




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
滬科版9年級下冊期末試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、如圖,與的兩邊分別相切,其中OA邊與相切于點P.若,,則OC的長為()A.8 B. C. D.2、在中,,,給出條件:①;②;③外接圓半徑為4.請在給出的3個條件中選取一個,使得BC的長唯一.可以選取的是()A.① B.② C.③ D.①或③3、在一個不透明的盒子中裝有12個白球,4個黃球,這些球除顏色外都相同.若從中隨機摸出一個球,則摸出的一個球是黃球的概率為()A. B. C. D.4、等邊三角形、等腰三角形、矩形、菱形中既是軸對稱圖形,又是中心對稱圖形的個數(shù)是()A.2個 B.3個 C.4個 D.5個5、在平面直角坐標系中,已知點與點關(guān)于原點對稱,則的值為()A.4 B.-4 C.-2 D.26、如圖,在中,,,將繞點A順時針旋轉(zhuǎn)60°得到,此時點B的對應點D恰好落在BC邊上,則CD的長為()A.1 B.2 C.3 D.47、如圖,四邊形ABCD內(nèi)接于⊙O,若∠ADC=130°,則∠AOC的度數(shù)為()A.25° B.80° C.130° D.100°8、如圖是由幾個小立方體所搭成的幾何體從上面看到的平面圖形,小正方形中的數(shù)字表示在該位置小立方體的個數(shù),則這個幾何體從正面看到的平面圖形為()A. B. C. D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、若扇形的圓心角為60°,半徑為2,則該扇形的弧長是_____(結(jié)果保留)2、點P為邊長為2的正方形ABCD內(nèi)一點,是等邊三角形,點M為BC中點,N是線段BP上一動點,將線段MN繞點M順時針旋轉(zhuǎn)60°得到線段MQ,連接AQ、PQ,則的最小值為______.3、平面直角坐標系中,,,A為x軸上一動點,連接AC,將AC繞A點順時針旋轉(zhuǎn)90°得到AB,當BK取最小值時,點B的坐標為_________.4、如圖AB為⊙O的直徑,點P為AB延長線上的點,過點P作⊙O的切線PE,切點為M,過A、B兩點分別作PE垂線AC、BD,垂足分別為C、D,連接AM,則下列結(jié)論正確的是______(寫所有正確論的號)①AM平分∠CAB;②;③若AB=4,∠APE=30°,則的長為;④若AC=3BD,則有tan∠MAP=.5、在平面直角坐標系中,點,圓C與x軸相切于點A,過A作一條直線與圓交于A,B兩點,AB中點為M,則OM的最大值為______.6、邊長為2的正三角形的外接圓的半徑等于___.7、如圖,已知,外心為,,,分別以,為腰向形外作等腰直角三角形與,連接,交于點,則的最小值是______.三、解答題(7小題,每小題0分,共計0分)1、某化妝品專賣店,為了吸引顧客,在“母親節(jié)”當天舉辦了甲.乙兩種品牌化妝品有獎酬賓活動,凡購物滿88元,均可得到一次搖獎的機會.已知在搖獎機內(nèi)裝有2個紅球和2個白球,除顏色外其他都相同,搖獎?wù)弑仨殢膿u獎機內(nèi)一次連續(xù)搖出兩個球,根據(jù)球的顏色決定送禮金券的多少(如表).甲種品牌化妝品球兩紅一紅一白兩白禮金券(元)6126乙種品牌化妝品球兩紅一紅一白兩白禮金券(元)12612(1)請你用列表法(或畫樹狀圖法)求一次連續(xù)搖出一紅一白兩球的概率;(2)如果一個顧客當天在本店購買滿88元,若只考慮獲得最多的禮品券,請你幫助分析選擇購買哪種品牌的化妝品?并說明理由.2、如圖1,圖2,圖3的網(wǎng)格均由邊長為1的小正方形組成,圖1是三國時期吳國的數(shù)學家趙爽所繪制的“弦圖”,它由四個形狀、大小完全相同的直角三角形組成,趙爽利用這個“弦圖”對勾股定理作出了證明,是中國古代數(shù)學的一項重要成就,請根據(jù)下列要求解答問題.(1)圖1中的“弦圖”的四個直角三角形組成的圖形是對稱圖形(填“軸”或“中心”).(2)請將“弦圖”中的四個直角三角形通過你所學過的圖形變換,在圖2,3的方格紙中設(shè)計另外兩個不同的圖案,畫圖要求:①每個直角三角形的頂點均在方格紙的格點上,且四個三角形互不重疊,不必涂陰影;②圖2中所設(shè)計的圖案(不含方格紙)必須是軸對稱圖形而不是中心對稱圖形;圖3中所設(shè)計的圖案(不含方格紙)必須既是軸對稱圖形,又是中心對稱圖形.3、下面是“過圓外一點作圓的切線”的尺規(guī)作圖過程.已知:⊙O和⊙O外一點P.求作:過點P的⊙O的切線.作法:如圖,(1)連接OP;(2)分別以點O和點P為圓心,大于的長半徑作弧,兩弧相交于M,N兩點;(3)作直線MN,交OP于點C;(4)以點C為圓心,CO的長為半徑作圓,交⊙O于A,B兩點;(5)作直線PA,PB.直線PA,PB即為所求作⊙O的切線完成如下證明:證明:連接OA,OB,∵OP是⊙C直徑,點A在⊙C上∴∠OAP=90°(___________)(填推理的依據(jù)).∴OA⊥AP.又∵點A在⊙O上,∴直線PA是⊙O的切線(___________)(填推理的依據(jù)).同理可證直線PB是⊙O的切線.4、從2021年開始,重慶市新高考采用“”模式:“3”指全國統(tǒng)考科目,即:語文、數(shù)學、外語三個學科為必選科目;“1”為首選科目,即:物理、歷史這2個學科中任選1科,且必須選1科;“2”為再選科目,即:化學、生物、思想政治、地理這4個學科中任選2科,且必須選2科.小紅在高一上期期末結(jié)束后,需要選擇高考科目.(1)小紅在“首選科目”中,選擇歷史學科的概率是___________.(2)用列表法或畫樹狀圖法,求小紅在“再選科目”中選擇思想政治和地理這兩門學科的概率.5、如圖1,在平面直角坐標系中,二次函數(shù)的圖象經(jīng)過點,過點A作軸,做直線AC平行x軸,點D是二次函數(shù)的圖象與x軸的一個公共點(點D與點O不重合).(1)求點D的橫坐標(用含b的代數(shù)式表示)(2)求的最大值及取得最大值時的二次函數(shù)表達式.(3)在(2)的條件下,如圖2,P為OC的中點,在直線AC上取一點M,連接PM,做點C關(guān)于PM的對稱點N,①連接AN,求AN的最小值.②當點N落在拋物線的對稱軸上,求直線MN的函數(shù)表達式.6、在平面直角坐標系xOy中,對于點P,O,Q給出如下定義:若OQ<PO<PQ且PO≤2,我們稱點P是線段OQ的“潛力點”已知點O(0,0),Q(1,0)(1)在P1(0,-1),P2(,),P3(-1,1)中是線段OQ的“潛力點”是_____________;(2)若點P在直線y=x上,且為線段OQ的“潛力點”,求點P橫坐標的取值范圍;(3)直線y=2x+b與x軸交于點M,與y軸交于點N,當線段MN上存在線段OQ的“潛力點”時,直接寫出b的取值范圍7、如圖,在中,,,D是邊BC上一點,作射線AD,滿足,在射線AD取一點E,且.將線段AE繞點A逆時針旋轉(zhuǎn)90°,得到線段AF,連接BE,F(xiàn)E,連接FC并延長交BE于點G.(1)依題意補全圖形;(2)求的度數(shù);(3)連接GA,用等式表示線段GA,GB,GC之間的數(shù)量關(guān)系,并證明.-參考答案-一、單選題1、C【分析】如圖所示,連接CP,由切線的性質(zhì)和切線長定理得到∠CPO=90°,∠COP=45°,由此推出CP=OP=4,再根據(jù)勾股定理求解即可.【詳解】解:如圖所示,連接CP,∵OA,OB都是圓C的切線,∠AOB=90°,P為切點,∴∠CPO=90°,∠COP=45°,∴∠PCO=∠COP=45°,∴CP=OP=4,∴,故選C.【點睛】本題主要考查了切線的性質(zhì),切線長定理,等腰直角三角形的性質(zhì)與判定,勾股定理,熟知切線長定理是解題的關(guān)鍵.2、B【分析】畫出圖形,作,交BE于點D.根據(jù)等腰直角三角形的性質(zhì)和勾股定理可求出AD的長,再由AD和AC的長作比較即可判斷①②;由前面所求的AD的長和AB的長,結(jié)合該三角形外接圓的半徑長,即可判斷該外接圓的圓心可在AB上方,也可在AB下方,其與AE的交點即為C點,為兩點不唯一,可判斷其不符合題意.【詳解】如圖,,,點C在射線上.作,交BE于點D.∵,∴為等腰直角三角形,∴,∴不存在的三角形ABC,故①不符合題意;∵,,AC=8,而AC>6,∴存在的唯一三角形ABC,如圖,點C即是.∴,使得BC的長唯一成立,故②符合題意;∵,,∴存在兩個點C使的外接圓的半徑等于4,兩個外接圓圓心分別在AB的上、下兩側(cè),如圖,點C和即為使的外接圓的半徑等于4的點.故③不符合題意.故選B.【點睛】本題考查等腰直角三角形的判定和性質(zhì),勾股定理,三角形外接圓的性質(zhì).利用數(shù)形結(jié)合的思想是解答本題的關(guān)鍵.3、C【分析】根據(jù)概率的求法,找準兩點:①全部等可能情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.【詳解】解:一個不透明的盒子中裝有12個白球,4個黃球,從中隨機摸出一個球,所有等可能的情況16種,其中摸出的一個球是黃球的情況有4種,∴隨機抽取一個球是黃球的概率是.故選C.【點睛】本題主要考查了概率公式的應用,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.得到所有符合條件的情況數(shù)是解決本題的關(guān)鍵.4、A【分析】根據(jù)軸對稱圖形與中心對稱圖形的概念進行判斷.【詳解】解:矩形,菱形既是軸對稱圖形,也是中心對稱圖形,符合題意;等邊三角形、等腰三角形是軸對稱圖形,不是中心對稱圖形,不符合題意;共2個既是軸對稱圖形又是中心對稱圖形.故選:A.【點睛】此題主要考查了中心對稱圖形與軸對稱圖形的概念.(1)如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形,這條直線叫做對稱軸.(2)如果一個圖形繞某一點旋轉(zhuǎn)180°后能夠與自身重合,那么這個圖形就叫做中心對稱圖形,這個點叫做對稱中心.5、C【分析】根據(jù)關(guān)于原點對稱的點的坐標特點:兩個點關(guān)于原點對稱時,它們的坐標符號相反即可得到答案.【詳解】解:點與點關(guān)于原點對稱,,,.故選:C.【點睛】此題主要考查了原點對稱點的坐標特點,解題的關(guān)鍵是掌握點的變化規(guī)律.6、B【分析】由題意以及旋轉(zhuǎn)的性質(zhì)可得為等邊三角形,則BD=2,故CD=BC-BD=2.【詳解】由題意以及旋轉(zhuǎn)的性質(zhì)知AD=AB,∠BAD=60°∴∠ADB=∠ABD∵∠ADB+∠ABD+∠BAD=180°∴∠ADB=∠ABD=60°故為等邊三角形,即AB=AD=BD=2則CD=BC-BD=4-2=2故選:B.【點睛】本題考查了等邊三角形的判定及性質(zhì),等邊三角形的三邊都相等,三個內(nèi)角都相等,并且每一個內(nèi)角都等于,等邊三角形判定的方法有:三邊相等的三角形是等邊三角形(定義);三個內(nèi)角都相等的三角形是等邊三角形;有一個內(nèi)角是60度的等腰三角形是等邊三角形;兩個內(nèi)角為60度的三角形是等邊三角形.7、D【分析】根據(jù)圓內(nèi)接四邊形的性質(zhì)求出∠B的度數(shù),根據(jù)圓周角定理計算即可.【詳解】解:∵四邊形ABCD內(nèi)接于⊙O,∴∠B+∠ADC=180°,∵∠ADC=130°,∴∠B=50°,由圓周角定理得,∠AOC=2∠B=100°,故選:D.【點睛】本題考查的是圓內(nèi)接四邊形的性質(zhì)和圓周角定理,掌握圓內(nèi)接四邊形的對角互補是解題的關(guān)鍵.8、B【分析】幾何體從上面看到的每個數(shù)字是該位置小立方體的個數(shù),可得從正面看共有3列,2層,從左往右的每列的小立方體的個數(shù)為1,2,1,從上往下的每層的小立方體的個數(shù)為1,3,即可求解【詳解】解:幾何體從上面看到的每個數(shù)字是該位置小立方體的個數(shù),可得從正面看共有3列,2層,從左往右每列的小立方體的個數(shù)為1,2,1,從上往下每層的小立方體的個數(shù)為1,3,所以這個幾何體從正面看到的平面圖形為故選:B【點睛】本題主要考查了幾何體的三視圖,熟練掌握三視圖是觀測者從三個不同位置觀察同一個幾何體,畫出的平面圖形;(1)從正面看:從物體前面向后面正投影得到的投影圖,它反映了空間幾何體的高度和長度;(2)從側(cè)面看:從物體左面向右面正投影得到的投影圖,它反映了空間幾何體的高度和寬度;(3)從上面看:從物體上面向下面正投影得到的投影圖,它反應了空間幾何體的長度和寬度是解題的關(guān)鍵.二、填空題1、【分析】已知扇形的圓心角為,半徑為2,代入弧長公式計算.【詳解】解:依題意,n=,r=2,∴扇形的弧長=.故答案為:.【點睛】本題考查了弧長公式的運用.關(guān)鍵是熟悉公式:扇形的弧長=.2、【分析】如圖,取的中點,連接,,,證明,進而證明在上運動,且垂直平分,根據(jù),求得最值,根據(jù)正方形的性質(zhì)和勾股定理求得的長即可求得的最小值.【詳解】解:如圖,取的中點,連接,,,將線段MN繞點M順時針旋轉(zhuǎn)60°得到線段MQ,,是等邊三角形,,是的中點,是的中點是等邊三角形,即在和中,又是的中點點在上是的中點,是等邊三角,又垂直平分即的最小值為四邊形是正方形,且的最小值為故答案為:【點睛】本題考查了正方形的性質(zhì)等邊三角形的性質(zhì),旋轉(zhuǎn)的性質(zhì),全等三角形的性質(zhì)與判定,勾股定理,垂直平分線的性質(zhì)與判定,根據(jù)以上知識轉(zhuǎn)化線段是解題的關(guān)鍵.3、【分析】如圖,作BH⊥x軸于H.由△ACO≌△BAH(AAS),推出BH=OA=m,AH=OC=4,可得B(m+4,m),令x=m+4,y=m,推出y=x﹣4,推出點B在直線y=x﹣4上運動,設(shè)直線y=x﹣4交x軸于E,交y軸于F,作KM⊥EF于M,根據(jù)垂線段最短可知,當點B與點M重合時,BK的值最小,利用等腰直角三角形的性質(zhì)可得M的坐標,從而可得答案.【詳解】解:如圖,作BH⊥x軸于H.∵C(0,4),K(2,0),∴OC=4,OK=2,∵AC=AB,∵∠AOC=∠CAB=∠AHB=90°,∴∠CAO+∠OCA=90°,∠BAH+∠CAO=90°,∴∠ACO=∠BAH,∴△ACO≌△BAH(AAS),∴BH=OA=m,AH=OC=4,∴B(m+4,m),令x=m+4,y=m,∴y=x﹣4,∴點B在直線y=x﹣4上運動,設(shè)直線y=x﹣4交x軸于E,交y軸于F,則作KM⊥EF于M,過作于則根據(jù)垂線段最短可知,當點B與點M重合時,BK的值最小,此時B(3,﹣1),故答案為:(3,﹣1)【點睛】本題考查坐標與圖形的變化﹣旋轉(zhuǎn),全等三角形的判定和性質(zhì),一次函數(shù)的應用,垂線段最短等知識,解題的關(guān)鍵是正確尋找點B的運動軌跡,學會利用垂線段最短解決最短問題.4、①②④【分析】連接OM,由切線的性質(zhì)可得,繼而得,再根據(jù)平行線的性質(zhì)以及等邊對等角即可求得,由此可判斷①;通過證明,根據(jù)相似三角形的對應邊成比例可判斷②;求出,利用弧長公式求得的長可判斷③;由,,,可得,繼而可得,,進而有,在中,利用勾股定理求出PD的長,可得,由此可判斷④.【詳解】解:連接OM,∵PE為的切線,∴,∵,∴,∴,∵,,∴,即AM平分,故①正確;∵AB為的直徑,∴,∵,,∴,∴,∴,故②正確;∵,∴,∵,∴,∴的長為,故③錯誤;∵,,,∴,∴,∴,∴,又∵,,,∴,又∵,∴,設(shè),則,∴,在中,,∴,∴,由①可得,,故④正確,故答案為:①②④.【點睛】本題考查了切線的性質(zhì),平行線分線段成比例定理,相似三角形的判定與性質(zhì),勾股定理等,正確添加輔助線,熟練掌握和靈活運用相關(guān)知識是解題的關(guān)鍵.5、##【分析】如圖所示,取D(-2,0),連接BD,連接CD與圓C交于點,先求出A點坐標,從而可證OM是△ABD的中位線,得到,則當BD最小時,OM也最小,即當B運動到時,BD有最小值,由此求解即可.【詳解】解:如圖所示,取D(-2,0),連接BD,連接CD與圓C交于點∵點C的坐標為(2,2),圓C與x軸相切于點A,∴點A的坐標為(2,0),∴OA=OD=2,即O是AD的中點,又∵M是AB的中點,∴OM是△ABD的中位線,∴,∴當BD最小時,OM也最小,∴當B運動到時,BD有最小值,∵C(2,2),D(-2,0),∴,∴,∴,故答案為:.【點睛】本題主要考查了坐標與圖形,一點到圓上一點的距離得到最小值,兩點距離公式,三角形中位線定理,把求出OM的最小值轉(zhuǎn)換成求BD的最小值是解題的關(guān)鍵.6、【分析】過圓心作一邊的垂線,根據(jù)勾股定理可以計算出外接圓半徑.【詳解】如圖所示,是正三角形,故O是的中心,,∵正三角形的邊長為2,OE⊥AB∴,,∴,由勾股定理得:,∴,∴,∴(負值舍去).故答案為:.【點睛】本題考查了正多邊形和圓,解題的關(guān)鍵是根據(jù)題意畫出圖形,利用數(shù)形結(jié)合求解.7、【分析】由與是等腰直角三角形,得到,,根據(jù)全等三角形的性質(zhì)得到,求得在以為直徑的圓上,由的外心為,,得到,如圖,當時,的值最小,解直角三角形即可得到結(jié)論.【詳解】解:與是等腰直角三角形,,,在與中,,≌,,,,在以為直徑的圓上,的外心為,,,如圖,當時,的值最小,,,,,.則的最小值是,故答案為:.【點睛】本題考查了三角形的外接圓與外心,全等三角形的判定和性質(zhì),等腰直角三角形的性質(zhì),正確的作出輔助線是解題的關(guān)鍵.三、解答題1、(1)搖出一紅一白的概率=(2)選擇甲品牌化妝品,理由見解析【分析】(1)讓所求的情況數(shù)除以總情況數(shù)即為所求的概率;(2)算出相應的平均收益,比較即可.(1)解:樹狀圖為:∴一共有6種情況,搖出一紅一白的情況共有4種,搖出一紅一白的概率=;(2)(2)∵兩紅的概率P=,兩白的概率P=,一紅一白的概率P=,∴甲品牌化妝品獲禮金券的平均收益是:×6+×12+×6=10元.乙品牌化妝品獲禮金券的平均收益是:×12+×6+×12=8元.∴選擇甲品牌化妝品.【點睛】本題主要考查的是概率的計算,畫樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回實驗還是不放回實驗.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.2、(1)中心(2)見解析【分析】(1)利用中心對稱圖形的意義得到答案即可;(2)①每個直角三角形的頂點均在方格紙的格點上,且四個三角形不重疊,是軸對稱圖形;②所設(shè)計的圖案(不含方格紙)必須是中心對稱圖形或軸對稱圖形.(1)圖1中的“弦圖”的四個直角三角形組成的圖形是中心對稱圖形,故答案為:中心;(2)如圖2是軸對稱圖形而不是中心對稱圖形;圖3既是軸對稱圖形,又是中心對稱圖形.【點睛】本題考查利用旋轉(zhuǎn)或軸對稱設(shè)計方案,關(guān)鍵是理解旋轉(zhuǎn)和軸對稱的概念,按要求作圖即可.3、直徑所對的圓周角是直角經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線【分析】連接OA,OB,根據(jù)圓周角定理可知∠OAP=90°,再依據(jù)切線的判定證明結(jié)論;【詳解】證明:連接OA,OB,∵OP是⊙C直徑,點A在⊙C上,∴∠OAP=90°(直徑所對的圓周角是直角),∴OA⊥AP.又∵點A在⊙O上,∴直線PA是⊙O的切線(經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線),同理可證直線PB是⊙O的切線,故答案為:直徑所對的圓周角是直角;經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線.4、(1)(2)【分析】(1)根據(jù)概率的公式計算可得答案;(2)畫樹狀圖,共有12個等可能的結(jié)果,該同學恰好選中思想政治和地理化兩科的結(jié)果有2個,再由概率公式求解即可.(1)解:選擇物理、歷史共有2中等可能結(jié)果,選擇歷史學科的結(jié)果有1種,所以選擇歷史學科的概率是;(2)假設(shè)A表示化學、B表示生物、C表示思想政治、D表示地理,畫樹狀圖如下圖:共有12個等可能的結(jié)果,該同學恰好選中思想政治和地理的結(jié)果有2個,所以該同學恰好選中思想政治和地理的概率為.【點睛】此題考查了概率的求法,利用如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=,還考查了用列表法或樹狀圖法求概率,列表法可以不重復不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件,做題的關(guān)鍵是掌握概率的求法.5、(1)2b;(2)4;;(3)①.②y=x+或.【分析】(1)令y=0,解方程即可;(2)設(shè)w=,根據(jù)OD=2b,BD=4-2b,構(gòu)造二次函數(shù)求解即可;(3)①點N在以P為圓心,以2為半徑的圓上運動,當P、N、A同側(cè)且共線時,AN最小,用勾股定理計算即可.②分點M在對稱軸的左側(cè)和右側(cè),兩種情形求解.(1)令y=0,得,解得x=0或x=2b,∵b>0,∴x=0舍去,∴點D的橫坐標為2b.(2)設(shè)w=,∵點D的橫坐標為2b,A(4,m),∴OD=2b,BD=4-2b,∴w==2b(4-2b)=,∵-4<0,∴當b=1時,w有最大值,最大值為4,此時拋物線的解析式為.(3)①∵點A(4,m)在拋物線上,∴m==4,∴OC=4,∵P為OC的中點,∴OP=PC=2,∵點C關(guān)于PM的對稱點N,∴OP=PC=PN=2,∴點N在以P為圓心,以2為半徑的圓上運動,如圖所示,當P、N、A同側(cè)且共線時,AN最小,∵AC=4,PC=2,∴PA=,∴AN的最小值為PA-PN=.②當點N落在拋物線的對稱軸上,且M在對稱軸的左側(cè),如圖所示,設(shè)對稱軸與AC交于點H,交x軸于點Q,過點P作PG⊥HN,垂足為G,則QG=2,∵PC=PN=2,PG=1,∴NG=,∴HN=2-,點N(1,2+),設(shè)CM=a,則MN=a,MH=1-a,∴,解得a=4-2,∴點M(4-2,4),設(shè)直線MN的解析式為y=kx+b,∴,解得,∴直線MN的解析式為y=x+;當點N落在拋物線的對稱軸上,且M在對稱軸的右側(cè),如圖所示,設(shè)對稱軸與AC交于點T,交x軸于點R,過點P作PK⊥TN,垂足為K,則KT=KR=2,∵PC=PN=2,PK=1,∴KR=,∴NR=2-,點N(1,2-),TN=2+設(shè)CM=b,則MN=b,MT=a-1,∴,解得b=4+2,∴點M(4+2,4),設(shè)直線MN的解析式為y=mx+q,∴,解得,∴直線MN的解析式為y=x+;綜上所述,直線MN的解析式為y=x+或y=x+.【點睛】本題考查了拋物線與x軸的交點,二次函數(shù)的最值,圓的基本性質(zhì),待定系數(shù)法確定一次函數(shù)的解析式,軸對稱的性質(zhì),勾股定理,熟練掌握圓的性質(zhì),拋物線的性質(zhì),靈活運用對稱的思想和勾股定理是解題的關(guān)鍵.6、(1);(2);(3)或【分析】(1)分別計算出OQ、PO和PQ的長度,比較即可得出答案;(2)先判斷點P在以O(shè)為圓心,1為半徑的圓外且點P在線段OQ垂直平分線的左側(cè),結(jié)合PO≤2,點P在以O(shè)為圓心,2為半徑的圓上或圓內(nèi),可得點P在如圖所示的線段AB上(不包含點B),過作軸,過作軸,垂足分別為再根據(jù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年合肥濱湖時光文化旅游投資有限公司招聘3人考前自測高頻考點模擬試題附答案詳解
- 安全培訓補助課件
- 涂裝前處理知識培訓課件
- 2025年湖南邵陽市農(nóng)村產(chǎn)權(quán)交易中心有限公司招聘合同制員工模擬試卷附答案詳解(突破訓練)
- 2025汾西礦業(yè)井下操作技能人員招聘300人(山西)模擬試卷及1套完整答案詳解
- 2025江西中小學教師招聘考試南昌考區(qū)模擬試卷附答案詳解(黃金題型)
- 涂料應用知識培訓課程
- 安全培訓脫臼課件
- 2025江蘇連云港市贛榆農(nóng)業(yè)發(fā)展集團有限公司及下屬子公司招聘設(shè)備工程師崗(A36)技能考前自測高頻考點模擬試題附答案詳解(模擬題)
- 安全培訓職責分工表格課件
- 物流企業(yè)安全領(lǐng)導小組及職責2025
- 昌都扶梯裝飾施工方案(3篇)
- 高盛-大中華區(qū)科技行業(yè):臺灣ODM評級調(diào)整;首次覆蓋AI交換機神達銳捷評為買入紫光評為中性;下調(diào)和碩至賣出(摘要)
- 2025至2030中國高純硫酸銅溶液行業(yè)項目調(diào)研及市場前景預測評估報告
- 醫(yī)藥物品采購流程圖解
- 全科醫(yī)師外科規(guī)培體系
- 綜合停電管理辦法
- 《建筑設(shè)備自動化》課件-第6章 換熱站與供暖系統(tǒng)的控制與管理
- 鹽酸的安全管理課件
- 2025年秋數(shù)學(新)人教版三年級上課件:第1課時 曹沖稱象的故事
- 杜邦安全四大階段
評論
0/150
提交評論