重難點(diǎn)解析人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》定向練習(xí)試題(含答案解析)_第1頁
重難點(diǎn)解析人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》定向練習(xí)試題(含答案解析)_第2頁
重難點(diǎn)解析人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》定向練習(xí)試題(含答案解析)_第3頁
重難點(diǎn)解析人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》定向練習(xí)試題(含答案解析)_第4頁
重難點(diǎn)解析人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》定向練習(xí)試題(含答案解析)_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》定向練習(xí)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、如圖,在和中,,,,則(

)A.30° B.40° C.50° D.60°2、如圖,OB平分∠AOC,D、E、F分別是射線OA、射線OB、射線OC上的點(diǎn),D、E、F與O點(diǎn)都不重合,連接ED、EF若添加下列條件中的某一個(gè).就能使DOE△FOE,你認(rèn)為要添加的那個(gè)條件是(

)A.OD=OE B.OE=OF C.∠ODE=∠OED D.∠ODE=∠OFE3、下列說法正確的是(

)①近似數(shù)精確到十分位;②在,,,中,最小的是;③如圖所示,在數(shù)軸上點(diǎn)所表示的數(shù)為;④用反證法證明命題“一個(gè)三角形最多有一個(gè)鈍角”時(shí),首先應(yīng)假設(shè)“這個(gè)三角形中有兩個(gè)鈍角”;⑤如圖,在內(nèi)一點(diǎn)到這三條邊的距離相等,則點(diǎn)是三個(gè)角平分線的交點(diǎn).A.1 B.2 C.3 D.44、如圖,在中,是邊上的高,平分,交于點(diǎn),若,,則的面積等于()A.36 B.48 C.60 D.725、如圖,已知圖中的兩個(gè)三角形全等,則∠α的度數(shù)是()A.72° B.60° C.58° D.50°第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、已知:如圖,是上一點(diǎn),平分,,若,則________.(用的代數(shù)式表示)2、在△ABC中,AB=5,BC邊上的中線AD=4,則AC的長(zhǎng)m的取值范圍是_______.3、如圖,△ABC中,∠ACB=90°,AC=12,BC=16.點(diǎn)P從A點(diǎn)出發(fā)沿A—C—B路徑向終點(diǎn)運(yùn)動(dòng),終點(diǎn)為B點(diǎn);點(diǎn)Q從B點(diǎn)出發(fā)沿B—C—A路徑向終點(diǎn)運(yùn)動(dòng),終點(diǎn)為A點(diǎn).點(diǎn)P和Q分別以2和6的運(yùn)動(dòng)速度同時(shí)開始運(yùn)動(dòng),兩點(diǎn)都要到相應(yīng)的終點(diǎn)時(shí)才能停止運(yùn)動(dòng),在某時(shí)刻,分別過P和Q作PE⊥l于E,QF⊥l于F.若要△PEC與△QFC全等,則點(diǎn)P的運(yùn)動(dòng)時(shí)間為_______.4、在ABC中,AB=AC,點(diǎn)D在BC上(不與點(diǎn)B,C重合).只需添加一個(gè)條件即可證明ABD≌ACD,這個(gè)條件可以是________(寫出一個(gè)即可)5、如圖所示的網(wǎng)格是正方形網(wǎng)格,點(diǎn)A,B,C,D均落在格點(diǎn)上,則∠BAD+∠ADC=_____.三、解答題(5小題,每小題10分,共計(jì)50分)1、如圖,在四邊形ABCD中,AB=AD,AC平分∠BCD,AE⊥BC于E,AF⊥CD交CD的延長(zhǎng)線于F.(1)求證:△ABE≌△ADF;(2)若BC=8cm,DF=3cm,求CD的長(zhǎng).2、如圖,點(diǎn)B、C、D在同一直線上,△ABC、△ADE是等邊三角形,CE=5,CD=2(1)證明:△ABD≌△ACE;(2)求∠ECD的度數(shù);(3)求AC的長(zhǎng).3、如圖,已知AB=AD,AC=AE,∠BAE=∠DAC.求證:∠C=∠E.4、如圖,是邊長(zhǎng)為2的等邊三角形,是頂角為120°的等腰三角形,以點(diǎn)為頂點(diǎn)作,點(diǎn)、分別在、上.(1)如圖①,當(dāng)時(shí),則的周長(zhǎng)為______;(2)如圖②,求證:.5、如圖,已知在中,,,求證:.-參考答案-一、單選題1、D【解析】【分析】由題意可證,有,由三角形內(nèi)角和定理得,計(jì)算求解即可.【詳解】解:∵∴△ABC和△ADC均為直角三角形在和中∵∴∴∵∴故選D.【考點(diǎn)】本題考查了三角形全等,三角形的內(nèi)角和定理.解題的關(guān)鍵在于找出角度的數(shù)量關(guān)系.2、D【解析】【分析】根據(jù)OB平分∠AOC得∠AOB=∠BOC,又因?yàn)镺E是公共邊,根據(jù)全等三角形的判斷即可得出結(jié)果.【詳解】解:∵OB平分∠AOC∴∠AOB=∠BOC當(dāng)△DOE≌△FOE時(shí),可得以下結(jié)論:OD=OF,DE=EF,∠ODE=∠OFE,∠OED=∠OEF.A答案中OD與OE不是△DOE≌△FOE的對(duì)應(yīng)邊,A不正確;B答案中OE與OF不是△DOE≌△FOE的對(duì)應(yīng)邊,B不正確;C答案中,∠ODE與∠OED不是△DOE≌△FOE的對(duì)應(yīng)角,C不正確;D答案中,若∠ODE=∠OFE,在△DOE和△FOE中,∴△DOE≌△FOE(AAS)∴D答案正確.故選:D.【考點(diǎn)】本題考查三角形全等的判斷,理解全等圖形中邊和角的對(duì)應(yīng)關(guān)系是解題的關(guān)鍵.3、B【解析】【分析】根據(jù)近似數(shù)的精確度定義,可判斷①;根據(jù)實(shí)數(shù)的大小比較,可判斷②;根據(jù)點(diǎn)在數(shù)軸上所對(duì)應(yīng)的實(shí)數(shù),即可判斷③;根據(jù)反證法的概念,可判斷④;根據(jù)角平分線的性質(zhì),可判斷⑤.【詳解】①近似數(shù)精確到十位,故本小題錯(cuò)誤;②,,,,最小的是,故本小題正確;③在數(shù)軸上點(diǎn)所表示的數(shù)為,故本小題錯(cuò)誤;④用反證法證明命題“一個(gè)三角形最多有一個(gè)鈍角”時(shí),首先應(yīng)假設(shè)“這個(gè)三角形中有兩個(gè)鈍角或三個(gè)鈍角”,故本小題錯(cuò)誤;⑤在內(nèi)一點(diǎn)到這三條邊的距離相等,則點(diǎn)是三個(gè)角平分線的交點(diǎn),故本小題正確.故選B【考點(diǎn)】本題主要考查近似數(shù)的精確度定義,實(shí)數(shù)的大小比較,點(diǎn)在數(shù)軸上所對(duì)應(yīng)的實(shí)數(shù),反證法的概念,角平分線的性質(zhì),熟練掌握上述知識(shí)點(diǎn),是解題的關(guān)鍵.4、B【解析】【分析】作交于點(diǎn),然后根據(jù)角平分線的性質(zhì),可以得到,再根據(jù)三角形的面積公式,即可求得的面積.【詳解】解:作交于點(diǎn),∵是邊上的高,∴,∵平分,∴∵,,∴.故選:B.【考點(diǎn)】本題考查了三角形的面積和角平分線性質(zhì).理解和掌握角的平分線的性質(zhì)定理是解題的關(guān)鍵.5、D【解析】【分析】根據(jù)∠α是a、c邊的夾角,50°的角是a、c邊的夾角,然后根據(jù)兩個(gè)三角形全等寫出即可.【詳解】解:∵∠α是a、c邊的夾角,50°的角是a、c邊的夾角,又∵兩個(gè)三角形全等,∴∠α的度數(shù)是50°.故選:D.【考點(diǎn)】本題考查了全等三角形的性質(zhì),熟練掌握全等三角形的性質(zhì)是解答本題的關(guān)鍵.全等三角形的對(duì)應(yīng)角相等,對(duì)應(yīng)邊相等.對(duì)應(yīng)邊的對(duì)角是對(duì)應(yīng)角,對(duì)應(yīng)角的對(duì)邊是對(duì)應(yīng)邊.二、填空題1、【解析】【分析】過點(diǎn)D分別作DE⊥AB,DF⊥AC,根據(jù)角平分線的性質(zhì)得到DE=DF,根據(jù)表示出DE的長(zhǎng)度,進(jìn)而得到DF的長(zhǎng)度,然后即可求出的值.【詳解】如圖,過點(diǎn)D分別作DE⊥AB,DF⊥AC,∵平分,∴DE=DF,∵,∴,∴∴,故答案為:.【考點(diǎn)】此題考查了角平分線的性質(zhì)定理,三角形面積的表示方法,解題的關(guān)鍵是根據(jù)題意正確作出輔助線.2、3<m<13【解析】【分析】延長(zhǎng)AD至E,使DE=AD=4,連接CE,利用SAS證明△ABD≌△ECD,可得CE=AB,再根據(jù)三角形的三邊的關(guān)系即可解決問題.【詳解】解:如圖,延長(zhǎng)AD至E,使DE=AD=4,連接CE,∵AD是BC邊上的中線,∴BD=CD,在△ADB和△CDE中,,∴△ABD≌△ECD(SAS),∴CE=AB,在△ACE中,AE-CE<AC<AE+CE,∵CE=AB=5,AE=8,∴8-5<AC<8+5,∴3<AC<13,∴3<m<13.故答案為:3<m<13.【考點(diǎn)】此題考查了全等三角形的性質(zhì)與判定,三角形的三邊的關(guān)系,解題的關(guān)鍵是利用已知條件構(gòu)造全等三角形,然后利用三角形的三邊的關(guān)系解決問題.3、1或3.5或12【解析】【分析】分4種情況求解:①P在AC上,Q在BC上,推出方程6-t=8-3t,②P、Q都在AC上,此時(shí)P、Q重合,得到方程6-t=3t-8,Q在AC上,③P在BC上,Q在AC時(shí),此時(shí)不存在,④當(dāng)Q到A點(diǎn),與A重合,P在BC上時(shí).【詳解】解:∵△PEC與△QFC全等,∴斜邊CP=CQ,有四種情況:①P在AC上,Q在BC上,,CP=12-2t,CQ=16-6t,∴12-2t=16-6t,∴t=1;②P、Q都在AC上,此時(shí)P、Q重合,∴CP=12-2t=6t-16,∴t=3.5;③P到BC上,Q在AC時(shí),此時(shí)不存在;理由是:28÷6=,12÷2=6,即Q在AC上運(yùn)動(dòng)時(shí),P點(diǎn)也在AC上運(yùn)動(dòng);④當(dāng)Q到A點(diǎn)(和A重合),P在BC上時(shí),∵CP=CQ=AC=12.CP=12-2t,∴2t-12=12,∴t=12符合題意;答:點(diǎn)P運(yùn)動(dòng)1或3.5或12時(shí),△PEC與△QFC全等.【考點(diǎn)】本題主要考查對(duì)全等三角形的性質(zhì),解一元一次方程等知識(shí)點(diǎn)的理解和掌握,能根據(jù)題意得出方程是解此題的關(guān)鍵.4、∠BAD=∠CAD(或BD=CD)【解析】【分析】證明ABD≌ACD,已經(jīng)具備根據(jù)選擇的判定三角形全等的判定方法可得答案.【詳解】解:要使則可以添加:∠BAD=∠CAD,此時(shí)利用邊角邊判定:或可以添加:此時(shí)利用邊邊邊判定:故答案為:∠BAD=∠CAD或()【考點(diǎn)】本題考查的是三角形全等的判定,屬開放性題,掌握三角形全等的判定是解題的關(guān)鍵.5、或度【解析】【分析】證明△DCE≌△ABD(SAS),得∠CDE=∠DAB,根據(jù)同角的余角相等和三角形的內(nèi)角和可得結(jié)論.【詳解】解:如圖,設(shè)AB與CD相交于點(diǎn)F,在△DCE和△ABD中,∵,∴△DCE≌△ABD(SAS),∴∠CDE=∠DAB,∵∠CDE+∠ADC=∠ADC+∠DAB=90°,∴∠AFD=90°,∴∠BAC+∠ACD=90°,故答案為:90度.【考點(diǎn)】本題網(wǎng)格型問題,考查了三角形全等的性質(zhì)和判定及直角三角形各角的關(guān)系,本題構(gòu)建全等三角形是關(guān)鍵.三、解答題1、(1)證明見解析(2)2cm【解析】【分析】(1)由角平分線的性質(zhì)可知,證明,進(jìn)而結(jié)論得證;(2)由,可得,證明,則,根據(jù),計(jì)算求解即可.(1)證明:∵AC平分∠BCD,AE⊥BC,AF⊥CD,∴,在和中,∵,∴,∴.(2)解:∵,∴,在和中,∵,∴,∴,∴,∴的長(zhǎng)為2cm.【考點(diǎn)】本題考查了角平分線的性質(zhì),全等三角形的判定與性質(zhì)等知識(shí).解題的關(guān)鍵在于找出三角形全等的條件.2、(1)見解析(2)60°(3)3【解析】【分析】(1)根據(jù)等邊三角形的性質(zhì)利用SAS證明;(2)利用全等三角形的性質(zhì)得到∠B=∠ACE=60°,計(jì)算即可得到答案;(3)利用全等的性質(zhì)得到BD的長(zhǎng),再由等邊三角形的性質(zhì),即可得到AC的長(zhǎng).(1)證明:∵△ABC和△ADE是等邊三角形,∴AD=AE,AB=AC,∠BAC=∠DAE=∠ACB=60°,∴∠BAD=∠CAE,∴△ABD≌△ACE;(2)解:∵△ABD≌△ACE,∴∠B=∠ACE=60°,∴∠DCE=180°-∠ACB-∠ACE=60°;(3)解:∵△ABD≌△ACE,∴BD=CE=5,∴BC=BD-CD=5-2=3,∴AC=BC=3.【考點(diǎn)】此題考查了全等三角形的判定及性質(zhì),熟記全等三角形的幾種判定定理:SSS,SAS,ASA,AAS,HL,并熟練應(yīng)用是解題的關(guān)鍵.3、見解析.【解析】【分析】由∠BAE=∠DAC可得到∠BAC=∠DAE,再根據(jù)“SAS”可判斷△ABC≌△ADE,根據(jù)全等的性質(zhì)即可得到∠C=∠E.【詳解】∵∠BAE=∠DAC,∴∠BAE﹣∠CAE=∠DAC﹣∠CAE,即∠BAC=∠DAE,在△ABC和△ADE中,∵∴△ABC≌△ADE(SAS),∴∠C=∠E.【考點(diǎn)】本題考查了全等三角形的判定與性質(zhì):判斷三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的對(duì)應(yīng)角相等,對(duì)應(yīng)邊相等.4、(1)4;(2)見解析【解析】【分析】(1)首先證明△BDM≌△CDN,進(jìn)而得出△DMN是等邊三角形,∠BDM=∠CDN=30°,NC=BM=DM=MN,即可解決問題;(2)延長(zhǎng)至點(diǎn),使得,連接,首先證明,再證明,得出,進(jìn)而得出結(jié)果即可.【詳解】解:(1)∵是等邊三角形,,,∴是等邊三角形,,則,∵是頂角的等腰三角形,,,在和中,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論