




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》綜合訓(xùn)練考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計(jì)30分)1、下列語(yǔ)句中正確的是()A.斜邊和一銳角對(duì)應(yīng)相等的兩個(gè)直角三角形全等B.有兩邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等C.有兩個(gè)角對(duì)應(yīng)相等的兩個(gè)直角三角形全等D.有一直角邊和一銳角對(duì)應(yīng)相等的兩個(gè)直角三角形全等2、如圖,平行四邊形ABCD中,E,F(xiàn)是對(duì)角線BD上的兩點(diǎn),如果添加一個(gè)條件使△ABE≌△CDF,則添加的條件不能是()A.AE=CF B.BE=FD C.BF=DE D.∠1=∠23、如圖,Rt△ACB中,∠ACB=90°,△ACB的角平分線AD,BE相交于點(diǎn)P,過(guò)P作PF⊥AD交BC的延長(zhǎng)線于點(diǎn)F,交AC于點(diǎn)H,則下列結(jié)論:①∠APB=135°;②AD=PF+PH;③DH平分∠CDE;④S四邊形ABDE=S△ABP;⑤S△APH=S△ADE,其中正確的結(jié)論有(
)個(gè)A.2 B.3 C.4 D.54、如圖,在中,,,點(diǎn)E在BC的延長(zhǎng)線上,的平分線BD與的平分線CD相交于點(diǎn)D,連接AD,則下列結(jié)論中,正確的是A. B. C. D.5、下列各組中的兩個(gè)圖形屬于全等圖形的是(
)A. B.C. D.6、如圖,已知是的角平分線,是的垂直平分線,,,則的長(zhǎng)為(
)A.6 B.5 C.4 D.7、如圖,點(diǎn)O是△ABC中∠BCA,∠ABC的平分線的交點(diǎn),已知△ABC的面積是12,周長(zhǎng)是8,則點(diǎn)O到邊BC的距離是(
)A.1 B.2C.3 D.48、已知,如圖,在△ABC中,D為BC邊上的一點(diǎn),延長(zhǎng)AD到點(diǎn)E,連接BE、CE,∠ABD+∠3=90°,∠1=∠2=∠3,下列結(jié)論:①△ABD為等腰三角形;②AE=AC;③BE=CE=CD;④CB平分∠ACE.其中正確的結(jié)論個(gè)數(shù)有(
)A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)9、如圖,C為線段AE上一動(dòng)點(diǎn)(不與點(diǎn),重合),在AE同側(cè)分別作等邊三角形ABC和等邊三角形CDE,AD與BE交于點(diǎn)O,AD與BC交于點(diǎn)P,BE與CD交于點(diǎn)Q,連結(jié)PQ.以下結(jié)論錯(cuò)誤的是(
)A.∠AOB=60° B.AP=BQC.PQ∥AE D.DE=DP10、如圖,在中,點(diǎn)D是BC邊上一點(diǎn),已知,,CE平分交AB于點(diǎn)E,連接DE,則的度數(shù)為(
)A. B. C. D.第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計(jì)40分)1、如圖,已知△ABC與△DEF全等,且∠A=72°、∠B=45°、∠E=63°、BC=10,EF=10,那么∠D=_____度.2、如圖,在中,、的平分線相交于點(diǎn)I,且,若,則的度數(shù)為______度.3、△ABC中,∠BAC:∠ACB:∠ABC=4:3:2,且△ABC≌△DEF,則∠DEF=______度.4、如圖,點(diǎn)B,F(xiàn),C,E在一條直線上,,,請(qǐng)?zhí)砑右粋€(gè)條件,使≌,這個(gè)添加的條件可以是______(只需寫一個(gè),不添加輔助線).5、如圖,中,以點(diǎn)O為圓心,任意長(zhǎng)為半徑作弧,交于點(diǎn)M,交于點(diǎn)N,分別以點(diǎn)M,N為圓心,以大于的長(zhǎng)為半徑作弧,兩弧交于點(diǎn)C,作射線,過(guò)點(diǎn)C作于點(diǎn)D.交于點(diǎn)E,若,則的度數(shù)為_______________.6、在△ABC中,AB=4,AC=3,AD是△ABC的角平分線,則△ABD與△ACD的面積之比是_____.7、如圖,在Rt△ABC中,∠B=90°,以頂點(diǎn)C為圓心、適當(dāng)長(zhǎng)為半徑畫弧,分別交AC、BC于點(diǎn)E、F,再分別以點(diǎn)E、F為圓心,以大于EF的長(zhǎng)為半徑畫弧,兩弧交于點(diǎn)P,作射線CP交AB于點(diǎn)D.若BD=4,AC=16,則△ACD的面積是______.8、如圖,已知AC與BF相交于點(diǎn)E,ABCF,點(diǎn)E為BF中點(diǎn),若CF=8,AD=5,則BD=_____.9、如圖,已知,,添加一個(gè)條件,使,你添加的條件是______(填一個(gè)即可).10、如圖,已知△ABC≌△DBE,∠A=36°,∠B=40°,則∠AED的度數(shù)為_____.三、解答題(5小題,每小題6分,共計(jì)30分)1、如圖,是邊長(zhǎng)為1的等邊三角形,,,點(diǎn),分別在,上,且,求的周長(zhǎng).2、在中,,D為BC延長(zhǎng)線上一點(diǎn),點(diǎn)E為線段AC,CD的垂直平分線的交點(diǎn),連接EA,EC,ED.(1)如圖1,當(dāng)時(shí),則_______°;(2)當(dāng)時(shí),①如圖2,連接AD,判斷的形狀,并證明;②如圖3,直線CF與ED交于點(diǎn)F,滿足.P為直線CF上一動(dòng)點(diǎn).當(dāng)?shù)闹底畲髸r(shí),用等式表示PE,PD與AB之間的數(shù)量關(guān)系為_______,并證明.3、如圖,△ABC中,∠B=2∠C,AE平分∠BAC.(1)若AD⊥BC于D,∠C=35°,求∠DAE的大??;(2)若EF⊥AE交AC于F,求證:∠C=2∠FEC.4、如圖,AD是△ABC的角平分線,DE、DF分別是△ABD和△ACD的高.(1)求證:AD垂直平分EF;(2)若AB+AC=10,S△ABC=15,求DE的長(zhǎng).5、在中,,直線經(jīng)過(guò)點(diǎn)C,且于D,于E,(1)當(dāng)直線繞點(diǎn)C旋轉(zhuǎn)到圖1的位置時(shí),顯然有:(不必證明);(2)當(dāng)直線繞點(diǎn)C旋轉(zhuǎn)到圖2的位置時(shí),求證:;(3)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖3的位置時(shí),試問(wèn)、、具有怎樣的等量關(guān)系?請(qǐng)直接寫出這個(gè)等量關(guān)系.-參考答案-一、單選題1、A【解析】【分析】根據(jù)全等三角形的判定定理,用排除法以每一個(gè)選項(xiàng)進(jìn)行分析從而確定最終答案.【詳解】A、正確,利用AAS來(lái)判定全等;B、不正確,兩邊的位置不確定,不一定全等;C、不正確,兩個(gè)三角形不一定全等;D、不正確,有一直角邊和一銳角對(duì)應(yīng)相等不一定能推出兩直角三角形全等,沒有相關(guān)判定方法對(duì)應(yīng).故選A【考點(diǎn)】本題考核知識(shí)點(diǎn):全等三角形的判定.解題關(guān)鍵點(diǎn):熟記全等三角形的相關(guān)判定.2、A【解析】【分析】利用平行四邊形的性質(zhì)以及全等三角形的判定分別得出即可.【詳解】解:A、若添加條件:AE=CF,因?yàn)椤螦BD=∠CDB,不是兩邊的夾角,所以不能證明△ABE≌△CDF,所以錯(cuò)誤,符合題意,B、若添加條件:BE=FD,可以利用SAS證明△ABE≌△CDF,所以正確,不符合題意;C、若添加條件:BF=DE,可以得到BE=FD,可以利用SAS證明△ABE≌△CDF,所以正確,不符合題意;D、若添加條件:∠1=∠2,可以利用ASA證明△ABE≌△CDF,所以正確,不符合題意;故選:A.【考點(diǎn)】本題考查了平行四邊形的性質(zhì)、全等三角形的判定,解題的關(guān)鍵是掌握三角形的判定定理.3、B【解析】【分析】①正確.利用三角形內(nèi)角和定理以及角平分線的定義即可解決問(wèn)題.②正確.證明△ABP≌△FBP,推出PA=PF,再證明△APH≌△FPD,推出PH=PD即可解決問(wèn)題.③錯(cuò)誤.利用反證法,假設(shè)成立,推出矛盾即可.④錯(cuò)誤,可以證明S四邊形ABDE=2S△ABP.⑤正確.由DH∥PE,利用等高模型解決問(wèn)題即可.【詳解】解:在△ABC中,AD、BE分別平分∠BAC、∠ABC∵∠ACB=90°∴∠A+∠B=90°又∵AD、BE分別平分∠BAC、∠ABC∴∠BAD+∠ABE=(∠A+∠B)=45°∴∠APB=135°,故①正確∴∠BPD=45°又∵PF⊥AD∴∠FPB=90°+45°=135°∴∠APB=∠FPB又∵∠ABP=∠FBPBP=BP∴△ABP≌△FBP(ASA)∴∠BAP=∠BFP,AB=FB,PA=PF在△APH和△FPD中∴△APH≌△FPD(ASA)∴PH=PD∴AD=AP+PD=PF+PH.故②正確∵△ABP≌△FBP,△APH≌△FPD∴S△APB=S△FPB,S△APH=S△FPD,PH=PD∵∠HPD=90°∴∠HDP=∠DHP=45°=∠BPD∴HD∥EP∴S△EPH=S△EPD∴S△APH=S△AED,故⑤正確∵S四邊形ABDE=S△ABP+S△AEP+S△EPD+S△PBD=S△ABP+(S△AEP+S△EPH)+S△PBD=S△ABP+S△APH+S△PBD=S△ABP+S△FPD+S△PBD=S△ABP+S△FBP=2S△ABP,故④不正確若DH平分∠CDE,則∠CDH=∠EDH∵DH∥BE∴∠CDH=∠CBE=∠ABE∴∠CDE=∠ABC∴DE∥AB,這個(gè)顯然與條件矛盾,故③錯(cuò)誤故選B.【考點(diǎn)】本題考查了角平分線的判定與性質(zhì),三角形全等的判定方法,三角形內(nèi)角和定理,三角形的面積等知識(shí),解題的關(guān)鍵是正確尋找全等三角形解決問(wèn)題,屬于中考??碱}型.4、B【解析】【分析】由∠ABC=50°,∠ACB=60°,可判斷出AC≠AB,根據(jù)三角形內(nèi)角和定理可求出∠BAC的度數(shù),根據(jù)鄰補(bǔ)角定義可求出∠ACE度數(shù),由BD平分∠ABC,CD平分∠ACE,根據(jù)角平分線的定義以及三角形外角的性質(zhì)可求得∠BDC的度數(shù),繼而根據(jù)三角形內(nèi)角和定理可求得∠DOC的度數(shù),據(jù)此對(duì)各選項(xiàng)進(jìn)行判斷即可得.【詳解】∵∠ABC=50°,∠ACB=60°,∴∠BAC=180°-∠ABC-∠ACB=70°,∠ACE=180°-∠ACB=120°,AC≠AB,∵BD平分∠ABC,CD平分∠ACE,∴∠DBC=∠ABC=25°,∠DCE=∠ACD=∠ACE=60°,∴∠BDC=∠DCE-∠DBC=35°,∴∠DOC=180°-∠OCD-∠ODC=180°-60°-35°=85°,∵∠DBC=25°,∠BDC=35°,∴BC≠CD,故選B.【考點(diǎn)】本題考查了三角形內(nèi)角和定理,等腰三角形判定,角平分線的定義等,熟練掌握角平分線的定義以及三角形內(nèi)角和定理是解本題的關(guān)鍵.5、B【解析】【分析】根據(jù)全等圖形的定義,逐一判斷選項(xiàng),即可.【詳解】A.兩個(gè)圖形不能完全重合,不是全等圖形,不符合題意,B.兩個(gè)圖形能完全重合,是全等圖形,符合題意,C.兩個(gè)圖形不能完全重合,不是全等圖形,不符合題意,D.兩個(gè)圖形不能完全重合,不是全等圖形,不符合題意,故選B【考點(diǎn)】本題主要考查全等圖形的定義,熟練掌握“能完全重合的兩個(gè)圖形,是全等圖形”是解題的關(guān)鍵.6、D【解析】【分析】根據(jù)ED是BC的垂直平分線、BD是角平分線以及∠A=90°可求得∠C=∠DBC=∠ABD=30°,從而可得CD=BD=2AD=6,然后利用三角函數(shù)的知識(shí)進(jìn)行解答即可得.【詳解】∵ED是BC的垂直平分線,∴DB=DC,∴∠C=∠DBC,∵BD是△ABC的角平分線,∴∠ABD=∠DBC,∵∠A=90°,∴∠C+∠ABD+∠DBC=90°,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CD=6,∴CE=3,故選D.【考點(diǎn)】本題考查了線段垂直平分線的性質(zhì),三角形內(nèi)角和定理,含30度角的直角三角形的性質(zhì),余弦等,結(jié)合圖形熟練應(yīng)用相關(guān)的性質(zhì)及定理是解題的關(guān)鍵.7、C【解析】【分析】過(guò)點(diǎn)O作OE⊥AB于E,OF⊥AC于F,連接OA,根據(jù)角平分線的性質(zhì)得:OE=OF=OD然后根據(jù)△ABC的面積是12,周長(zhǎng)是8,即可得出點(diǎn)O到邊BC的距離.【詳解】如圖,過(guò)點(diǎn)O作OE⊥AB于E,OF⊥AC于F,連接OA.∵點(diǎn)O是∠ABC,∠ACB平分線的交點(diǎn),∴OE=OD,OF=OD,即OE=OF=OD∴S△ABC=S△ABO+S△BCO+S△ACO=AB·OE+BC·OD+AC·OF=×OD×(AB+BC+AC)=×OD×8=12OD=3故選:C【考點(diǎn)】此題主要考查了角平分線的性質(zhì)以及三角形面積求法,角的平分線上的點(diǎn)到角的兩邊的距離相等,正確表示出三角形面積是解題關(guān)鍵.8、C【解析】【分析】作AF平分∠BAD.可根據(jù)證△ABF≌△ADF,推出AB=AD,得出△ABD為等腰三角形;可根據(jù)同弦所對(duì)的圓周角相等知點(diǎn)A、B、C、E共圓,可判出BE=CE=CD,根據(jù)三角形內(nèi)角和等于180°,可判出AE=AC;求出∠7=90°﹣∠2,根據(jù)∠1=∠4=∠2推出∠4≠∠7,即可得出BC不是∠ACE的平分線.【詳解】解:作AF平分∠BAD,∵∠BAD=∠3,∠ABD+∠3=90°,∴∠BAF=∠3=∠DAF,∴∠ABF+∠BAF=90°∴∠AFB=∠AFD=90°,在△BAF和△DAF中∴△ABF≌△ADF(ASA),∴AB=AD,故①正確;∵AE=AC,∴∠6=∠4+∠7==90°?,∵∠5=∠ADB=∠ABD==90°?,∠1=∠2,∴∠5=∠6=90°?∴CE=CD,∠4=180°?∠5?∠6=180°?2(90°?)=∠1,∵∠1=∠3,∴∠4=∠3,∴BE=CE,∴BE=CE=CD,∴③正確;∵∠6+∠2+∠ACE=180°,∠6=∠5=∠ADB=∠ABD=90°﹣∠2.∴∠ACE=180°﹣∠6﹣∠2=90°﹣∠2,∴∠ACE=∠6,∴AE=CE,故②正確∵∠5=∠2+∠7=90°﹣∠2,∴∠7=90°﹣∠2,∵∠BAD=∠4=∠2,∴∠4≠∠7,故④錯(cuò)誤;故選C.【考點(diǎn)】本題主要考查了全等三角形的判定和性質(zhì)、同弦所對(duì)的圓周角相等、三角形內(nèi)角和的相關(guān)知識(shí),靈活運(yùn)用所學(xué)知識(shí)是解題的關(guān)鍵.9、D【解析】【分析】利用等邊三角形的性質(zhì),BC∥DE,再根據(jù)平行線的性質(zhì)得到∠CBE=∠DEO,于是∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,得出A正確;根據(jù)△CQB≌△CPA(ASA),得出B正確;由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△CQB≌△CPA(ASA),再根據(jù)∠PCQ=60°推出△PCQ為等邊三角形,又由∠PQC=∠DCE,根據(jù)內(nèi)錯(cuò)角相等,兩直線平行,得出C正確;根據(jù)∠CDE=60°,∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,可知∠DQE≠∠CDE,得出D錯(cuò)誤.【詳解】解:∵等邊△ABC和等邊△CDE,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠BCD=∠DCE+∠BCD,即∠ACD=∠BCE,在△ACD與△BCE中,,∴△ACD≌△BCE(SAS),∴∠CBE=∠DAC,又∵∠ACB=∠DCE=60°,∴∠BCD=60°,即∠ACP=∠BCQ,又∵AC=BC,在△CQB與△CPA中,,∴△CQB≌△CPA(ASA),∴CP=CQ,又∵∠PCQ=60°可知△PCQ為等邊三角形,∴∠PQC=∠DCE=60°,∴PQ∥AE,故C正確,∵△CQB≌△CPA,∴AP=BQ,故B正確,∵AD=BE,AP=BQ,∴AD-AP=BE-BQ,即DP=QE,∵∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,∴∠DQE≠∠CDE,故D錯(cuò)誤;∵∠ACB=∠DCE=60°,∴∠BCD=60°,∵等邊△DCE,∠EDC=60°=∠BCD,∴BC∥DE,∴∠CBE=∠DEO,∴∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,故A正確.故選:D.【考點(diǎn)】本題考查了等邊三角形的性質(zhì)、全等三角形的判定與性質(zhì),利用旋轉(zhuǎn)不變性,解題的關(guān)鍵是找到不變量.10、B【解析】【分析】過(guò)點(diǎn)E作于M,于N,于H,如圖,先計(jì)算出,則AE平分,根據(jù)角平分線的性質(zhì)得,再由CE平分得到,則,于是根據(jù)角平分線定理的逆定理可判斷DE平分,再根據(jù)三角形外角性質(zhì)解答即可.【詳解】解:過(guò)點(diǎn)E作于M,于N,于H,如圖,∵,,∴,∴平分,∴,∵平分,∴,∴,∴平分,∴,∵由三角形外角可得:,,∴,而,∴.故選:B.【考點(diǎn)】本題考查了角平分線的性質(zhì)和判定定理,三角形的外角性質(zhì)定理,解決本題的關(guān)鍵是運(yùn)用角平分線定理的逆定理證明DE平分.二、填空題1、【解析】【分析】△ABC中,根據(jù)三角形內(nèi)角和定理求得∠C=63°,那么∠C=∠E.根據(jù)相等的角是對(duì)應(yīng)角,相等的邊是對(duì)應(yīng)邊得出△ABC≌△DFE,然后根據(jù)全等三角形的對(duì)應(yīng)角相等即可求得∠D.【詳解】解:在△ABC中,∵∠A=72°,∠B=45°,∴∠C=180°﹣∠A﹣∠B=63°,∵∠E=63°,∴∠C=∠E.∵△ABC與△DEF全等,BC=10,EF=10,∴△ABC≌△DFE,∴∠D=∠A=72°,故答案為72.【考點(diǎn)】本題考查了全等三角形的性質(zhì);注意:題目條件中△ABC與△DEF全等,但是沒有明確對(duì)應(yīng)頂點(diǎn).得出△ABC≌△DFE是解題的關(guān)鍵.2、70【解析】【分析】在BC上取點(diǎn)D,令,利用SAS定理證明得到,,再利用得到,所以,再由角平分線可得,利用以及AI平分可知.【詳解】解:在BC上取點(diǎn)D,令,連接DI,BI,如下圖所示:∵CI平分∴在和中∴∴,∵∴,即:∵AI平分、CI平分,∴BI平分,∴∵∴故答案為:70.【考點(diǎn)】本題考查角平分線,全等三角形的判定及性質(zhì),三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和,利用,在BC上取點(diǎn)D等于AC,作出輔助線是解本題的關(guān)鍵點(diǎn),也是難點(diǎn).3、40【解析】【分析】設(shè)∠BAC為4x,則∠ACB為3x,∠ABC為2x,由∠BAC+∠ACB+∠ABC=180°得4x+3x+2x=180.【詳解】解:設(shè)∠BAC為4x,則∠ACB為3x,∠ABC為2x∵∠BAC+∠ACB+∠ABC=180°∴4x+3x+2x=180,解得x=20∴∠ABC=2x=40°∵△ABC≌△DEF∴∠DEF=∠ABC=40°.故答案為40【考點(diǎn)】考核知識(shí)點(diǎn):全等三角形性質(zhì).理解全等三角形性質(zhì)是關(guān)鍵.4、(還可以添加∠A=∠D或∠ACB=∠EFD或AC∥DF,答案不唯一)【解析】【分析】根據(jù)等式的性質(zhì)可得BC=EF,再添加AB=DE,可利用SAS判定△ABC≌△DEF.【詳解】添加的條件是,∵,∴,即.∵在中中,.故答案為:.(還可以添加或或,答案不唯一)【考點(diǎn)】本題主要考查了三角形全等的判定,判定兩個(gè)三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個(gè)三角形全等,判定兩個(gè)三角形全等時(shí),必須有邊的參與,若有兩邊一角對(duì)應(yīng)相等時(shí),角必須是兩邊的夾角.5、65°或65度【解析】【分析】根據(jù)作圖先得出OC平分∠AOB,根據(jù),得出,根據(jù)為的外角,得出,即可求出,根據(jù),得出,即可求解.【詳解】解:根據(jù)作圖可知,OC平分∠AOB,∴,∵,,,為的外角,,,,,.故答案為:.【考點(diǎn)】本題主要考查了角平分線的基本作圖,平行線的性質(zhì),三角形外角的性質(zhì),直角三角形的性質(zhì),根據(jù)題意求出是解題的關(guān)鍵.6、4:3【解析】【分析】根據(jù)角平分線的性質(zhì),可得出△ABD的邊AB上的高與△ACD的AC上的高相等,估計(jì)三角形的面積公式,即可得出△ABD與△ACD的面積之比等于對(duì)應(yīng)邊之比.【詳解】∵AD是△ABC的角平分線,∴設(shè)△ABD的邊AB上的高與△ACD的AC上的高分別為h1,h2,∴h1=h2,∴△ABD與△ACD的面積之比=AB:AC=4:3,故答案為4:3.7、32【解析】【分析】過(guò)點(diǎn)D作DQ⊥AC,由作法可知CP是角平分線,根據(jù)角平分線的性質(zhì)知DB=DQ=3,再由三角形的面積公式計(jì)算即可.【詳解】解:如圖,過(guò)點(diǎn)D作DQ⊥AC于點(diǎn)Q,由作圖知CP是∠ACB的平分線,∵∠B=90°,BD=4,∴DB=DQ=4,∵AC=16,∴S△ACD=?AC?DQ=,故答案為32.【考點(diǎn)】本題主要考查作圖-基本作圖,三角形面積,解題的關(guān)鍵是掌握角平分線的尺規(guī)作圖及角平分線的性質(zhì).8、3【解析】【分析】利用全等三角形的判定定理和性質(zhì)定理可得結(jié)果.【詳解】解:∵AB∥CF,∴∠A=∠FCE,∠B=∠F,∵點(diǎn)E為BF中點(diǎn),∴BE=FE,在△ABE與△CFE中,,∴△ABE≌△CFE(AAS),∴AB=CF=8,∵AD=5,∴BD=3,故答案為:3.【考點(diǎn)】本題主要考查了全等三角形的判定定理和性質(zhì)定理,熟練掌握定理是解答此題的關(guān)鍵.9、(答案不唯一)【解析】【分析】此題是一道開放型的題目,答案不唯一,先根據(jù)∠BCE=∠ACD求出∠BCA=∠DCE,再根據(jù)全等三角形的判定定理SAS推出即可.【詳解】解:添加的條件是CB=CE,理由是:∵∠BCE=∠ACD,∴∠BCE+∠ECA=∠ACD+∠ECA,∴∠BCA=∠DCE,在△ABC和△DEC中,,∴△ABC≌△DEC(SAS),故答案為:CB=CE(答案不唯一).【考點(diǎn)】本題考查了全等三角形的判定定理,能熟記全等三角形的判定定理是解此題的關(guān)鍵,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,兩直角三角形全等還有HL等.10、76°或76度【解析】【分析】根據(jù)全等三角形的性質(zhì)得到∠A=∠D=36°,根據(jù)三角形的外角的性質(zhì)即可得出答案.【詳解】解:∵△ABC≌△DBE,∴∠A=∠D=36°,∵∠AED是△BDE的外角,∴∠AED=∠B+∠D=40°+36°=76°.故答案為:76°.【考點(diǎn)】本題考查了全等三角形的性質(zhì)及三角形外角的性質(zhì),掌握全等三角形的對(duì)應(yīng)角相等是解題的關(guān)鍵.三、解答題1、2【解析】【分析】延長(zhǎng)至點(diǎn),使,連接,證明推出,,進(jìn)而得到,從而證明,推出EF=CP,由此求出的周長(zhǎng)=AB+AC得到答案.【詳解】解:如圖,延長(zhǎng)至點(diǎn),使,連接.∵是等邊三角形,∴.∵,,∴,∴,∴.在和中,,∴,∴,.∵,,∴,∴,∴.在和中,,∴,∴,∴,∴的周長(zhǎng).【考點(diǎn)】此題考查全等三角形的判定及性質(zhì),等邊三角形的性質(zhì),等腰三角形等邊對(duì)等角的性質(zhì),題中輔助線的引出是解題的關(guān)鍵.2、(1)80;(2)是等邊三角形;(3).【解析】【分析】(1)根據(jù)垂直平分線性質(zhì)可知,再結(jié)合等腰三角形性質(zhì)可得,,利用平角定義和四邊形內(nèi)角和定理可得,由此求解即可;(2)根據(jù)(1)的結(jié)論求出即可證明是等邊三角形;(3)根據(jù)利用對(duì)稱和三角形兩邊之差小于第三邊,找到當(dāng)?shù)闹底畲髸r(shí)的P點(diǎn)位置,再證明對(duì)稱點(diǎn)與AD兩點(diǎn)構(gòu)成三角形為等邊三角形,利用旋轉(zhuǎn)全等模型即可證明,從而可知,再根據(jù)30°直角三角形性質(zhì)可知即可得出結(jié)論.【詳解】解:(1)∵點(diǎn)E為線段AC,CD的垂直平分線的交點(diǎn),∴,∴,,∴,∵,∴,∵,∴,∵在中,,,∴,∴,故答案為:.(2)①結(jié)論:是等邊三角形.證明:∵在中,,,∴,由(1)得:,,∴是等邊三角形.②結(jié)論:.證明:如解圖1,取D點(diǎn)關(guān)于直線AF的對(duì)稱點(diǎn),連接、;∴,∵,等號(hào)僅P、E、三點(diǎn)在一條直線上成立,如解圖2,P、E、三點(diǎn)在一條直線上,由(1)得:,又∵,∴,又∵,,∴,∵點(diǎn)D、點(diǎn)是關(guān)于直線AF的對(duì)稱點(diǎn),∴,,∴是等邊三角形,∴,,∵是等邊三角形,∴,,∴,∴,在和中,,∴(SAS)∴,∵,∴,在中,,,∴,∴【考點(diǎn)】本題是三角形綜合題,主要考查了等腰三角形、等邊三角形的性質(zhì)和判定,全等三角形性質(zhì)和判定等知識(shí)點(diǎn),解題關(guān)鍵是利用對(duì)稱將轉(zhuǎn)化為三角形三邊關(guān)系找到P的位置,并證明對(duì)稱點(diǎn)與AD兩點(diǎn)構(gòu)成三角形為等邊三角形.3、(1)17.5°;(2)證明過(guò)程見解析【解析】【分析】(1)首先計(jì)算出∠B,∠BAC的度數(shù),根據(jù)AE是∠BAC的角平分線可得∠EAC=37.5°,再根據(jù)Rt△ADC中直角三角形兩銳角互余可得∠DAC的度數(shù),進(jìn)而可得答案;(2)過(guò)A作AD⊥BC于D,證明∠DAE=∠FEC,由三角形內(nèi)角和定理得到∠EAC=90°-∠C,進(jìn)而可得∠DAE=∠DAC-∠EAC,利用等量代換可得∠DAE=∠C即可求解.【詳解】解:(1)解:∵∠C=35°,∠B=2∠C,∴∠B=70°,∴在△ABC中,由內(nèi)角和定理可知:∠BAC=180°-∠B-∠C=180°-70°-35°=75°,∵AE平分∠BAC,∴∠EAC=37.5°,∵AD⊥BC,∴∠ADC=90°,在Rt△ADC中,兩銳角互余,∴∠DAC=90°-35°=55°,∴∠DAE=55°-37.5°=17.5°,故答案為:17.5°;(2)過(guò)A點(diǎn)作AD⊥BC于D點(diǎn),如下圖所示:∵EF⊥AE,∴∠AEF=90°,∴∠AED+∠FEC=90°,∵∠DAE+∠AED=90°,∴∠DAE=∠FEC,∵AE平分∠BAC,∴∠EAC=∠BAC=(180°-∠B-∠C)=(180°-3∠C)=90°-∠C,∵∠DAE=∠DAC-∠EAC,∴∠DAE=∠DAC-(90°-∠C)=(90°-∠C)-(90°-∠C)=∠C,∴∠FEC=∠C,∴∠C=2∠FEC.【考點(diǎn)】此題主要考查了三角形內(nèi)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025安徽阜陽(yáng)市潁州區(qū)教育局面向本區(qū)教育系統(tǒng)選調(diào)專職教研員6人考前自測(cè)高頻考點(diǎn)模擬試題及答案詳解(名校卷)
- 演講稿愛國(guó)朗誦
- 2025湖南郴州資興市公開招聘醫(yī)療衛(wèi)生類專業(yè)技術(shù)人員28人模擬試卷及答案詳解(各地真題)
- 2025北京首都醫(yī)科大學(xué)附屬北京朝陽(yáng)醫(yī)院派遣合同制崗位招聘12人(第三次)模擬試卷及答案詳解(名師系列)
- 關(guān)于微笑的演講稿中文
- 臨沭中考?xì)v史試卷及答案
- 2025年平遙幼教招聘真題及答案
- 農(nóng)村移動(dòng)公廁發(fā)言稿
- 好爸好媽好家風(fēng)演講稿
- 2025年?yáng)|北農(nóng)業(yè)大學(xué)專職輔導(dǎo)員公開招聘16人考前自測(cè)高頻考點(diǎn)模擬試題帶答案詳解
- 2025上海金山巴士公共交通有限公司招聘30人筆試備考題庫(kù)及答案解析
- 情商與智商的課件
- 新能源產(chǎn)業(yè)信息咨詢服務(wù)協(xié)議范本
- 3.3《含小括號(hào)的混合運(yùn)算》(課件) -2025-2026學(xué)年三年級(jí)數(shù)學(xué)上冊(cè) 西師大版
- 商業(yè)店鋪施工方案
- 民法典之遺囑繼承課件
- 糧倉(cāng)建筑施工管理辦法
- 2025秋全體教師大會(huì)上,德育副校長(zhǎng)講話:德為根,安為本,心為燈,家為橋-這場(chǎng)開學(xué)講話,句句都是育人的方向
- 急性肺水腫護(hù)理
- 供貨進(jìn)度保證措施方案
- DB3301∕T 0396-2023 大型商業(yè)綜合體消防安全管理規(guī)范
評(píng)論
0/150
提交評(píng)論