/150
提交評論