解析卷-人教版8年級數(shù)學(xué)上冊《全等三角形》綜合測試試題(解析版)_第1頁
解析卷-人教版8年級數(shù)學(xué)上冊《全等三角形》綜合測試試題(解析版)_第2頁
解析卷-人教版8年級數(shù)學(xué)上冊《全等三角形》綜合測試試題(解析版)_第3頁
解析卷-人教版8年級數(shù)學(xué)上冊《全等三角形》綜合測試試題(解析版)_第4頁
解析卷-人教版8年級數(shù)學(xué)上冊《全等三角形》綜合測試試題(解析版)_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

人教版8年級數(shù)學(xué)上冊《全等三角形》綜合測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,在梯形中,,,,那么下列結(jié)論不正確的是()A. B.C. D.2、如圖,在中,點D是BC邊上一點,已知,,CE平分交AB于點E,連接DE,則的度數(shù)為(

)A. B. C. D.3、已知,則為(

)A.銳角三角形 B.鈍角三角形 C.直角三角形 D.以上都有可能4、如圖,矩形ABCD中,對角線AC的垂直平分線EF分別交BC,AD于點E,F(xiàn),若BE=3,AF=5,則AC的長為(

)A. B. C.10 D.85、如圖,△ABC≌△ADE,∠B=80°,∠C=30°,∠DAC=35°,則∠EAC的度數(shù)為()A.40° B.30° C.35° D.25°第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,已知△ABC≌△DBE,∠A=36°,∠B=40°,則∠AED的度數(shù)為_____.2、要測量河兩岸相對的兩點A,B間的距離(AB垂直于河岸BF),先在BF上取兩點C,D,使CD=CB,再作出BF的垂線DE,且使A,C,E三點在同一條直線上,如圖,可以得△EDC≌△ABC,所以ED=AB.因此測得ED的長就是AB的長.判定△EDC≌△ABC的理由是____________.3、如圖,△ABC中,BD平分∠ABC,AD⊥BD,△BCD的面積為10,△ACD的面積為6,則△ABD的面積是_________.4、如圖,在中,按以下步驟作圖:①以點B為圓心,任意長為半徑作弧,分別交AB、BC于點D、E.②分別以點D、E為圓心,大于的同樣長為半徑作弧,兩弧交于點F.③作射線BF交AC于點G.如果,,的面積為18,則的面積為________.5、如圖,在四邊形中,,,,點在線段上以的速度由點向點運動,同時,點在線段上由點向點運動,設(shè)運動時間為,當(dāng)與以,,為頂點的三角形全等時,點的運動速度為______.三、解答題(5小題,每小題10分,共計50分)1、如圖,△ABC中,∠B=2∠C,AE平分∠BAC.(1)若AD⊥BC于D,∠C=35°,求∠DAE的大?。唬?)若EF⊥AE交AC于F,求證:∠C=2∠FEC.2、如圖,在中,,點在的延長線上,于點,若,求證:.3、如圖,PA=PB,∠PAM+∠PBN=180°,求證:OP平分∠AOB.4、如圖,在五邊形ABCDE中,AB=CD,∠ABC=∠BCD,BE,CE分別是∠ABC,∠BCD的角平分線.(1)求證:△ABE≌△DCE;(2)當(dāng)∠A=80°,∠ABC=140°,時,∠AED=_________度(直接填空).5、(1)閱讀理解:問題:如圖1,在四邊形中,對角線平分,.求證:.思考:“角平分線+對角互補”可以通過“截長、補短”等構(gòu)造全等去解決問題.方法1:在上截取,連接,得到全等三角形,進(jìn)而解決問題;方法2:延長到點,使得,連接,得到全等三角形,進(jìn)而解決問題.結(jié)合圖1,在方法1和方法2中任選一種,添加輔助線并完成證明.(2)問題解決:如圖2,在(1)的條件下,連接,當(dāng)時,探究線段,,之間的數(shù)量關(guān)系,并說明理由;(3)問題拓展:如圖3,在四邊形中,,,過點D作,垂足為點E,請直接寫出線段、、之間的數(shù)量關(guān)系.-參考答案-一、單選題1、A【解析】【分析】A、根據(jù)三角形的三邊關(guān)系即可得出A不正確;B、通過等腰梯形的性質(zhì)結(jié)合全等三角形的判定與性質(zhì)即可得出∠ADB=90°,從而得出B正確;C、由梯形的性質(zhì)得出AB∥CD,結(jié)合角的計算即可得出∠ABC=60°,即C正確;D、由平行線的性質(zhì)結(jié)合等腰三角形的性質(zhì)即可得出∠DAC=∠CAB,即D正確.綜上即可得出結(jié)論.【詳解】A、∵AD=DC,∴AC<AD+DC=2CD,故A不正確;B、∵四邊形ABCD是等腰梯形,∴∠ABC=∠BAD,在△ABC和△BAD中,,∴△ABC≌△BAD(SAS),∴∠BAC=∠ABD,∵AB∥CD,∴∠CDB=∠ABD,∠ABC+∠DCB=180°,∵DC=CB,∴∠CDB=∠CBD=∠ABD=∠BAC,∵∠ACB=90°,∴∠CDB=∠CBD=∠ABD=30°,∴∠ABC=∠ABD+∠CBD=60°,B正確,C、∵AB∥CD,∴∠DCA=∠CAB,∵AD=DC,∴∠DAC=∠DCA=∠CAB,C正確.D、∵△DAB≌△CBA,∴∠ADB=∠BCA.∵AC⊥BC,∴∠ADB=∠BCA=90°,∴DB⊥AD,D正確;故選:A.【考點】本題考查了梯形的性質(zhì)、平行線的性質(zhì)、等腰三角形的性質(zhì)以及全等三角形的判定與性質(zhì),解題的關(guān)鍵是逐項分析四個選項的正誤.本題屬于中檔題,稍顯繁瑣,但好在該題為選擇題,只需由三角形的三邊關(guān)系得出A不正確即可.2、B【解析】【分析】過點E作于M,于N,于H,如圖,先計算出,則AE平分,根據(jù)角平分線的性質(zhì)得,再由CE平分得到,則,于是根據(jù)角平分線定理的逆定理可判斷DE平分,再根據(jù)三角形外角性質(zhì)解答即可.【詳解】解:過點E作于M,于N,于H,如圖,∵,,∴,∴平分,∴,∵平分,∴,∴,∴平分,∴,∵由三角形外角可得:,,∴,而,∴.故選:B.【考點】本題考查了角平分線的性質(zhì)和判定定理,三角形的外角性質(zhì)定理,解決本題的關(guān)鍵是運用角平分線定理的逆定理證明DE平分.3、C【解析】【分析】根據(jù)∠A和∠B的度數(shù)可得與互余,從而得出為直角三角形.【詳解】解:,即與互余,則為直角三角形,故選C.【考點】此題考查的是直角三角形的判定,掌握有兩個內(nèi)角互余的三角形是直角三角形是解決此題的關(guān)鍵.4、A【解析】【分析】連接AE,由線段垂直平分線的性質(zhì)得出OA=OC,AE=CE,證明△AOF≌△COE得出AF=CE=5,得出AE=CE=5,BC=BE+CE=8,由勾股定理求出AB=4,再由勾股定理求出AC即可.【詳解】解:如圖,連結(jié)AE,設(shè)AC交EF于O,依題意,有AO=OC,∠AOF=∠COE,∠OAF=∠OCE,所以,△OAF≌△OCE(ASA),所以,EC=AF=5,因為EF為線段AC的中垂線,所以,EA=EC=5,又BE=3,由勾股定理,得:AB=4,所以,AC=【考點】本題考查了全等三角形的判定、勾股定理,熟練掌握是解題的關(guān)鍵.5、C【解析】【分析】根據(jù)三角形的內(nèi)角和定理列式求出∠BAC,再根據(jù)全等三角形對應(yīng)角相等可得∠DAE=∠BAC,然后根據(jù)∠EAC=∠DAE-∠DAC代入數(shù)據(jù)進(jìn)行計算即可得解.【詳解】解:∵∠B=80°,∠C=30°,∴∠BAC=180°-80°-30°=70°,∵△ABC≌△ADE,∴∠DAE=∠BAC=70°,∴∠EAC=∠DAE-∠DAC,=70°-35°,=35°.故選C.【考點】本題考查了全等三角形對應(yīng)角相等的性質(zhì),熟記性質(zhì)并準(zhǔn)確識圖是解題的關(guān)鍵.二、填空題1、76°或76度【解析】【分析】根據(jù)全等三角形的性質(zhì)得到∠A=∠D=36°,根據(jù)三角形的外角的性質(zhì)即可得出答案.【詳解】解:∵△ABC≌△DBE,∴∠A=∠D=36°,∵∠AED是△BDE的外角,∴∠AED=∠B+∠D=40°+36°=76°.故答案為:76°.【考點】本題考查了全等三角形的性質(zhì)及三角形外角的性質(zhì),掌握全等三角形的對應(yīng)角相等是解題的關(guān)鍵.2、ASA【解析】【分析】由已知可以得到∠ABC=∠BDE=90°,又CD=BC,∠ACB=∠DCE,由此根據(jù)角邊角即可判定△EDC≌△ABC.【詳解】∵BF⊥AB,DE⊥BD∴∠ABC=∠BDE又∵CD=BC,∠ACB=∠DCE∴△EDC≌△ABC(ASA)故答案為ASA【考點】本題考查了全等三角形的判定方法;需注意根據(jù)垂直定義得到的條件,以及隱含的對頂角相等,觀察圖形,找到隱含條件并熟練掌握全等三角形的判定定理是解題關(guān)鍵.3、16【解析】【分析】延長交于,由證明,得出,得出,進(jìn)而得出,即可得出結(jié)果.【詳解】如圖所示,延長、交于,∵平分,,∴,,在和中,,∴,∴,∴,,∴.故答案為:16.【考點】此題考查全等三角形的判定與性質(zhì),三角形面積的計算,證明三角形全等得出是解題關(guān)鍵.4、27【解析】【分析】由作圖步驟可知BG為∠ABC的角平分線,過G作GH⊥BC,GM⊥AB,可得GM=GH,然后再結(jié)合已知條件和三角形的面積公式求得GH,最后運用三角形的面積公式解答即可.【詳解】解:由作圖作法可知:BG為∠ABC的角平分線過G作GH⊥BC,GM⊥AB∴GM=GH∴,故答案為27.【考點】本題考查了角平分線定理和三角形面積公式的應(yīng)用,通過作法發(fā)現(xiàn)角平分線并靈活應(yīng)用角平分線定理是解答本題的關(guān)鍵.5、1或【解析】【分析】設(shè)點的運動速度為,由題意可得,與以,,為頂點的三角形全等時分為兩種情況:,再利用全等三角形的性質(zhì)求解即可.【詳解】解:設(shè)點的運動速度為,由題意可得,∵∴與以,,為頂點的三角形全等時可分為兩種情況:①當(dāng)時,∴,∴∴∴此時點的運動速度為;②當(dāng)時,,∴,∴,此時點的運動速度為,故答案為:1或.【考點】本題主要考查三角形全等的性質(zhì),掌握全等三角形的對應(yīng)邊相等是解題的關(guān)鍵,注意分情況討論.三、解答題1、(1)17.5°;(2)證明過程見解析【解析】【分析】(1)首先計算出∠B,∠BAC的度數(shù),根據(jù)AE是∠BAC的角平分線可得∠EAC=37.5°,再根據(jù)Rt△ADC中直角三角形兩銳角互余可得∠DAC的度數(shù),進(jìn)而可得答案;(2)過A作AD⊥BC于D,證明∠DAE=∠FEC,由三角形內(nèi)角和定理得到∠EAC=90°-∠C,進(jìn)而可得∠DAE=∠DAC-∠EAC,利用等量代換可得∠DAE=∠C即可求解.【詳解】解:(1)解:∵∠C=35°,∠B=2∠C,∴∠B=70°,∴在△ABC中,由內(nèi)角和定理可知:∠BAC=180°-∠B-∠C=180°-70°-35°=75°,∵AE平分∠BAC,∴∠EAC=37.5°,∵AD⊥BC,∴∠ADC=90°,在Rt△ADC中,兩銳角互余,∴∠DAC=90°-35°=55°,∴∠DAE=55°-37.5°=17.5°,故答案為:17.5°;(2)過A點作AD⊥BC于D點,如下圖所示:∵EF⊥AE,∴∠AEF=90°,∴∠AED+∠FEC=90°,∵∠DAE+∠AED=90°,∴∠DAE=∠FEC,∵AE平分∠BAC,∴∠EAC=∠BAC=(180°-∠B-∠C)=(180°-3∠C)=90°-∠C,∵∠DAE=∠DAC-∠EAC,∴∠DAE=∠DAC-(90°-∠C)=(90°-∠C)-(90°-∠C)=∠C,∴∠FEC=∠C,∴∠C=2∠FEC.【考點】此題主要考查了三角形內(nèi)角和定理,角平分線的定義,直角三角形中兩銳角互余等知識點,熟練掌握各圖形的性質(zhì)是解決本題的關(guān)鍵.2、證明見解析【解析】【分析】利用AAS證明,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論.【詳解】證明:∵,∴∠ADE=90°,∵,∴∠ACB=∠ADE,在和中,∴,∴AE=AB,AC=AD,∴AE-AC=AB-AD,即EC=BD.【考點】本題考查全等三角形的判定和性質(zhì),解題的關(guān)鍵是熟練掌握基本知識.3、詳見解析【解析】【分析】過點P分別作PE⊥OM,PF⊥ON,垂足分別為E,F(xiàn),根據(jù)等角的補角相等可得出∠PAE=∠PBF,結(jié)合∠AEP=∠BFP、PA=PB即可證出△APE≌△BPF(AAS),根據(jù)全等三角形的性質(zhì)可得出PE=PF,進(jìn)而可證出OP平分∠AOB.【詳解】如圖,過點P分別作PE⊥OM,PF⊥ON,垂足分別為E,F(xiàn),則∠PEA=∠PFB=90°.又∵∠PAM+∠PBN=180°,∠PBF+∠PBN=180°,∴∠PAM=∠PBF,即∠PAE=∠PBF.在△PAE與△PBF中,,∴△PAE≌△PBF(AAS).∴PE=PF.又∵PE⊥OM,PF⊥ON,∴OP平分∠AOB.【考點】本題考查了全等三角形的判定與性質(zhì)以及角平分線的性質(zhì),利用全等三角形的判定定理AAS證出△APE≌△BPF是解題的關(guān)鍵.4、(1)見解析;(2)100【解析】【分析】(1)根據(jù)∠ABC=∠BCD,BE,CE分別是∠ABC,∠BCD的角平分線,可得∠ABE=∠DCE,∠CBE=∠BCE,推出BE=CE,由此利用SAS證明△ABE≌△DCE;(2)根據(jù)三角形全等的性質(zhì)求出∠D的度數(shù),利用公式求出五邊形的內(nèi)角和,即可得到答案.(1)證明:∵∠ABC=∠BCD,BE,CE分別是∠ABC,∠BCD的角平分線,∴∠ABE=∠CBE=∠ABC,∠BCE=∠DCE=∠BCD,∴∠ABE=∠DCE,∠CBE=∠BCE,∴BE=CE,又∵AB=CD,∴△ABE≌△DCE(SAS);(2)∵△ABE≌△DCE,∴∠D=∠A=80°,∵五邊形ABCDE的內(nèi)角和為,∴∠AED=,故答案為:100.【考點】此題考查了全等三角形的判定及性質(zhì),多邊形內(nèi)角和計算,正確掌握全等三角形的判定及性質(zhì)定理是解題的關(guān)鍵.5、(1)證明見解析;(2);理由見解析;(3).【解析】【分析】(1)方法1:在上截取,連接,得到全等三角形,進(jìn)而解決問題;方法2:延長到點,使得,連接,得到全等三角形,進(jìn)而解決問題;(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論