




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
人教版9年級數(shù)學上冊《圓》專題攻克考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、已知⊙O的半徑為10,圓心O到弦AB的距離為5,則弦AB所對的圓周角的度數(shù)是()A.30° B.60° C.30°或150° D.60°或120°2、已知扇形的圓心角為,半徑為,則弧長為(
)A. B. C. D.3、如圖,在中,,AB=AC=5,點在上,且,點E是AB上的動點,連結(jié),點,G分別是BC,DE的中點,連接,,當AG=FG時,線段長為(
)A. B. C. D.44、如圖,△ABC內(nèi)接于⊙O,∠A=50°.E是邊BC的中點,連接OE并延長,交⊙O于點D,連接BD,則∠D的大小為()A.55° B.65° C.60° D.75°5、如圖,一個油桶靠在直立的墻邊,量得并且則這個油桶的底面半徑是()A. B. C. D.6、如圖,在四邊形ABCD中,則AB=(
)A.4 B.5 C. D.7、在平面直角坐標系中,⊙O的半徑為2,點A(1,)與⊙O的位置關(guān)系是(
)A.在⊙O上 B.在⊙O內(nèi) C.在⊙O外 D.不能確定8、已知⊙O中最長的弦為8cm,則⊙O的半徑為()cm.A.2 B.4 C.8 D.169、如圖,正三角形PMN的頂點分別是正六邊形ABCDEF三邊的中點,則三角形PMN與六邊形ABCDEF的面積之比()A.1:2 B.1:3 C.2:3 D.3:810、若某圓錐的側(cè)面展開圖是一個半圓,已知圓錐的底面半徑為r,那么圓錐的高為(
)A. B. C. D.第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、如圖,在⊙O中,是⊙O的直徑,,點是點關(guān)于的對稱點,是上的一動點,下列結(jié)論:①;②;③;④的最小值是10.上述結(jié)論中正確的個數(shù)是_________.2、如圖1,將一個正三角形繞其中心最少旋轉(zhuǎn),所得圖形與原圖的重疊部分是正六邊形;如圖2,將一個正方形繞其中心最少旋轉(zhuǎn)45°,所得圖形與原圖形的重疊部分是正八邊形;依此規(guī)律,將一個正七邊形繞其中心最少旋轉(zhuǎn)______,所得圖形與原圖的重疊部分是正多邊形.在圖2中,若正方形的邊長為,則所得正八邊形的面積為_______.3、如圖,在矩形中,是邊上一點,連接,將矩形沿翻折,使點落在邊上點處,連接.在上取點,以點為圓心,長為半徑作⊙與相切于點.若,,給出下列結(jié)論:①是的中點;②⊙的半徑是2;③;④.其中正確的是________.(填序號)4、如圖,在⊙O中,,,則圖中陰影部分的面積是_________.(結(jié)果保留)5、已知在平面直角坐標系中,點的坐標為是拋物線對稱軸上的一個動點.小明經(jīng)探究發(fā)現(xiàn):當?shù)闹荡_定時,拋物線的對稱軸上能使為直角三角形的點的個數(shù)也隨之確定.若拋物線的對稱軸上存在3個不同的點,使為直角三角形,則的值是____.6、如圖,四邊形是正方形,曲線是由一段段90度的弧組成的.其中:的圓心為點A,半徑為;的圓心為點B,半徑為;的圓心為點C,半徑為;的圓心為點D,半徑為;…的圓心依次按點A,B,C,D循環(huán).若正方形的邊長為1,則的長是_________.7、如圖所示的網(wǎng)格由邊長為個單位長度的小正方形組成,點、、、在直角坐標系中的坐標分別為,,,則內(nèi)心的坐標為______.8、如圖,在的方格紙中,每個小方格都是邊長為1的正方形,其中A、B、C為格點,作的外接圓,則的長等于_____.9、如圖,四邊形ABCD內(nèi)接于⊙O,∠A=125°,則∠C的度數(shù)為______.10、如圖,在平面直角坐標系中,點A(0,1)、B(0,﹣1),以點A為圓心,AB為半徑作圓,交x軸于點C、D,則CD的長是____.三、解答題(5小題,每小題6分,共計30分)1、如圖,已知⊙O為Rt△ABC的內(nèi)切圓,切點分別為D,E,F(xiàn),且∠C=90°,AB=13,BC=12.(1)求BF的長;(2)求⊙O的半徑r.2、在中,,,,已知⊙O經(jīng)過點C,且與相切于點D.(1)在圖中作出⊙O;(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡)(2)若點D是邊上的動點,設(shè)⊙O與邊、分別相交于點E、F,求的最小值.3、如圖,已知在⊙O中,直徑MN=10,正方形ABCD的四個頂點分別在⊙O及半徑OM、OP上,并且∠POM=45°,求正方形的邊長.4、如圖,已知直線交于A、B兩點,是的直徑,點C為上一點,且平分,過C作,垂足為D.(1)求證:是的切線;(2)若,的直徑為20,求的長度.5、已知P為⊙O上一點,過點P作不過圓心的弦PQ,在劣弧PQ和優(yōu)弧PQ上分別有點A、B(不與P、Q重合),連接AP、BP,若∠APQ=∠BPQ(1)如圖1,當∠APQ=45°,AP=1,BP=2時,求⊙O的半徑。(2)如圖2,連接AB,交PQ于點M,點N在線段PM上(不與P、M重合),連接ON、OP,設(shè)∠NOP=α,∠OPN=β,若AB平行于ON,探究α與β的數(shù)量關(guān)系。-參考答案-一、單選題1、D【解析】【分析】由圖可知,OA=10,OD=5.根據(jù)特殊角的三角函數(shù)值求出∠AOB的度數(shù),再根據(jù)圓周定理求出∠C的度數(shù),再根據(jù)圓內(nèi)接四邊形的性質(zhì)求出∠E的度數(shù)即可.【詳解】解:由圖可知,OA=10,OD=5,在Rt△OAD中,∵OA=10,OD=5,AD==,∴tan∠1=,∴∠1=60°,同理可得∠2=60°,∴∠AOB=∠1+∠2=60°+60°=120°,∴∠C=60°,∴∠E=180°-60°=120°即弦AB所對的圓周角的度數(shù)是60°或120°,故選D.【考點】本題考查了圓周角定理、圓內(nèi)接四邊形的對角互補、解直角三角形的應用等,正確畫出圖形,熟練應用相關(guān)知識是解題的關(guān)鍵.2、D【解析】【分析】根據(jù)扇形的弧長公式計算即可.【詳解】∵扇形的圓心角為30°,半徑為2cm,∴弧長cm故答案為:D.【考點】本題主要考查扇形的弧長,熟記扇形的弧長公式是解題的關(guān)鍵.3、A【解析】【分析】連接DF,EF,過點F作FN⊥AC,F(xiàn)M⊥AB,結(jié)合直角三角形斜邊中線等于斜邊的一半求得點A,D,F(xiàn),E四點共圓,∠DFE=90°,然后根據(jù)勾股定理及正方形的判定和性質(zhì)求得AE的長度,從而求解.【詳解】解:連接DF,EF,過點F作FN⊥AC,F(xiàn)M⊥AB∵在中,,點G是DE的中點,∴AG=DG=EG又∵AG=FG∴點A,D,F(xiàn),E四點共圓,且DE是圓的直徑∴∠DFE=90°∵在Rt△ABC中,AB=AC=5,點是BC的中點,∴CF=BF=,F(xiàn)N=FM=又∵FN⊥AC,F(xiàn)M⊥AB,∴四邊形NAMF是正方形∴AN=AM=FN=又∵,∴∴△NFD≌△MFE∴ME=DN=AN-AD=∴AE=AM+ME=3∴在Rt△DAE中,DE=故選:A.【考點】本題考查直徑所對的圓周角是90°,四點共圓及正方形的判定和性質(zhì)和用勾股定理解直角三角形,掌握相關(guān)性質(zhì)定理正確推理計算是解題關(guān)鍵.4、B【解析】【分析】連接CD,根據(jù)圓內(nèi)接四邊形的性質(zhì)得到∠CDB=180°﹣∠A=130°,根據(jù)垂徑定理得到OD⊥BC,求得BD=CD,根據(jù)等腰三角形的性質(zhì)即可得到結(jié)論.【詳解】解:連接CD,∵∠A=50°,∴∠CDB=180°﹣∠A=130°,∵E是邊BC的中點,∴OD⊥BC,∴BD=CD,∴∠ODB=∠ODC=∠BDC=65°,故選:B.【考點】本題考查了圓內(nèi)接四邊形的性質(zhì),垂徑定理,等腰三角形的性質(zhì)等知識.正確理解題意是解題的關(guān)鍵.5、C【解析】【分析】根據(jù)切線的性質(zhì),連接過切點的半徑,構(gòu)造正方形求解即可.【詳解】如圖所示:設(shè)油桶所在的圓心為O,連接OA,OC,∵AB、BC與⊙O相切于點A、C,∴OA⊥AB,OC⊥BC,又∵AB⊥BC,OA=OC,∴四邊形OABC是正方形,∴OA=AB=BC=OC=0.8m,故選:C.【考點】考查了切線的性質(zhì)和正方形的判定、性質(zhì),解題關(guān)鍵是理解和掌握切線的性質(zhì).6、D【解析】【分析】延長AD,BC交于點E,則∠E=30°,先在Rt△CDE中,求得CE的長,然后在Rt△ABE中,根據(jù)∠E的正切函數(shù)求得AB的長【詳解】如圖,延長AD,BC交于點E,則∠E=30°,在Rt△CDE中,CE=2CD=6(30°銳角所對直角邊等于斜邊的一半),∴BE=BC+CE=8,在Rt△ABE中,AB=BE·tanE=8×=.故選D.【考點】本題考查了解直角三角形,特殊角的三角函數(shù)值,解此題的關(guān)鍵在于構(gòu)造一個直角三角形,然后利用銳角三角函數(shù)進行解答.7、A【解析】【分析】根據(jù)點A的坐標,求出OA=2,根據(jù)點與圓的位置關(guān)系即可做出判斷.【詳解】解:∵點A的坐標為(1,),∴由勾股定理可得:OA=,又∵⊙O的半徑為2,∴點A在⊙O上.故選:A.【考點】本題考查了點和圓的位置關(guān)系,點和圓的位置關(guān)系是由點到圓心的距離和圓的半徑間的大小關(guān)系確定的:(1)當時,點在圓外;(2)當時,點在圓上;(3)當時,點在圓內(nèi).8、B【解析】【分析】⊙O最長的弦就是直徑從而不難求得半徑的長.【詳解】解:∵⊙O中最長的弦為8cm,即直徑為8cm,∴⊙O的半徑為4cm.故選:B.【考點】本題考查弦,直徑等知識,記住圓中的最長的弦就是直徑是解題的關(guān)鍵.9、D【解析】【分析】連接BE,設(shè)正六邊形的邊長為a,首先證明△PMN是等邊三角形,分別求出△PMN,正六邊形ABCDEF的面積即可.【詳解】解:連接BE,設(shè)正六邊形的邊長為a.則AF=a,BE=2a,AF∥BE,∵AP=PB,F(xiàn)N=NE,∴PN=(AF+BE)=1.5a,同理可得PM=MN=1.5a,∴PN=PM=MN,∴△PMN是等邊三角形,∴,故選:D.【考點】本題考查正多邊形與圓,等邊三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是學會利用參數(shù)解決問題,屬于中考??碱}型.10、C【解析】【分析】設(shè)圓錐母線長為R,由題意易得圓錐的母線長為,然后根據(jù)勾股定理可求解.【詳解】解:設(shè)圓錐母線長為R,由題意得:∵圓錐的側(cè)面展開圖是一個半圓,已知圓錐的底面半徑為r,∴根據(jù)圓錐側(cè)面展開圖的弧長和圓錐底面圓的周長相等可得:,∴,∴圓錐的高為;故選C.【考點】本題主要考查圓錐側(cè)面展開圖及弧長計算公式,熟練掌握圓錐的特征及弧長計算公式是解題的關(guān)鍵.二、填空題1、3【解析】【分析】①根據(jù)點是點關(guān)于的對稱點可知,進而可得;②根據(jù)一條弧所對的圓周角等于圓心角的一半即可得結(jié)論;③根據(jù)等弧對等角,可知只有當和重合時,,;④作點關(guān)于的對稱點,連接,DF,此時的值最短,等于的長,然后證明DF是的直徑即可得到結(jié)論.【詳解】解:,點是點關(guān)于的對稱點,,,①正確;,∴②正確;的度數(shù)是60°,的度數(shù)是120°,∴只有當和重合時,,∴只有和重合時,,③錯誤;作關(guān)于的對稱點,連接,交于點,連接交于點,此時的值最短,等于的長.連接,并且弧的度數(shù)都是60°,是的直徑,即,∴當點與點重合時,的值最小,最小值是10,∴④正確.故答案為:3.【考點】本題考查了圓的綜合知識,涉及圓周角、圓心角、弧、弦的關(guān)系、最短距離的確定等,掌握圓的基本性質(zhì)并靈活運用是解題關(guān)鍵.2、
【解析】【分析】根據(jù)題意,可以發(fā)現(xiàn)正n邊形繞其中心最少旋轉(zhuǎn),所得圖形與原圖的重疊部分是正2n邊形;旋轉(zhuǎn)后的正八變形相當于將正方形剪掉了的4個全等的等腰直角三角形,設(shè)等腰直角三角形的邊長為x,則正八邊形的邊長為x;然后根據(jù)x+x+x=4求得x;最后用正方形的面積減去這八個等腰直角三角形的面積即可.【詳解】解:由題意得:正n邊形繞其中心最少旋轉(zhuǎn),所得圖形與原圖的重疊部分是正2n邊形;則將一個正七邊形繞其中心最少旋轉(zhuǎn)所得圖形與原圖的重疊部分是正多邊形;由題意得:旋轉(zhuǎn)后的正八變形相當于將正方形剪掉了的4個全等的等腰直角三角形,設(shè)等腰直角三角形的邊長為x,則正八邊形的邊長為x∴x+x+x=4,解得x=4-2∴減去的每個等腰直角三角形的面積為:∴正八邊形的面積為:正方形的面積-4×等腰直角三角形的面積=4×4-4()=.故答案為,.【考點】本題考查了旋轉(zhuǎn)變換、圖形規(guī)律以及勾股定理等知識,根據(jù)題意找到旋轉(zhuǎn)規(guī)律是解答本題的關(guān)鍵.3、①②④.【解析】【詳解】解:①∵AF是AB翻折而來,∴AF=AB=6.∵AD=BC=,∴DF==3,∴F是CD中點;∴①正確;②連接OP,∵⊙O與AD相切于點P,∴OP⊥AD.∵AD⊥DC,∴OP∥CD,∴,設(shè)OP=OF=x,則,解得:x=2,∴②正確;③∵Rt△ADF中,AF=6,DF=3,∴∠DAF=30°,∠AFD=60°,∴∠EAF=∠EAB=30°,∴AE=2EF.∵∠AFE=90°,∴∠EFC=90°﹣∠AFD=30°,∴EF=2EC,∴AE=4CE,∴③錯誤;④連接OG,作OH⊥FG,∵∠AFD=60°,OF=OG,∴△OFG為等邊△.同理△OPG為等邊△,∴∠POG=∠FOG=60°,OH=OG=,S扇形OPG=S扇形OGF,∴S陰影=(S矩形OPDH﹣S扇形OPG﹣S△OGH)+(S扇形OGF﹣S△OFG)=S矩形OPDH﹣S△OFG==,∴④正確;故答案為①②④.4、【解析】【分析】由,根據(jù)圓周角定理得出,根據(jù)S陰影=S扇形AOB-可得出結(jié)論.【詳解】解:∵,∴,∴S陰影=S扇形AOB-,故答案為:.【考點】本題主要考查圓周角定理、扇形的面積計算,根據(jù)題意求得三角形與扇形的面積是解答此題的關(guān)鍵.5、2或【解析】【分析】分,和確定點M的運動范圍,結(jié)合拋物線的對稱軸與,,共有三個不同的交點,確定對稱軸的位置即可得出結(jié)論.【詳解】解:由題意得:O(0,0),A(3,4)∵為直角三角形,則有:①當時,∴點M在與OA垂直的直線上運動(不含點O);如圖,②當時,,∴點M在與OA垂直的直線上運動(不含點A);③當時,,∴點M在與OA為直徑的圓上運動,圓心為點P,∴點P為OA的中點,∴∴半徑r=∵拋物線的對稱軸與x軸垂直由題意得,拋物線的對稱軸與,,共有三個不同的交點,∴拋物線的對稱軸為的兩條切線,而點P到切線,的距離,又∴直線的解析式為:;直線的解析式為:;∴或4∴或-8故答案為:2或-8【考點】本題是二次函數(shù)的綜合題型,其中涉及到的知識點有圓的切線的判定,直角三角形的判定,綜合性較強,有一定難度.運用數(shù)形結(jié)合、分類討論是解題的關(guān)鍵.6、【解析】【分析】曲線是由一段段90度的弧組成的,半徑每次比前一段弧半徑+1,到,,再計算弧長.【詳解】解:由圖可知,曲線是由一段段90度的弧組成的,半徑每次比前一段弧半徑+1,,,……,,,故的半徑為,的弧長=.故答案為:.【考點】此題主要考查了弧長的計算,弧長的計算公式:,找到每段弧的半徑變化規(guī)律是解題關(guān)鍵.7、(2,3)【解析】【分析】根據(jù)A、B、C三點的坐標建立如圖所示的坐標系,計算出△ABC各邊的長度,易得該三角形是直角三角形,設(shè)BC的關(guān)系式為:y=kx+b,求出BC與x軸的交點G的坐標,證出點A與點G關(guān)于BD對稱,射線BD是∠ABC的平分線,三角形的內(nèi)心在BD上,設(shè)點M為三角形的內(nèi)心,內(nèi)切圓的半徑為r,在BD上找一點M,過點M作ME⊥AB,過點M作MF⊥AC,且ME=MF=r,求出r的值,在△BEM中,利用勾股定理求出BM的值,即可得到點M的坐標.【詳解】解:根據(jù)A、B、C三點的坐標建立如圖所示的坐標系,根據(jù)題意可得:AB=,AC=,BC=,∵,∴∠BAC=90°,設(shè)BC的關(guān)系式為:y=kx+b,代入B,C,可得,解得:,∴BC:,當y=0時,x=3,即G(3,0),∴點A與點G關(guān)于BD對稱,射線BD是∠ABC的平分線,設(shè)點M為三角形的內(nèi)心,內(nèi)切圓的半徑為r,在BD上找一點M,過點M作ME⊥AB,過點M作MF⊥AC,且ME=MF=r,∵∠BAC=90°,∴四邊形MEAF為正方形,S△ABC=,解得:,即AE=EM=,∴BE=,∴BM=,∵B(-3,3),∴M(2,3),故答案為:(2,3).【考點】本題考查三角形內(nèi)心、平面直角坐標系、一次函數(shù)的解析式、勾股定理和正方形的判定與性質(zhì)等相關(guān)知識點,把握內(nèi)心是三角形內(nèi)接圓的圓心這個概念,靈活運用各種知識求解即可.8、【解析】【分析】由AB、BC、AC長可推導出△ACB為等腰直角三角形,連接OC,得出∠BOC=90°,計算出OB的長就能利用弧長公式求出的長了.【詳解】∵每個小方格都是邊長為1的正方形,∴AB=2,AC=,BC=,∴AC2+BC2=AB2,∴△ACB為等腰直角三角形,∴∠A=∠B=45°,∴連接OC,則∠COB=90°,∵OB=∴的長為:=故答案為:.【考點】本題考查了弧長的計算以及圓周角定理,解題關(guān)鍵是利用三角形三邊長通過勾股定理逆定理得出△ACB為等腰直角三角形.9、55°##55度【解析】【分析】根據(jù)圓內(nèi)接四邊形的性質(zhì)得出∠A+∠C=180°,再求出答案即可.【詳解】解:∵四邊形ABCD內(nèi)接于⊙O,∴∠A+∠C=180°,∵∠A=125°,∴∠C=180°-125°=55°,故答案為:55°.【考點】本題考查了圓內(nèi)接四邊形的性質(zhì)和圓周角定理,能熟記圓內(nèi)接四邊形的對角互補是解此題的關(guān)鍵.10、【解析】【分析】根據(jù)題意在中求出,利用垂徑定理得出結(jié)果.【詳解】由題意,在中,,,由垂徑定理知,,故答案為:.【考點】本題考查了勾股定理及垂徑定理,熟練掌握垂徑定理是解決本題的關(guān)鍵.三、解答題1、(1)BF=10;(2)r=2.【解析】【分析】(1)設(shè)BF=BD=x,利用切線長定理,構(gòu)建方程解決問題即可.(2)證明四邊形OECF是矩形,推出OE=CF即可解決問題.【詳解】解:(1)在Rt△ABC中,∵∠C=90°,AB=13,BC=12,∴AC===5,∵⊙O為Rt△ABC的內(nèi)切圓,切點分別為D,E,F(xiàn),∴BD=BF,AD=AE,CF=CE,設(shè)BF=BD=x,則AD=AE=13﹣x,CFCE=12﹣x,∵AE+EC=5,∴13﹣x+12﹣x=5,∴x=10,∴BF=10.(2)連接OE,OF,∵OE⊥AC,OF⊥BC,∴∠OEC=∠C=∠OFC=90°,∴四邊形OECF是矩形,∴OE=CF=BC﹣BF=12﹣10=2.即r=2.【考點】本題考查三角形的內(nèi)心,勾股定理,切線長定理等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考??碱}型.2、(1)見詳解.(2)【解析】【分析】(1)連接CD,用尺規(guī)作圖,作線段CD的垂直平分線,找到線段CD的中點O,然后以O(shè)為圓心,為半徑主要作圓即為所作圓.(2)過點C作,根據(jù)點到直線的距離,垂線段最短可知,點CD為圓的直徑時,此時圓的直徑最短,根據(jù)面積法可得出因為EF也為圓的直徑,所以可得出EF最最小值為(1)如圖所示,為所作圓.(2)如圖,作于點D,當CD為過的圓心點O時,此時圓的直徑最短∴EF為的直徑,∴此時EF的長為故EF的最小值為:【考點】本題主要考查了尺規(guī)作圖,勾股定理,三角形面積求斜邊上的高,垂線段最短等知識點的應用,熟練掌握點到直線的距離垂線段最短這性質(zhì)定理是解此題的關(guān)鍵.3、【解析】【分析】證出△DCO是等腰直角三角形,得出DC=CO,求出BO=2AB,連接AO,半徑AO=5,再根據(jù)勾股定理列方程,即可求出AB的長.【詳解】解:∵四邊形ABCD是正方形,∴∠ABC=∠BCD=90°,AB=BC=CD,∴∠DCO=90°,又∵∠POM=45°,∴∠CDO=45°,∴CD=CO,∴BO=BC+CO=BC+CD,∴BO=2AB,連接AO,如圖:∵MN=10,∴AO=5,又∵在Rt△ABO中,AB2+BO2=AO2,∴AB2+(2AB)2=52,解得:AB=,則正方形ABCD的邊長為.【考點】此
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025河南鄭州市中醫(yī)院招聘工作人員72名模擬試卷附答案詳解(考試直接用)
- 江西省部分學校2024-2025學年高二上學期10月月考地理試題(解析版)
- 2025呼和浩特旭陽中燃能源有限公司招聘21人模擬試卷附答案詳解(考試直接用)
- 2025昆明市官渡區(qū)北京八十學校招聘(18人)模擬試卷及答案詳解(典優(yōu))
- 2025年中國地質(zhì)調(diào)查局西安礦產(chǎn)資源調(diào)查中心招聘(26人)模擬試卷有完整答案詳解
- 2025湖北恩施州宣恩獅子關(guān)旅游開發(fā)有限公司招聘7人模擬試卷附答案詳解(考試直接用)
- 2025年泉州文旅集團急需緊缺人才招聘3人考前自測高頻考點模擬試題及答案詳解(考點梳理)
- 產(chǎn)品研發(fā)流程標準化手冊研發(fā)階段劃分
- 品牌形象維護策略與實施方案
- 知識產(chǎn)權(quán)保護與管理標準化流程
- 2025年秋招:招商銀行筆試真題及答案
- 吞咽功能障礙健康指導
- 2025至2030拖拉機市場前景分析及行業(yè)深度研究及發(fā)展前景投資評估分析
- 中外運社招在線測評題
- 無損檢測技術(shù)人員崗位面試問題及答案
- 肉鴨孵化期蛋內(nèi)生長發(fā)育與出雛時間的影響研究
- 監(jiān)控資料留存管理制度
- 2025年遼寧高考地理試卷真題答案詳解講評課件(黑龍江吉林內(nèi)蒙古適用)
- 2025屆上海市高考英語考綱詞匯表
- 小學生生活常識教育班會
- 2023CSCO食管癌診療指南
評論
0/150
提交評論