




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025年上海市虹口區(qū)市級(jí)名校高三數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)測(cè)試試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫(xiě)在試題卷和答題卡上。用2B鉛筆將試卷類(lèi)型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫(xiě)在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知雙曲線(,)的左、右頂點(diǎn)分別為,,虛軸的兩個(gè)端點(diǎn)分別為,,若四邊形的內(nèi)切圓面積為,則雙曲線焦距的最小值為()A.8 B.16 C. D.2.已知在平面直角坐標(biāo)系中,圓:與圓:交于,兩點(diǎn),若,則實(shí)數(shù)的值為()A.1 B.2 C.-1 D.-23.雙曲線x2a2A.y=±2x B.y=±3x4.在中,,分別為,的中點(diǎn),為上的任一點(diǎn),實(shí)數(shù),滿(mǎn)足,設(shè)、、、的面積分別為、、、,記(),則取到最大值時(shí),的值為()A.-1 B.1 C. D.5.的內(nèi)角的對(duì)邊分別為,若,則內(nèi)角()A. B. C. D.6.某四棱錐的三視圖如圖所示,該幾何體的體積是()A.8 B. C.4 D.7.已知函數(shù),若,則的最小值為()參考數(shù)據(jù):A. B. C. D.8.已知,,若,則實(shí)數(shù)的值是()A.-1 B.7 C.1 D.1或79.設(shè)等差數(shù)列的前n項(xiàng)和為,若,則()A. B. C.7 D.210.若,則,,,的大小關(guān)系為()A. B.C. D.11.閱讀下面的程序框圖,運(yùn)行相應(yīng)的程序,程序運(yùn)行輸出的結(jié)果是()A.1.1 B.1 C.2.9 D.2.812.在條件下,目標(biāo)函數(shù)的最大值為40,則的最小值是()A. B. C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在一個(gè)倒置的高為2的圓錐形容器中,裝有深度為的水,再放入一個(gè)半徑為1的不銹鋼制的實(shí)心半球后,半球的大圓面、水面均與容器口相平,則的值為_(kāi)___________.14.已知拋物線的焦點(diǎn)為,直線與拋物線相切于點(diǎn),是上一點(diǎn)(不與重合),若以線段為直徑的圓恰好經(jīng)過(guò),則點(diǎn)到拋物線頂點(diǎn)的距離的最小值是__________.15.已知、為正實(shí)數(shù),直線截圓所得的弦長(zhǎng)為,則的最小值為_(kāi)_________.16.已知平面向量、的夾角為,且,則的最大值是_____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在中,角、、所對(duì)的邊分別為、、,角、、的度數(shù)成等差數(shù)列,.(1)若,求的值;(2)求的最大值.18.(12分)2019年是五四運(yùn)動(dòng)100周年.五四運(yùn)動(dòng)以來(lái)的100年,是中國(guó)青年一代又一代接續(xù)奮斗、凱歌前行的100年,是中口青年用青春之我創(chuàng)造青春之中國(guó)、青春之民族的100年.為繼承和發(fā)揚(yáng)五四精神在青年節(jié)到來(lái)之際,學(xué)校組織“五四運(yùn)動(dòng)100周年”知識(shí)競(jìng)賽,競(jìng)賽的一個(gè)環(huán)節(jié)由10道題目組成,其中6道A類(lèi)題、4道B類(lèi)題,參賽者需從10道題目中隨機(jī)抽取3道作答,現(xiàn)有甲同學(xué)參加該環(huán)節(jié)的比賽.(1)求甲同學(xué)至少抽到2道B類(lèi)題的概率;(2)若甲同學(xué)答對(duì)每道A類(lèi)題的概率都是,答對(duì)每道B類(lèi)題的概率都是,且各題答對(duì)與否相互獨(dú)立.現(xiàn)已知甲同學(xué)恰好抽中2道A類(lèi)題和1道B類(lèi)題,用X表示甲同學(xué)答對(duì)題目的個(gè)數(shù),求隨機(jī)變量X的分布列和數(shù)學(xué)期望.19.(12分)已知函數(shù),.(1)討論的單調(diào)性;(2)當(dāng)時(shí),證明:.20.(12分)已知數(shù)列滿(mǎn)足:,,且對(duì)任意的都有,(Ⅰ)證明:對(duì)任意,都有;(Ⅱ)證明:對(duì)任意,都有;(Ⅲ)證明:.21.(12分)已知分別是橢圓的左、右焦點(diǎn),直線與交于兩點(diǎn),,且.(1)求的方程;(2)已知點(diǎn)是上的任意一點(diǎn),不經(jīng)過(guò)原點(diǎn)的直線與交于兩點(diǎn),直線的斜率都存在,且,求的值.22.(10分)已知函數(shù)(I)若討論的單調(diào)性;(Ⅱ)若,且對(duì)于函數(shù)的圖象上兩點(diǎn),存在,使得函數(shù)的圖象在處的切線.求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.D【解析】
根據(jù)題意畫(huà)出幾何關(guān)系,由四邊形的內(nèi)切圓面積求得半徑,結(jié)合四邊形面積關(guān)系求得與等量關(guān)系,再根據(jù)基本不等式求得的取值范圍,即可確定雙曲線焦距的最小值.【詳解】根據(jù)題意,畫(huà)出幾何關(guān)系如下圖所示:設(shè)四邊形的內(nèi)切圓半徑為,雙曲線半焦距為,則所以,四邊形的內(nèi)切圓面積為,則,解得,則,即故由基本不等式可得,即,當(dāng)且僅當(dāng)時(shí)等號(hào)成立.故焦距的最小值為.故選:D本題考查了雙曲線的定義及其性質(zhì)的簡(jiǎn)單應(yīng)用,圓錐曲線與基本不等式綜合應(yīng)用,屬于中檔題.2.D【解析】
由可得,O在AB的中垂線上,結(jié)合圓的性質(zhì)可知O在兩個(gè)圓心的連線上,從而可求.【詳解】因?yàn)?,所以O(shè)在AB的中垂線上,即O在兩個(gè)圓心的連線上,,,三點(diǎn)共線,所以,得,故選D.本題主要考查圓的性質(zhì)應(yīng)用,幾何性質(zhì)的轉(zhuǎn)化是求解的捷徑.3.A【解析】分析:根據(jù)離心率得a,c關(guān)系,進(jìn)而得a,b關(guān)系,再根據(jù)雙曲線方程求漸近線方程,得結(jié)果.詳解:∵e=因?yàn)闈u近線方程為y=±bax點(diǎn)睛:已知雙曲線方程x2a24.D【解析】
根據(jù)三角形中位線的性質(zhì),可得到的距離等于△的邊上高的一半,從而得到,由此結(jié)合基本不等式求最值,得到當(dāng)取到最大值時(shí),為的中點(diǎn),再由平行四邊形法則得出,根據(jù)平面向量基本定理可求得,從而可求得結(jié)果.【詳解】如圖所示:因?yàn)槭恰鞯闹形痪€,所以到的距離等于△的邊上高的一半,所以,由此可得,當(dāng)且僅當(dāng)時(shí),即為的中點(diǎn)時(shí),等號(hào)成立,所以,由平行四邊形法則可得,,將以上兩式相加可得,所以,又已知,根據(jù)平面向量基本定理可得,從而.故選:D本題考查了向量加法的平行四邊形法則,考查了平面向量基本定理的應(yīng)用,考查了基本不等式求最值,屬于中檔題.5.C【解析】
由正弦定理化邊為角,由三角函數(shù)恒等變換可得.【詳解】∵,由正弦定理可得,∴,三角形中,∴,∴.故選:C.本題考查正弦定理,考查兩角和的正弦公式和誘導(dǎo)公式,掌握正弦定理的邊角互化是解題關(guān)鍵.6.D【解析】
根據(jù)三視圖知,該幾何體是一條垂直于底面的側(cè)棱為2的四棱錐,畫(huà)出圖形,結(jié)合圖形求出底面積代入體積公式求它的體積.【詳解】根據(jù)三視圖知,該幾何體是側(cè)棱底面的四棱錐,如圖所示:結(jié)合圖中數(shù)據(jù)知,該四棱錐底面為對(duì)角線為2的正方形,高為PA=2,∴四棱錐的體積為.故選:D.本題考查由三視圖求幾何體體積,由三視圖正確復(fù)原幾何體是解題的關(guān)鍵,考查空間想象能力.屬于中等題.7.A【解析】
首先的單調(diào)性,由此判斷出,由求得的關(guān)系式.利用導(dǎo)數(shù)求得的最小值,由此求得的最小值.【詳解】由于函數(shù),所以在上遞減,在上遞增.由于,,令,解得,所以,且,化簡(jiǎn)得,所以,構(gòu)造函數(shù),.構(gòu)造函數(shù),,所以在區(qū)間上遞減,而,,所以存在,使.所以在上大于零,在上小于零.所以在區(qū)間上遞增,在區(qū)間上遞減.而,所以在區(qū)間上的最小值為,也即的最小值為,所以的最小值為.故選:A本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的最值,考查分段函數(shù)的圖像與性質(zhì),考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于難題.8.C【解析】
根據(jù)平面向量數(shù)量積的坐標(biāo)運(yùn)算,化簡(jiǎn)即可求得的值.【詳解】由平面向量數(shù)量積的坐標(biāo)運(yùn)算,代入化簡(jiǎn)可得.∴解得.故選:C.本題考查了平面向量數(shù)量積的坐標(biāo)運(yùn)算,屬于基礎(chǔ)題.9.B【解析】
根據(jù)等差數(shù)列的性質(zhì)并結(jié)合已知可求出,再利用等差數(shù)列性質(zhì)可得,即可求出結(jié)果.【詳解】因?yàn)?,所以,所以,所以,故選:B本題主要考查等差數(shù)列的性質(zhì)及前項(xiàng)和公式,屬于基礎(chǔ)題.10.D【解析】因?yàn)?,所以,因?yàn)?,,所?.綜上;故選D.11.C【解析】
根據(jù)程序框圖的模擬過(guò)程,寫(xiě)出每執(zhí)行一次的運(yùn)行結(jié)果,屬于基礎(chǔ)題.【詳解】初始值,第一次循環(huán):,;第二次循環(huán):,;第三次循環(huán):,;第四次循環(huán):,;第五次循環(huán):,;第六次循環(huán):,;第七次循環(huán):,;第九次循環(huán):,;第十次循環(huán):,;所以輸出.故選:C本題考查了循環(huán)結(jié)構(gòu)的程序框圖的讀取以及運(yùn)行結(jié)果,屬于基礎(chǔ)題.12.B【解析】
畫(huà)出可行域和目標(biāo)函數(shù),根據(jù)平移得到最值點(diǎn),再利用均值不等式得到答案.【詳解】如圖所示,畫(huà)出可行域和目標(biāo)函數(shù),根據(jù)圖像知:當(dāng)時(shí),有最大值為,即,故..當(dāng),即時(shí)等號(hào)成立.故選:.本題考查了線性規(guī)劃中根據(jù)最值求參數(shù),均值不等式,意在考查學(xué)生的綜合應(yīng)用能力.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
由已知可得到圓錐的底面半徑,再由圓錐的體積等于半球的體積與水的體積之和即可建立方程.【詳解】設(shè)圓錐的底面半徑為,體積為,半球的體積為,水(小圓錐)的體積為,如圖則,所以,,解得,所以,,,由,得,解得.故答案為:本題考查圓錐的體積、球的體積的計(jì)算,考查學(xué)生空間想象能力與計(jì)算能力,是一道中檔題.14.【解析】
根據(jù)拋物線,不妨設(shè),取,通過(guò)求導(dǎo)得,,再根據(jù)以線段為直徑的圓恰好經(jīng)過(guò),則,得到,兩式聯(lián)立,求得點(diǎn)N的軌跡,再求解最值.【詳解】因?yàn)閽佄锞€,不妨設(shè),取,所以,即,所以,因?yàn)橐跃€段為直徑的圓恰好經(jīng)過(guò),所以,所以,所以,由,解得,所以點(diǎn)在直線上,所以當(dāng)時(shí),最小,最小值為.故答案為:2本題主要考查直線與拋物線的位置關(guān)系直線的交軌問(wèn)題,還考查了運(yùn)算求解的能力,屬于中檔題.15.【解析】
先根據(jù)弦長(zhǎng),半徑,弦心距之間的關(guān)系列式求得,代入整理得,利用基本不等式求得最值.【詳解】解:圓的圓心為,則到直線的距離為,由直線截圓所得的弦長(zhǎng)為可得,整理得,解得或(舍去),令,又,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,則.故答案為:.本題考查直線和圓的位置關(guān)系,考核基本不等式求最值,關(guān)鍵是對(duì)目標(biāo)式進(jìn)行變形,變成能用基本不等式求最值的形式,也可用換元法進(jìn)行變形,是中檔題.16.【解析】
建立平面直角坐標(biāo)系,設(shè),可得,進(jìn)而可得出,,由此將轉(zhuǎn)化為以為自變量的三角函數(shù),利用三角恒等變換思想以及正弦函數(shù)的有界性可得出結(jié)果.【詳解】根據(jù)題意建立平面直角坐標(biāo)系如圖所示,設(shè),,以、為鄰邊作平行四邊形,則,設(shè),則,,且,在中,由正弦定理,得,即,在中,由正弦定理,得,即.,,則,當(dāng)時(shí),取最大值.故答案為:.本題考查了向量的數(shù)量積最值的計(jì)算,將問(wèn)題轉(zhuǎn)化為角的三角函數(shù)的最值問(wèn)題是解答的關(guān)鍵,考查計(jì)算能力,屬于難題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1);(2).【解析】
(1)由角的度數(shù)成等差數(shù)列,得.又.由正弦定理,得,即.由余弦定理,得,即,解得.(2)由正弦定理,得.由,得.所以當(dāng),即時(shí),.【方法點(diǎn)睛】解三角形問(wèn)題基本思想方法:從條件出發(fā),利用正弦定理(或余弦定理)進(jìn)行代換、轉(zhuǎn)化.逐步化為純粹的邊與邊或角與角的關(guān)系,即考慮如下兩條途徑:①統(tǒng)一成角進(jìn)行判斷,常用正弦定理及三角恒等變換;②統(tǒng)一成邊進(jìn)行判斷,常用余弦定理、面積公式等.18.(1);(2)分布列見(jiàn)解析,期望為.【解析】
(1)甲同學(xué)至少抽到2道B類(lèi)題包含兩個(gè)事件:一個(gè)抽到2道B類(lèi)題,一個(gè)是抽到3個(gè)B類(lèi)題,計(jì)算出抽法數(shù)后可求得概率;(2)的所有可能值分別為,依次計(jì)算概率得分布列,再由期望公式計(jì)算期望.【詳解】(1)令“甲同學(xué)至少抽到2道B類(lèi)題”為事件,則抽到2道類(lèi)題有種取法,抽到3道類(lèi)題有種取法,∴;(2)的所有可能值分別為,,,,,∴的分布列為:0123本題考查古典概型,考查隨機(jī)變量的概率分布列和數(shù)學(xué)期望.解題關(guān)鍵是掌握相互獨(dú)立事件同時(shí)發(fā)生的概率計(jì)算公式.19.(1)見(jiàn)解析;(2)見(jiàn)解析【解析】
(1)求導(dǎo)得,分類(lèi)討論和,利用導(dǎo)數(shù)研究含參數(shù)的函數(shù)單調(diào)性;(2)根據(jù)(1)中求得的的單調(diào)性,得出在處取得最大值為,構(gòu)造函數(shù),利用導(dǎo)數(shù),推出,即可證明不等式.【詳解】解:(1)由于,得,當(dāng)時(shí),,此時(shí)在上遞增;當(dāng)時(shí),由,解得,若,則,若,,此時(shí)在遞增,在上遞減.(2)由(1)知在處取得最大值為:,設(shè),則,令,則,則在單調(diào)遞減,∴,即,則在單調(diào)遞減∴,∴,∴.本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和最值,涉及分類(lèi)討論和構(gòu)造新函數(shù),通過(guò)導(dǎo)數(shù)證明不等式,考查轉(zhuǎn)化思想和計(jì)算能力.20.(1)見(jiàn)解析(2)見(jiàn)解析(3)見(jiàn)解析【解析】分析:(1)用反證法證明,注意應(yīng)用題中所給的條件,有效利用,再者就是注意應(yīng)用反證法證題的步驟;(2)將式子進(jìn)行相應(yīng)的代換,結(jié)合不等式的性質(zhì)證得結(jié)果;(3)結(jié)合題中的條件,應(yīng)用反證法求得結(jié)果.詳解:證明:(Ⅰ)證明:采用反證法,若不成立,則若,則,與任意的都有矛盾;若,則有,則與任意的都有矛盾;故對(duì)任意,都有成立;(Ⅱ)由得,則,由(Ⅰ)知,,即對(duì)任意,都有;.(Ⅲ)由(Ⅱ)得:,由(Ⅰ)知,,∴,∴,即,若,則,取時(shí),有,與矛盾.則.得證.點(diǎn)睛:該題考查的是有關(guān)命題的證明問(wèn)題,在證題的過(guò)程中,注意對(duì)題中的條件的等價(jià)轉(zhuǎn)化,注意對(duì)式子的等價(jià)變形,以及證題的思路,要掌握證明問(wèn)題的方法,尤其是反證法的證題思路以及證明步驟.21.(1
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 高速飆車(chē)考試題目及答案
- 2025年陜西省結(jié)核病防治院(陜西省第五人民醫(yī)院)招聘(10人)模擬試卷及答案詳解(必刷)
- 商業(yè)用電能效管理協(xié)議
- 高級(jí)手工考試題及答案大全
- 新疆初中入團(tuán)考試試題及答案
- 礦山入職考試試題及答案
- 雙慶中學(xué)考試試題及答案
- 企業(yè)部門(mén)日常任務(wù)管理系統(tǒng)
- 爺爺?shù)臒煻酚洃浿械奈锲穼?xiě)物8篇范文
- 2025年新生兒科常見(jiàn)疾病診斷試題答案及解析
- Unit2WorkingthelandIntegratedskills課件-高中英語(yǔ)譯林版(2020)選修第一冊(cè)
- 2025年廣西壯族自治區(qū)省直機(jī)關(guān)公開(kāi)遴選公務(wù)員筆試題及答案解析(A類(lèi))
- 2025年探傷工(二級(jí))實(shí)操技能考試題庫(kù)(附答案)
- 高校財(cái)會(huì)監(jiān)督與預(yù)算績(jī)效管理協(xié)同效能優(yōu)化研究
- 輸液室理論知識(shí)培訓(xùn)課件
- 《金融風(fēng)險(xiǎn)管理》(第四版)習(xí)題參考答案
- 生物技術(shù)與醫(yī)藥前沿發(fā)展
- 家長(zhǎng)學(xué)校綜合測(cè)試題庫(kù)與評(píng)分標(biāo)準(zhǔn)
- 加油站計(jì)量業(yè)務(wù)知識(shí)培訓(xùn)課件
- 公安矛盾糾紛化解課件
評(píng)論
0/150
提交評(píng)論