2026屆廣東省深圳龍崗區(qū)六校聯(lián)考數(shù)學(xué)九上期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第1頁(yè)
2026屆廣東省深圳龍崗區(qū)六校聯(lián)考數(shù)學(xué)九上期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第2頁(yè)
2026屆廣東省深圳龍崗區(qū)六校聯(lián)考數(shù)學(xué)九上期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第3頁(yè)
2026屆廣東省深圳龍崗區(qū)六校聯(lián)考數(shù)學(xué)九上期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第4頁(yè)
2026屆廣東省深圳龍崗區(qū)六校聯(lián)考數(shù)學(xué)九上期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩17頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2026屆廣東省深圳龍崗區(qū)六校聯(lián)考數(shù)學(xué)九上期末學(xué)業(yè)水平測(cè)試模擬試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.如圖,在方格紙中,點(diǎn)A,B,C都在格點(diǎn)上,則tan∠ABC的值是()A.2 B. C. D.2.下列事件中,必然事件是()A.打開電視,正在播放宜春二套 B.拋一枚硬幣,正面朝上C.明天會(huì)下雨 D.地球繞著太陽(yáng)轉(zhuǎn)3.若關(guān)于x的一元二次方程方程(k﹣1)x2+2x﹣1=0有兩個(gè)不相等的實(shí)數(shù)根,則k的取值范圍是()A.k≥0 B.k>0且k≠1 C.k≤0且k≠﹣1 D.k>04.如圖,是反比例函數(shù)與在x軸上方的圖象,點(diǎn)C是y軸正半軸上的一點(diǎn),過(guò)點(diǎn)C作軸分別交這兩個(gè)圖象與點(diǎn)A和點(diǎn)B,P和Q在x軸上,且四邊形ABPQ為平行四邊形,則四邊形ABPQ的面積等于()A.20 B.15 C.10 D.55.下列運(yùn)算中,正確的是().A. B. C. D.6.(2011?德州)一個(gè)平面封閉圖形內(nèi)(含邊界)任意兩點(diǎn)距離的最大值稱為該圖形的“直徑”,封閉圖形的周長(zhǎng)與直徑之比稱為圖形的“周率”,下面四個(gè)平面圖形(依次為正三角形、正方形、正六邊形、圓)的周率從左到右依次記為a1,a2,a3,a4,則下列關(guān)系中正確的是()A.a(chǎn)4>a2>a1 B.a(chǎn)4>a3>a2C.a(chǎn)1>a2>a3 D.a(chǎn)2>a3>a47.把二次函數(shù)y=﹣(x+1)2﹣3的圖象沿著x軸翻折后,得到的二次函數(shù)有()A.最大值y=3 B.最大值y=﹣3 C.最小值y=3 D.最小值y=﹣38.如圖,將一邊長(zhǎng)AB為4的矩形紙片折疊,使點(diǎn)D與點(diǎn)B重合,折痕為EF,若EF=2,則矩形的面積為()A.32 B.28 C.30 D.369.若關(guān)于x的一元二次方程有兩個(gè)不相等的實(shí)數(shù)根,那么k的取值范圍是()A.k≠0 B.k>4 C.k<4 D.k<4且k≠010.如圖,內(nèi)接于圓,,,若,則弧的長(zhǎng)為()A. B. C. D.二、填空題(每小題3分,共24分)11.將二次函數(shù)y=2x2的圖像沿x軸向左平移2個(gè)單位,再向下平移3個(gè)單位后,所得函數(shù)圖像的函數(shù)關(guān)系式為______________.12.已知二次函數(shù)(m為常數(shù)),若對(duì)于一切實(shí)數(shù)m和均有y≥k,則k的最大值為____________.13.一元二次方程x2﹣4x+4=0的解是________.14.如圖,中,,點(diǎn)位于第一象限,點(diǎn)為坐標(biāo)原點(diǎn),點(diǎn)在軸正半軸上,若雙曲線與的邊、分別交于點(diǎn)、,點(diǎn)為的中點(diǎn),連接、.若,則為_______________.15.若點(diǎn)、在二次函數(shù)的圖象上,則的值為________.16.反比例函數(shù)y=的圖象分布在第一、三象限內(nèi),則k的取值范圍是______.17.在Rt△ABC中,∠C=90,AB=4,BC=3,則sinA的值是______________.18.如圖,中,點(diǎn)在邊上.若,,,則的長(zhǎng)為______.三、解答題(共66分)19.(10分)將如圖所示的牌面數(shù)字1、2、3、4的四張撲克牌背面朝上,洗勻后放在桌面上.(1)從中隨機(jī)抽出一張牌,牌面數(shù)字是奇數(shù)的概率是;(2)從中隨機(jī)抽出兩張牌,兩張牌牌面數(shù)字的和是6的概率是;(3)先從中隨機(jī)抽出一張牌,將牌面數(shù)字作為十位上的數(shù)字,然后將該牌放回并重新洗勻,再隨機(jī)抽取一張,將牌面數(shù)字作為個(gè)位上的數(shù)字,請(qǐng)用樹狀圖或列表的方法求組成的兩位數(shù)恰好是3的倍的概率.20.(6分)如圖,AB是⊙O的直徑,CD是⊙O的弦,且CD⊥AB于點(diǎn)E.(1)求證:∠BCO=∠D;(2)若,AE=1,求劣弧BD的長(zhǎng).21.(6分)如圖,在平面直角坐標(biāo)系中,點(diǎn)從點(diǎn)運(yùn)動(dòng)到點(diǎn)停止,連接,以長(zhǎng)為直徑作.(1)若,求的半徑;(2)當(dāng)與相切時(shí),求的面積;(3)連接,在整個(gè)運(yùn)動(dòng)過(guò)程中,的面積是否為定值,如果是,請(qǐng)直接寫出面積的定值,如果不是,請(qǐng)說(shuō)明理由.22.(8分)已知x2﹣8x+16﹣m2=0(m≠0)是關(guān)于x的一元二次方程(1)證明:此方程總有兩個(gè)不相等的實(shí)數(shù)根;(2)若等腰△ABC的一邊長(zhǎng)a=6,另兩邊長(zhǎng)b、c是該方程的兩個(gè)實(shí)數(shù)根,求△ABC的面積.23.(8分)若邊長(zhǎng)為6的正方形ABCD繞點(diǎn)A順時(shí)針旋轉(zhuǎn),得正方形AB′C′D′,記旋轉(zhuǎn)角為a.(I)如圖1,當(dāng)a=60°時(shí),求點(diǎn)C經(jīng)過(guò)的弧的長(zhǎng)度和線段AC掃過(guò)的扇形面積;(Ⅱ)如圖2,當(dāng)a=45°時(shí),BC與D′C′的交點(diǎn)為E,求線段D′E的長(zhǎng)度;(Ⅲ)如圖3,在旋轉(zhuǎn)過(guò)程中,若F為線段CB′的中點(diǎn),求線段DF長(zhǎng)度的取值范圍.24.(8分)我們規(guī)定:方程的變形方程為.例如:方程的變形方程為.(1)直接寫出方程的變形方程;(2)若方程的變形方程有兩個(gè)不相等的實(shí)數(shù)根,求的取值范圍;(3)若方程的變形方程為,直接寫出的值.25.(10分)化簡(jiǎn)(1)(2)26.(10分)如圖,分別是的邊,上的點(diǎn),,,,,求的長(zhǎng).

參考答案一、選擇題(每小題3分,共30分)1、A【分析】根據(jù)直角三角形解決問(wèn)題即可.【詳解】解:作AE⊥BC,∵∠AEC=90°,AE=4,BE=2,∴tan∠ABC=,故選:A.本題主要考查了解直角三角形,解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,構(gòu)造直角三角形解決問(wèn)題.2、D【解析】根據(jù)必然事件的概念(必然事件指在一定條件下一定發(fā)生的事件)可判斷正確答案.【詳解】解:、打開電視,正在播放宜春二套,是隨機(jī)事件,故錯(cuò)誤;、拋一枚硬幣,正面朝上是隨機(jī)事件,故錯(cuò)誤;、明天會(huì)下雨是隨機(jī)事件,故錯(cuò)誤;、地球繞著太陽(yáng)轉(zhuǎn)是必然事件,故正確;故選:.本題考查的是必然事件、不可能事件、隨機(jī)事件的概念.必然事件指在一定條件下,一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件,不確定事件即隨機(jī)事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.3、B【解析】根據(jù)一元二次方程定義,首先要求的二次項(xiàng)系數(shù)不為零,再根據(jù)已知條件,方程有兩個(gè)不相等的實(shí)數(shù)根,令根的判別式大于零即可.【詳解】解:由題意得,解得,;且,即,解得.綜上所述,且.本題主要考查一元二次方程的定義和根的判別式,理解掌握定義,熟練運(yùn)用根的判別式是解答關(guān)鍵.4、C【解析】分別過(guò)A、B作AD、BE垂直x軸,易證,則平行四邊形ABPQ的面積等于矩形ADEB的面積,根據(jù)反比例函數(shù)比例系數(shù)k的幾何意義分別求得矩形ADOC和矩形BEOC的面積,相加即可求得結(jié)果.【詳解】解:如圖,分別過(guò)A、B作AD、BE垂直x軸于點(diǎn)D、點(diǎn)E,則四邊形ADEB是矩形,易證,∴S矩形ABED,∵點(diǎn)A在反比例函數(shù)上,由反比例函數(shù)比例系數(shù)k的幾何意義可得:S矩形ADOC=|k|=3,同理可得:S矩形BEOC=7,∴S矩形ABED=S矩形ADOC+S矩形BEOC=3+7=10,故選:C.本題考查了反比例函數(shù)比例系數(shù)k的幾何意義,熟練運(yùn)用比例系數(shù)k的幾何意義是解決本題的關(guān)鍵.5、C【解析】試題分析:3a和2b不是同類項(xiàng),不能合并,A錯(cuò)誤;和不是同類項(xiàng),不能合并,B錯(cuò)誤;,C正確;,D錯(cuò)誤,故選C.考點(diǎn):合并同類項(xiàng).6、B【解析】試題解析:設(shè)等邊三角形的邊長(zhǎng)是a,則等邊三角形的周率a1==3設(shè)正方形的邊長(zhǎng)是x,由勾股定理得:對(duì)角線是x,則正方形的周率是a1==1≈1.818,設(shè)正六邊形的邊長(zhǎng)是b,過(guò)F作FQ∥AB交BE于Q,得到平行四邊形ABQF和等邊三角形EFQ,直徑是b+b=1b,∴正六邊形的周率是a3==3,圓的周率是a4==π,∴a4>a3>a1.故選B.考點(diǎn):1.正多邊形和圓;1.等邊三角形的判定與性質(zhì);3.多邊形內(nèi)角與外角;4.平行四邊形的判定與性質(zhì).7、C【分析】根據(jù)二次函數(shù)圖象與幾何變換,將y換成-y,整理后即可得出翻折后的解析式,根據(jù)二次函數(shù)的性質(zhì)即可求得結(jié)論.【詳解】把二次函數(shù)y=﹣(x+1)2﹣3的圖象沿著x軸翻折后得到的拋物線的解析式為﹣y=﹣(x+1)2﹣3,整理得:y=(x+1)2+3,所以,當(dāng)x=﹣1時(shí),有最小值3,故選:C.本題考查了二次函數(shù)圖象與幾何變換,求得翻折后拋物線解析式是解題的關(guān)鍵.8、A【分析】連接BD交EF于O,由折疊的性質(zhì)可推出BD⊥EF,BO=DO,然后證明△EDO≌△FBO,得到OE=OF,設(shè)BC=x,利用勾股定理求BO,再根據(jù)△BOF∽△BCD,列出比例式求出x,即可求矩形面積.【詳解】解:連接BD交EF于O,如圖所示:∵折疊紙片使點(diǎn)D與點(diǎn)B重合,折痕為EF,∴BD⊥EF,BO=DO,∵四邊形ABCD是矩形,∴AD∥BC∴∠EDO=∠FBO在△EDO和△FBO中,∵∠EDO=∠FBO,DO=BO,∠EOD=∠FOB=90°∴△EDO≌△FBO(ASA)∴OE=OF=EF=,∵四邊形ABCD是矩形,∴AB=CD=4,∠BCD=90°,設(shè)BC=x,BD==,∴BO=,∵∠BOF=∠C=90°,∠CBD=∠OBF,∴△BOF∽△BCD,∴=,即:=,解得:x=8,∴BC=8,∴S矩形ABCD=AB?BC=4×8=32,故選:A.本題考查矩形的折疊問(wèn)題,熟練掌握折疊的性質(zhì),全等三角形的判定,以及相似三角形的判定與性質(zhì)是解題的關(guān)鍵.9、C【解析】根據(jù)判別式的意義得到△=(-1)2-1k>0,然后解不等式即可.【詳解】∵關(guān)于x的一元二次方程有兩個(gè)不相等的實(shí)數(shù)根,

∴解得:k<1.

故答案為:C.本題考查的知識(shí)點(diǎn)是一元二次方程根的情況與判別式△的關(guān)系,解題關(guān)鍵是熟記一元二次方程根的情況與判別式△的關(guān)系:(1)△>0方程有兩個(gè)不相等的實(shí)數(shù)根;(2)△=0方程有兩個(gè)相等的實(shí)數(shù)根;(3)△<0方程沒有實(shí)數(shù)根.10、A【分析】連接OB,OC.首先證明△OBC是等腰直角三角形,求出OB即可解決問(wèn)題.【詳解】連接OB,OC.∵∠A=180°-∠ABC-∠ACB=180°-65°-70°=45°,∴∠BOC=90°,∵BC=2,∴OB=OC=2,∴的長(zhǎng)為=π,故選A.本題考查圓周角定理,弧長(zhǎng)公式,等腰直角三角形的性質(zhì)的等知識(shí),解題的關(guān)鍵是熟練掌握基本知識(shí)二、填空題(每小題3分,共24分)11、y=2(x+2)2-3【分析】根據(jù)“上加下減,左加右減”的原則進(jìn)行解答即可.【詳解】解:根據(jù)“上加下減,左加右減”的原則可知,二次函數(shù)y=2x2的圖象向左平移2個(gè)單位,再向下平移3個(gè)單位后得到的圖象表達(dá)式為y=2(x+2)2-3本題考查的是二次函數(shù)的圖象與幾何變換,熟知“上加下減,左加右減”的原則是解答此題的關(guān)鍵.12、【分析】因?yàn)槎魏瘮?shù)系數(shù)大于0,先用含有m的代數(shù)式表示出函數(shù)y的最小值,得出,再求出于m的函數(shù)的最小值即可得出結(jié)果.【詳解】解:,,關(guān)于m的函數(shù)為,,∴,∴k的最大值為.本題考查二次函數(shù)的最值問(wèn)題,先將函數(shù)化為頂點(diǎn)式,即可得出最值.13、x1=x2=2【分析】根據(jù)配方法即可解方程.【詳解】解:x2﹣4x+4=0(x-2)2=0∴x1=x2=2本題考查了用配方法解一元二次方程,屬于簡(jiǎn)單題,選擇配方法是解題關(guān)鍵.14、【分析】根據(jù)反比例函數(shù)關(guān)系式與面積的關(guān)系得S△COE=S△BOD=3,由C是OA的中點(diǎn)得S△ACD=S△COD,由CE∥AB,可知△COE∽△AOB,由面積比是相似比的平方得,求出△ABC的面積,從而求出△AOD的面積,得出結(jié)論.【詳解】過(guò)C作CE⊥OB于E,∵點(diǎn)C、D在雙曲線(x>0)上,∴S△COE=S△BOD,∵S△OBD=3,∴S△COE=3,∵CE∥AB,∴△COE∽△AOB,∴,∵C是OA的中點(diǎn),∴OA=2OC,∴,∴S△AOB=4×3=12,∴S△AOD=S△AOB?S△BOD=12?3=9,∵C是OA的中點(diǎn),∴S△ACD=S△COD,∴S△COD=,故答案為.本題考查了反比例函數(shù)系數(shù)k的幾何意義,即在反比例函數(shù)的圖象中任取一點(diǎn),過(guò)這一個(gè)點(diǎn)向x軸和y軸分別作垂線,與坐標(biāo)軸圍成的矩形的面積是定值|k|,所成的三角形的面積是定值|k|,且保持不變.15、-1【分析】利用拋物線的對(duì)稱性得到點(diǎn)A和點(diǎn)B為拋物線上的對(duì)稱點(diǎn),根據(jù)二次函數(shù)的性質(zhì)得到拋物線的對(duì)稱軸為直線x=?2,從而得到m?(?2)=?2?(?3),然后解方程即可.【詳解】∵點(diǎn)A(?3,n)、B(m,n),∴點(diǎn)A和點(diǎn)B為拋物線上的對(duì)稱點(diǎn),∵二次函數(shù)的圖象的對(duì)稱軸為直線x=?2,∴m?(?2)=?2?(?3),∴m=?1.故答案為:?1.本題考查了二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征:二次函數(shù)圖象上點(diǎn)的坐標(biāo)滿足其解析式.也考查了二次函數(shù)的性質(zhì).16、k>0【詳解】∵反比例函數(shù)的圖象在一、三象限,∴k>0,17、【分析】畫出圖形,直接利用正弦函數(shù)的定義進(jìn)行求解即可.【詳解】如圖:在Rt△ABC中:sinA=∵AB=4,BC=3∴sinA=故本題答案為:.本題考查了三角函數(shù)的定義,注意正弦,余弦,正切定義記清楚.18、【分析】根據(jù)相似三角形對(duì)應(yīng)邊成比例即可求得答案.【詳解】,,,,,解得:故答案為:本題考查了相似三角形的性質(zhì),找準(zhǔn)對(duì)應(yīng)邊是解題的關(guān)鍵.三、解答題(共66分)19、(1);(2);(3),.【分析】(1)根據(jù)概率的意義直接計(jì)算即可解答.

(2)找出兩張牌牌面數(shù)字的和是6的情況再與所有情況相比即可解答.

(3)依據(jù)題意先用列表法或畫樹狀圖法分析所有等可能的出現(xiàn)結(jié)果,然后根據(jù)概率公式求出該事件的概率即可.【詳解】解:(1)1,2,3,4共有4張牌,隨意抽取一張為偶數(shù)的概率為=;(2)只有2+4=6,但組合一共有3+2+1=6,故概率為;(3)列表如下:第二次第一次1234111121314221222324331323334441424344其中恰好是3的倍數(shù)的有12,21,24,33,42五種結(jié)果.所以,P(3的倍數(shù))=.故答案為:,.本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件.用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.20、(1)見解析;(2).【分析】(1)由等腰三角形的性質(zhì)與圓周角定理,易得∠BCO=∠B=∠D;

(2)由垂徑定理可求得CE與DE的長(zhǎng),然后證得△BCE∽△DAE,再由相似三角形的對(duì)應(yīng)邊成比例,求得BE的長(zhǎng),繼而求得直徑與半徑,再求出圓心角∠BOD即可解決問(wèn)題;【詳解】(1)證明:∵OB=OC,∴∠BCO=∠B,∵∠B=∠D,∴∠BCO=∠D;(2)解:連接OD.∵AB是⊙O的直徑,CD⊥AB,∴,∵∠B=∠D,∠BEC=∠DEC,∴△BCE∽△DAE,∴AE:CE=DE:BE,∴,解得:BE=3,∴AB=AE+BE=4,∴⊙O的半徑為2,∵,∴∠EOD=60°,∴∠BOD=120°,∴的長(zhǎng).此題考查圓周角定理、垂徑定理、相似三角形的判定與性質(zhì)以及等腰三角形的性質(zhì).注意在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等.證得△BCE∽△DAE是解題關(guān)鍵.21、(1);(2);(3)是,【分析】(1)若,則,代入數(shù)值即可求得CD,從而求得的半徑.(2)當(dāng)與相切時(shí),則CD⊥AB,利用△ACD∽△ABO,得出比例式求得CD,AD的長(zhǎng),過(guò)P點(diǎn)作PE⊥AO于E點(diǎn),再利用△CPE∽△CAD,得出比例式求得P點(diǎn)的坐標(biāo),即可求得△POB的面積.(3)①若與AB有一個(gè)交點(diǎn),則與AB相切,由(2)可得PD⊥AB,PD=,則②若與AB有兩個(gè)交點(diǎn),設(shè)另一個(gè)交點(diǎn)為F,連接CF,則∠CFD=90°,由(2)可得CF=3,過(guò)P點(diǎn)作PG⊥AB于G點(diǎn),則DG=,PG為△DCF的中位線,PG=,則,綜上所述,△PAB的面積是定值,為.【詳解】(1)根據(jù)題意得:OA=8,OB=6,OC=3∴AC=5∵∴即∴CD=∴的半徑為(2)在直角三角形AOB中,OA=8,OB=6,∴AB=,當(dāng)與相切時(shí),CD⊥AB,∴∠ADC=∠AOB=90°,∠CAD=∠BAO∴△ACD∽△ABO∴,即∴CD=3,AD=4∵CD為圓P的直徑∴CP=過(guò)P點(diǎn)作PE⊥AO于E點(diǎn),則∠PEC=∠ADC=90°,∠PCE=∠ACD∴△CPE∽△CAD∴即∴CE=∴OE=故P點(diǎn)的縱坐標(biāo)為∴△POB的面積=(3)①若與AB有一個(gè)交點(diǎn),則與AB相切,由(2)可得PD⊥AB,PD=,則②若與AB有兩個(gè)交點(diǎn),設(shè)另一個(gè)交點(diǎn)為F,連接CF,則∠CFD=90°,由(2)可得CF=3,過(guò)P點(diǎn)作PG⊥AB于G點(diǎn),則DG=,PG為△DCF的中位線,PG=,則.綜上所述,△PAB的面積是定值,為.本題考查的是圓及相似三角形的綜合應(yīng)用,熟練的掌握直線與圓的位置關(guān)系,相似三角形的判定是關(guān)鍵.22、(1)證明見解析;(2)△ABC的面積為.【分析】(1)計(jì)算判別式的值得到△=4m2,從而得到△>0,然后根據(jù)判別式的意義得到結(jié)論;(2)利用求根公式解方程得到x=4±m(xù),即b=4+m,c=4﹣m,討論:當(dāng)b=a=6時(shí),即4+m=6,解得m=2,利用勾股定理計(jì)算出底邊上的高,然后計(jì)算△ABC的面積;當(dāng)c=a時(shí),即4﹣m=6,解得m=﹣2,即a=c=6,b=2,利用同樣方法計(jì)算△ABC的面積.【詳解】(1)證明:△=(﹣8)2﹣4×(16﹣m2)=4m2,∵m≠0,∴m2>0,∴△>0,∴此方程總有兩個(gè)不相等的實(shí)數(shù)根;(2)解:∵∴,即b=4+m,c=4﹣m,∵m≠0∴b≠c當(dāng)b=a時(shí),4+m=6,解得m=2,即a=b=6,c=2,如圖,AB=AC=6,BC=2,AD為高,則BD=CD=1,∴∴△ABC的面積為:×2×=;當(dāng)c=a時(shí),4﹣m=6,解得m=﹣2,即a=c=6,b=2,如圖,AB=AC=6,BC=2,AD為高,則BD=CD=1,∴∴△ABC的面積為:×2×=,即△ABC的面積為.本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2﹣4ac:①當(dāng)△>0,方程有兩個(gè)不相等的實(shí)數(shù)根;②當(dāng)△=0,方程有兩個(gè)相等的實(shí)數(shù)根;③當(dāng)△<0,方程沒有實(shí)數(shù)根.也考查了三角形三邊的關(guān)系.23、(I)12π;(Ⅱ)D′E=6﹣6;(Ⅲ)1﹣1≤DF≤1+1.【分析】(Ⅰ)根據(jù)正方形的性質(zhì)得到AD=CD=6,∠D=90°,由勾股定理得到AC=6,根據(jù)弧長(zhǎng)的計(jì)算公式和扇形的面積公式即可得到結(jié)論;(Ⅱ)連接BC′,根據(jù)題意得到B在對(duì)角線AC′上,根據(jù)勾股定理得到AC′==6,求得BC′=6﹣6,推出△BC′E是等腰直角三角形,得到C′E=BC′=12﹣6,于是得到結(jié)論;(Ⅲ)如圖1,連接DB,AC相交于點(diǎn)O,則O是DB的中點(diǎn),根據(jù)三角形中位線定理得到FO=AB′=1,推出F在以O(shè)為圓心,1為半徑的圓上運(yùn)動(dòng),于是得到結(jié)論.【詳解】解:(Ⅰ)∵四邊形ABCD是正方形,∴AD=CD=6,∠D=90°,∴AC=6,∵邊長(zhǎng)為6的正方形ABCD繞點(diǎn)A順時(shí)針旋轉(zhuǎn),得正方形AB′C′D′,∴∠

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論