




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2026屆四川省成都市第二十三中學數(shù)學九年級第一學期期末教學質(zhì)量檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每題4分,共48分)1.要將拋物線平移后得到拋物線,下列平移方法正確的是()A.向左平移1個單位,再向上平移2個單位 B.向左平移1個單位,再向下平移2個單位C.向右平移1個單位,再向上平移2個單位 D.向右平移1個單位,再向下平移2個單位2.下列光線所形成的投影不是中心投影的是()A.太陽光線 B.臺燈的光線 C.手電筒的光線 D.路燈的光線3.如圖,l1∥l2∥l3,直線a,b與l1,l2,l3分別相交于點A、B、C和點D、E、F,若,DE=4,則DF的長是()A. B. C.10 D.64.若二次函數(shù)y=x2﹣2x+c的圖象與坐標軸只有兩個公共點,則c應滿足的條件是()A.c=0 B.c=1 C.c=0或c=1 D.c=0或c=﹣15.已知x1,x2是一元二次方程的兩根,則x1+x2的值是()A.0 B.2 C.-2 D.46.⊙O的半徑為15cm,AB,CD是⊙O的兩條弦,AB∥CD,AB=24cm,CD=18cm,則AB和CD之間的距離是()A.21cm B.3cmC.17cm或7cm D.21cm或3cm7.已知二次函數(shù)y=x2+mx+n的圖像經(jīng)過點(―1,―3),則代數(shù)式mn+1有()A.最小值―3B.最小值3C.最大值―3D.最大值38.對于拋物線,下列結論:①拋物線的開口向下;②對稱軸為直線x=1:③頂點坐標為(﹣1,3);④x>-1時,y隨x的增大而減小,其中正確結論的個數(shù)為()A.1 B.2 C.3 D.49.如圖,在平面直角坐標系中,A(1,2),B(1,-1),C(2,2),拋物線y=ax2(a≠0)經(jīng)過△ABC區(qū)域(包括邊界),則a的取值范圍是()A.
或
B.
或
C.
或D.10.電影《流浪地球》一上映就獲得追捧,第一天票房收入約8億元,第三天票房收入達到了11.52億元,設第一天到第三天票房收入平均每天增長的百分率為x,則可列方程()A.8(1+x)=11.52 B.8(1+2x)=11.52C.8(1+x)=11.52 D.8(1﹣x)=11.5211.如圖,D是等邊△ABC邊AD上的一點,且AD:DB=1:2,現(xiàn)將△ABC折疊,使點C與D重合,折痕為EF,點E、F分別在AC、BC上,則CE:CF=()A. B. C. D.12.從1、2、3、4四個數(shù)中隨機選取兩個不同的數(shù),分別記為、,則關于的一元二次方程有實數(shù)解的概率為()A. B. C. D.二、填空題(每題4分,共24分)13.如圖是一個正方形及其內(nèi)切圓,正方形的邊長為4,隨機地往正方形內(nèi)投一粒米,落在圓內(nèi)的概率是______.14.雙曲線y1、y2在第一象限的圖象如圖,,過y1上的任意一點A,作x軸的平行線交y2于B,交y軸于C,若S△AOB=1,則y2的解析式是15.某品牌手機六月份銷售400萬部,七月份、八月份銷售量連續(xù)增長,八月份銷售量達到576萬部,則該品牌手機這兩個月銷售量的月平均增長率為_________.16.在一只不透明的口袋中放入只有顏色不同的白色球3個,黑色球5個,黃色球n個,攪勻后隨機從中摸取一個恰好是白色球的概率為,則放入的黃色球數(shù)n=_________.17.若,則=______.18.如圖,,,是上的三個點,四邊形是平行四邊形,連接,,若,則_____.三、解答題(共78分)19.(8分)如圖,在等邊三角形ABC中,點D,E分別在BC,AB上,且∠ADE=60°.求證:△ADC~△DEB.20.(8分)如圖,小明家窗外有一堵圍墻AB,由于圍墻的遮擋,清晨太陽光恰好從窗戶的最高點C射進房間的地板F處,中午太陽光恰好能從窗戶的最低點D射進房間的地板E處,小明測得窗子距地面的高度OD=1m,窗高CD=1.5m,并測得OE=1m,OF=5m,求圍墻AB的高度.21.(8分)內(nèi)接于⊙,是直徑,,點在⊙上.(1)如圖,若弦交直徑于點,連接,線段是點到的垂線.①問的度數(shù)和點的位置有關嗎?請說明理由.②若的面積是的面積的倍,求的正弦值.(2)若⊙的半徑長為,求的長度.22.(10分)已知方程是關于的一元二次方程.(1)求證:方程總有兩個實數(shù)根;(2)若方程的兩個根之和等于兩根之積,求的值.23.(10分)求值:24.(10分)小明開著汽車在平坦的公路上行駛,前放出現(xiàn)兩座建筑物A、B(如圖),在(1)處小穎能看到B建筑物的一部分,(如圖),此時,小明的視角為30°,已知A建筑物高25米.(1)請問汽車行駛到什么位置時,小明剛好看不到建筑物B?請在圖中標出這點.(2)若小明剛好看不到B建筑物時,他的視線與公路的夾角為45°,請問他向前行駛了多少米?(精確到0.1)25.(12分)已知關于的方程.(1)求證:無論為何值,該方程都有兩個不相等的實數(shù)根;(2)若該方程的一個根為-1,則另一個根為.26.如圖,已知直線y=-2x+3與拋物線y=x2相交于A,B兩點,O為坐標原點.(1)求點A和B的坐標;(2)連結OA,OB,求△OAB的面積.
參考答案一、選擇題(每題4分,共48分)1、A【分析】原拋物線頂點坐標為(0,0),平移后拋物線頂點坐標為(-1,2),由此確定平移辦法.【詳解】y=x2+2x+3=(x+1)2+2,該拋物線的頂點坐標是(-1,2),拋物線y=x2的頂點坐標是(0,0),
則平移的方法可以是:將拋物線y=x2向左平移1個單位長度,再向上平移2個單位長度.
故選:A.此題考查二次函數(shù)圖象與幾何變換.解題關鍵是將拋物線的平移問題轉化為頂點的平移,尋找平移方法.2、A【分析】利用中心投影(光由一點向外散射形成的投影叫做中心投影)和平行投影(由平行光線形成的投影是平行投影)的定義即可判斷出.【詳解】解:A.太陽距離地球很遠,我們認為是平行光線,因此不是中心投影.
B.臺燈的光線是由臺燈光源發(fā)出的光線,是中心投影;
C.手電筒的光線是由手電筒光源發(fā)出的光線,是中心投影;
D.路燈的光線是由路燈光源發(fā)出的光線,是中心投影.
所以,只有A不是中心投影.
故選:A.本題考查了中心投影和平行投影的定義.熟記定義,并理解一般情況下,太陽光線可以近似的看成平行光線是解決此題的關鍵.3、C【解析】試題解析:又DE=4,∴EF=6,∴DF=DE+EF=10,故選C.4、C【分析】根據(jù)二次函數(shù)y=x2﹣2x+c的圖象與坐標軸只有兩個公共點,可知二次函數(shù)y=x2﹣2x+c的圖象與x軸只有一個公共點或者與x軸有兩個公共點,其中一個為原點兩種情況,然后分別計算出c的值即可解答本題.【詳解】解:∵二次函數(shù)y=x2﹣2x+c的圖象與坐標軸只有兩個公共點,∴二次函數(shù)y=x2﹣2x+c的圖象與x軸只有一個公共點或者與x軸有兩個公共點,其中一個為原點,當二次函數(shù)y=x2﹣2x+c的圖象與x軸只有一個公共點時,(﹣2)2﹣4×1×c=0,得c=1;當二次函數(shù)y=x2﹣2x+c的圖象與軸有兩個公共點,其中一個為原點時,則c=0,y=x2﹣2x=x(x﹣2),與x軸兩個交點,坐標分別為(0,0),(2,0);由上可得,c的值是1或0,故選:C.本題考查了二次函數(shù)與坐標的交點問題,掌握解二次函數(shù)的方法是解題的關鍵.5、B【解析】∵x1,x1是一元二次方程的兩根,∴x1+x1=1.故選B.6、D【分析】作OE⊥AB于E,交CD于F,連結OA、OC,如圖,根據(jù)平行線的性質(zhì)得OF⊥CD,再利用垂徑定理得到AE=AB=12cm,CF=CD=9cm,接著根據(jù)勾股定理,在Rt△OAE中計算出OE=9cm,在Rt△OCF中計算出OF=12cm,然后分類討論:當圓心O在AB與CD之間時,EF=OF+OE;當圓心O不在AB與CD之間時,EF=OF-OE.【詳解】解:作OE⊥AB于E,交CD于F,連結OA、OC,如圖,
∵AB∥CD,
∴OF⊥CD,
∴AE=BE=AB=12cm,CF=DF=CD=9cm,
在Rt△OAE中,∵OA=15cm,AE=12cm,
∴OE=,
在Rt△OCF中,∵OC=15cm,CF=9cm,
∴OF=,
當圓心O在AB與CD之間時,EF=OF+OE=12+9=21cm(如圖1);
當圓心O不在AB與CD之間時,EF=OF-OE=12-9=3cm(如圖2);
即AB和CD之間的距離為21cm或3cm.
故選:D.本題考查了垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條?。部疾榱斯垂啥ɡ恚畬W會運用分類討論的思想解決數(shù)學問題.7、A【解析】把點(-1,-3)代入y=x2+mx+n得n=-4+m,再代入mn+1進行配方即可.【詳解】∵二次函數(shù)y=x2+mx+n的圖像經(jīng)過點(-1,-3),∴-3=1-m+n,∴n=-4+m,代入mn+1,得mn+1=m2-4m+1=(m-2)2-3.∴代數(shù)式mn+1有最小值-3.故選A.本題考查了二次函數(shù)圖象上點的坐標特征,以及二次函數(shù)的性質(zhì),把函數(shù)mn+1的解析式化成頂點式是解題的關鍵.8、C【解析】試題分析:①∵a=﹣<0,∴拋物線的開口向下,正確;②對稱軸為直線x=﹣1,故本小題錯誤;③頂點坐標為(﹣1,3),正確;④∵x>﹣1時,y隨x的增大而減小,∴x>1時,y隨x的增大而減小一定正確;綜上所述,結論正確的個數(shù)是①③④共3個.故選C.考點:二次函數(shù)的性質(zhì)9、B【解析】試題解析:如圖所示:分兩種情況進行討論:當時,拋物線經(jīng)過點時,拋物線的開口最小,取得最大值拋物線經(jīng)過△ABC區(qū)域(包括邊界),的取值范圍是:當時,拋物線經(jīng)過點時,拋物線的開口最小,取得最小值拋物線經(jīng)過△ABC區(qū)域(包括邊界),的取值范圍是:故選B.點睛:二次函數(shù)二次項系數(shù)決定了拋物線開口的方向和開口的大小,開口向上,開口向下.的絕對值越大,開口越小.10、C【分析】設平均每天票房的增長率為,根據(jù)第一天票房收入約8億元,第三天票房收入達到了11.52億元,即可得出關于的一元二次方程.【詳解】解:設平均每天票房的增長率為,根據(jù)題意得:.故選:C.本題考查了由實際問題抽象出一元二次方程,找準等量關系,正確列出一元二次方程是解題的關鍵.11、B【詳解】解:由折疊的性質(zhì)可得,∠EDF=∠C=60o,CE=DE,CF=DF再由∠BDF+∠ADE=∠BDF+∠BFD=120o可得∠ADE=∠BFD,又因∠A=∠B=60o,根據(jù)兩角對應相等的兩三角形相似可得△AED∽△BDF所以,設AD=a,BD=2a,AB=BC=CA=3a,再設CE==DE=x,CF==DF=y,則AE=3a-x,BF=3a-y,所以整理可得ay=3ax-xy,2ax=3ay-xy,即xy=3ax-ay①,xy=3ay-2ax②;把①代入②可得3ax-ay=3ay-2ax,所以5ax=4ay,,即故選B.本題考查相似三角形的判定及性質(zhì).12、C【分析】先根據(jù)一元二次方程有實數(shù)根求出ac≤4,繼而畫樹狀圖進行求解即可.【詳解】由題意,△=42-4ac≥0,∴ac≤4,畫樹狀圖如下:a、c的積共有12種等可能的結果,其中積不大于4的有6種結果數(shù),所以a、c的積不大于4(也就是一元二次方程有實數(shù)根)的概率為,故選C.本題考查了一元二次方程根的判別式,列表法或樹狀圖法求概率,得到ac≤4是解題的關鍵.二、填空題(每題4分,共24分)13、【分析】根據(jù)題意算出正方形的面積和內(nèi)切圓面積,再利用幾何概率公式加以計算,即可得到所求概率.【詳解】解:∵正方形的邊長為4,
∴正方形的面積S正方形=16,內(nèi)切圓的半徑r=2,
因此,內(nèi)切圓的面積為S內(nèi)切圓=πr2=4π,可得米落入圓內(nèi)的概率為:故答案為:本題考查幾何概率、正多邊形和圓,解答本題的關鍵是明確題意,屬于中檔題.14、y2=.【分析】根據(jù),過y1上的任意一點A,得出△CAO的面積為2,進而得出△CBO面積為3,即可得出y2的解析式.【詳解】解:∵,過y1上的任意一點A,作x軸的平行線交y2于B,交y軸于C,S△AOB=1,∴△CBO面積為3,∴xy=6,∴y2的解析式是:y2=.故答案為:y2=.15、20%【分析】根據(jù)增長(降低)率公式可列出式子.【詳解】設月平均增長率為x.根據(jù)題意可得:.解得:.所以增長率為20%.故答案為:20%.本題主要考查了一元二次方程的應用,記住增長率公式很重要.16、1
【分析】根據(jù)口袋中裝有白球3個,黑球5個,黃球n個,故球的總個數(shù)為3+5+n,再根據(jù)黃球的概率公式列式解答即可.【詳解】∵口袋中裝有白球3個,黑球5個,黃球n個,∴球的總個數(shù)為3+5+n,∵從中隨機摸出一個球,摸到白色球的概率為,即,解得:n=1,故答案為:1.本題主要考查概率公式,如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結果,那么事件A的概率P(A)=.17、【詳解】設x=2k.y=3k,(k≠0)∴原式=.故答案是:18、64【分析】先根據(jù)圓周角定理求出∠O的度數(shù),然后根據(jù)平行四邊形的對角相等求解即可.【詳解】∵,∴∠O=2,∵四邊形是平行四邊形,∴∠O=.故答案為:64.本題考查了圓周角定理,平行四變形的性質(zhì),熟練掌握圓周角定理是解答本題的關鍵.在同圓或等圓中,同弧或等弧所對的圓周角等于這條弧所對的圓心角的一半.三、解答題(共78分)19、見解析【解析】根據(jù)等邊三角形性質(zhì)得∠B=∠C,根據(jù)三角形外角性質(zhì)得∠CAD=∠BDE,易證.【詳解】證明:ABC是等邊三角形,∴∠B=∠C=60°,∴∠ADB=∠CAD+∠C=∠CAD+60°,∵∠ADE=60°,∴∠ADB=∠BDE+60°,∴∠CAD=∠BDE,∴考核知識點:相似三角形的判定.根據(jù)等邊三角形性質(zhì)和三角形外角確定對應角相等是關鍵.20、1m【分析】首先根據(jù)DO=OE=1m,可得∠DEB=15°,然后證明AB=BE,再證明△ABF∽△COF,可得,然后代入數(shù)值可得方程,解出方程即可得到答案.【詳解】解:延長OD,∵DO⊥BF,∴∠DOE=90°,∵OD=1m,OE=1m,∴∠DEB=15°,∵AB⊥BF,∴∠BAE=15°,∴AB=BE,設AB=EB=xm,∵AB⊥BF,CO⊥BF,∴AB∥CO,∴△ABF∽△COF,∴,,解得:x=1.經(jīng)檢驗:x=1是原方程的解.答:圍墻AB的高度是1m.此題主要考查了相似三角形的應用,解決問題的關鍵是求出AB=BE,根據(jù)相似三角形的判定方法證明△ABF∽△COF.21、(1)沒有關系,∠CDF=∠CAB=60°;(2);(3)或【解析】(1)①根據(jù)同弧所對的圓周角解答即可;②利用銳角三角函數(shù)的定義求出AC與BC、DF與CF的關系,利用三角形的面積公式得出,然后根據(jù)正弦的定義可求出的正弦值;(2)分兩種情況求解:①當D點在直徑AB下方的圓弧上時;當D點在直徑AB上方的圓弧上時.【詳解】解:(1)①沒有關系,理由如下:當D在直徑AB的上方時,如下圖,∵AB為直徑,∴∠ACB=90°;∵∠ABC=30°,∴∠CAB=60°;∴∠CDF=∠CAB=60°;當D在直徑AB的下方時,如下圖∵∠CAB=60°,∴∠CDB=180°-∠CAB=120°,∴∠CDF=60°.②∵CF⊥BD,AB為直徑;∴∠ACB=∠CFD=90°;由①得,∠CDF=∠CAB=60°,∴;;∵;;∴;∴(2)∵半徑為2,,∴弧CD所對圓心角①當D點在直徑AB下方的圓弧上時;如圖,連結OD,過D作DE⊥AB于E;由(1)知,,∴;∴;OD=2,∴,,;∴;②當D點在直徑AB上方的圓弧上時,如圖,連結OD,過D作DF⊥AB于F;此時;∴,,;∴;綜上所述:BD的長為或.本題考查了圓周角定理的推論,銳角三角函數(shù)的定義,勾股定理及其逆定理的應用,以及分類討論的數(shù)學思想,分類討論是解答本題的關鍵.22、(1)詳見解析;(2)1.【分析】(1)根據(jù)一元二次方程根的判別式,即可得到結論;(2)由一元二次方程根與系數(shù)的關系,得,,進而得到關于m的方程,即可求解.【詳解】(1)∵方程是關于的一元二次方程,∴,∵,∴方程總有兩個實根;(2)設方程的兩根為,,則,根據(jù)題意得:,解得:,(舍去),∴的值為1.本題主要考查一元二次方程根的判別式以及根與系數(shù)的關系,掌握一元二次方程根的判別式以及根與系數(shù)的關系是解題的關鍵.23、2.【分析】先將三角函數(shù)值代入,再根據(jù)混合運算順序依此計算可得.【詳解】原式=本題主要考查了特殊角的三角函數(shù)值,解題的關鍵是熟練掌握各特殊角的三角函數(shù)值.24、(1)汽車行駛到E點位置時,小明剛好看不到建筑物B;(2)他向前行駛了18.3米.【解析】1)連接FC并延長到BA上一點E,即為所求答案;
(2)利用解Rt△AEC求AE,解Rt△ACM,求AM,利用ME=AM-AE求出他行駛的距離.【詳解】解:(1)如圖所示:汽車行駛到E點
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年合肥創(chuàng)和資產(chǎn)管理有限責任公司第一批人員招聘2人考前自測高頻考點模擬試題及答案詳解一套
- 公司化學農(nóng)藥生產(chǎn)工崗位操作技能考核試卷及答案
- 公司灌區(qū)供水工沖突化解能力考核試卷及答案
- 公司炭極生產(chǎn)工質(zhì)量追溯知識考核試卷及答案
- 公司玻璃鋼制品纏繞工問題解決考核試卷及答案
- 2025江蘇泰州市興化市醫(yī)療衛(wèi)生事業(yè)單位招聘高層次人才78人(全年)模擬試卷完整答案詳解
- 大一新生安全知識培訓課件
- 項目管理信息系統(tǒng)建設方案
- 新生活專業(yè)知識講師培訓課件
- 2025湖南邵陽市新寧產(chǎn)業(yè)開發(fā)區(qū)選調(diào)5人模擬試卷及參考答案詳解1套
- 高考文言文120個常見實詞積累練習(學生版)
- 大學實驗室安全培訓
- 《實戰(zhàn)電池性能測試》課件
- 2025年全國共青團團員知識競賽題庫及答案(共150題)
- 全屋定制家居安裝與保養(yǎng)標準作業(yè)指導書
- 《電力寬帶微功率無線通信芯片技術規(guī)范》
- 微生物學檢驗技術 課件 16項目十六:細菌生物化學試驗
- pbo纖維課件教學課件
- 人教版九年級數(shù)學上冊全冊單元檢測卷及答案(包含:期中、期末試卷)
- 醫(yī)院培訓課件:《直腸癌中醫(yī)護理查房》
- 腦梗死臨床路徑表單
評論
0/150
提交評論