(完整版)蘇教七年級下冊期末解答題壓軸數(shù)學(xué)重點中學(xué)真題經(jīng)典答案_第1頁
(完整版)蘇教七年級下冊期末解答題壓軸數(shù)學(xué)重點中學(xué)真題經(jīng)典答案_第2頁
(完整版)蘇教七年級下冊期末解答題壓軸數(shù)學(xué)重點中學(xué)真題經(jīng)典答案_第3頁
(完整版)蘇教七年級下冊期末解答題壓軸數(shù)學(xué)重點中學(xué)真題經(jīng)典答案_第4頁
(完整版)蘇教七年級下冊期末解答題壓軸數(shù)學(xué)重點中學(xué)真題經(jīng)典答案_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

(完整版)蘇教七年級下冊期末解答題壓軸數(shù)學(xué)重點中學(xué)真題經(jīng)典答案一、解答題1.如圖,直線,、是、上的兩點,直線與、分別交于點、,點是直線上的一個動點(不與點、重合),連接、.(1)當(dāng)點與點、在一直線上時,,,則_____.(2)若點與點、不在一直線上,試探索、、之間的關(guān)系,并證明你的結(jié)論.2.(1)如圖1,∠BAD的平分線AE與∠BCD的平分線CE交于點E,AB∥CD,∠ADC=50°,∠ABC=40°,求∠AEC的度數(shù);(2)如圖2,∠BAD的平分線AE與∠BCD的平分線CE交于點E,∠ADC=α°,∠ABC=β°,求∠AEC的度數(shù);(3)如圖3,PQ⊥MN于點O,點A是平面內(nèi)一點,AB、AC交MN于B、C兩點,AD平分∠BAC交PQ于點D,請問的值是否發(fā)生變化?若不變,求出其值;若改變,請說明理由.3.如圖,已知直線a∥b,∠ABC=100°,BD平分∠ABC交直線a于點D,線段EF在線段AB的左側(cè),線段EF沿射線AD的方向平移,在平移的過程中BD所在的直線與EF所在的直線交于點P.問∠1的度數(shù)與∠EPB的度數(shù)又怎樣的關(guān)系?(特殊化)(1)當(dāng)∠1=40°,交點P在直線a、直線b之間,求∠EPB的度數(shù);(2)當(dāng)∠1=70°,求∠EPB的度數(shù);(一般化)(3)當(dāng)∠1=n°,求∠EPB的度數(shù)(直接用含n的代數(shù)式表示).4.模型與應(yīng)用.(模型)(1)如圖①,已知AB∥CD,求證∠1+∠MEN+∠2=360°.(應(yīng)用)(2)如圖②,已知AB∥CD,則∠1+∠2+∠3+∠4+∠5+∠6的度數(shù)為.如圖③,已知AB∥CD,則∠1+∠2+∠3+∠4+∠5+∠6+…+∠n的度數(shù)為.(3)如圖④,已知AB∥CD,∠AM1M2的角平分線M1O與∠CMnMn-1的角平分線MnO交于點O,若∠M1OMn=m°.在(2)的基礎(chǔ)上,求∠2+∠3+∠4+∠5+∠6+……+∠n-1的度數(shù).(用含m、n的代數(shù)式表示)5.直線MN與直線PQ垂直相交于O,點A在射線OP上運動,點B在射線OM上運動,A、B不與點O重合,如圖1,已知AC、BC分別是∠BAP和∠ABM角的平分線,(1)點A、B在運動的過程中,∠ACB的大小是否發(fā)生變化?若發(fā)生變化,請說明理由;若不發(fā)生變化,試求出∠ACB的大小.(2)如圖2,將△ABC沿直線AB折疊,若點C落在直線PQ上,則∠ABO=________,如圖3,將△ABC沿直線AB折疊,若點C落在直線MN上,則∠ABO=________(3)如圖4,延長BA至G,已知∠BAO、∠OAG的角平分線與∠BOQ的角平分線及其反向延長線交于E、F,則∠EAF=;在△AEF中,如果有一個角是另一個角的倍,求∠ABO的度數(shù).6.閱讀材料:如圖1,點是直線上一點,上方的四邊形中,,延長,,探究與的數(shù)量關(guān)系,并證明.小白的想法是:“作(如圖2),通過推理可以得到,從而得出結(jié)論”.請按照小白的想法完成解答:拓展延伸:保留原題條件不變,平分,反向延長,交的平分線于點(如圖3),設(shè),請直接寫出的度數(shù)(用含的式子表示).7.已知△ABC的面積是60,請完成下列問題:(1)如圖1,若AD是△ABC的BC邊上的中線,則△ABD的面積△ACD的面積.(填“>”“<”或“=”)(2)如圖2,若CD、BE分別是△ABC的AB、AC邊上的中線,求四邊形ADOE的面積可以用如下方法:連接AO,由AD=DB得:S△ADO=S△BDO,同理:S△CEO=S△AEO,設(shè)S△ADO=x,S△CEO=y(tǒng),則S△BDO=x,S△AEO=y(tǒng)由題意得:S△ABE=S△ABC=30,S△ADC=S△ABC=30,可列方程組為:,解得,通過解這個方程組可得四邊形ADOE的面積為.(3)如圖3,AD:DB=1:3,CE:AE=1:2,請你計算四邊形ADOE的面積,并說明理由.8.已知:如圖1直線、被直線所截,.(1)求證:;(2)如圖2,點E在,之間的直線上,P、Q分別在直線、上,連接、,平分,平分,則和之間有什么數(shù)量關(guān)系,請直接寫出你的結(jié)論;(3)如圖3,在(2)的條件下,過P點作交于點H,連接,若平分,,求的度數(shù).9.(問題情境)蘇科版義務(wù)教育教科書數(shù)學(xué)七下第42頁有這樣的一個問題:(1)探究1:如圖1,在中,P是與的平分線和的交點,通過分析發(fā)現(xiàn),理由如下:∵和分別是和的角平分線,∴,.∴.又∵在中,,∴∴(2)探究2:如圖2中,H是外角與外角的平分線和的交點,若,則______.若,則與有怎樣的關(guān)系?請說明理由.(3)探究3:如圖3中,在中,P是與的平分線和的交點,過點P作,交于點D.外角的平分線與的延長線交于點E,則根據(jù)探究1的結(jié)論,下列角中與相等的角是______;A.B.C.(4)探究4:如圖4中,H是外角與外角的平分線和的交點,在探究3條件的基礎(chǔ)上,①試判斷與的位置關(guān)系,并說明理由;②在中,存在一個內(nèi)角等于的3倍,則的度數(shù)為______10.模型規(guī)律:如圖1,延長交于點D,則.因為凹四邊形形似箭頭,其四角具有“”這個規(guī)律,所以我們把這個模型叫做“箭頭四角形”.模型應(yīng)用(1)直接應(yīng)用:①如圖2,,則__________;②如圖3,__________;(2)拓展應(yīng)用:①如圖4,、的2等分線(即角平分線)、交于點,已知,,則__________;②如圖5,、分別為、的10等分線.它們的交點從上到下依次為、、、…、.已知,,則__________;③如圖6,、的角平分線、交于點D,已知,則__________;④如圖7,、的角平分線、交于點D,則、、之同的數(shù)量關(guān)系為__________.【參考答案】一、解答題1.(1)120°;(2)∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,證明見詳解.【分析】(1)根據(jù)題意,當(dāng)點與點、在一直線上時,作出圖形,由AB∥CD,∠FHP=60°,可以推出解析:(1)120°;(2)∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,證明見詳解.【分析】(1)根據(jù)題意,當(dāng)點與點、在一直線上時,作出圖形,由AB∥CD,∠FHP=60°,可以推出=60°,計算∠PFD即可;(2)根據(jù)點P是動點,分三種情況討論:①當(dāng)點P在AB與CD之間時;②當(dāng)點P在AB上方時;③當(dāng)點P在CD下方時,分別求出∠AEP、∠EPF、∠CFP之間的關(guān)系即可.【詳解】(1)當(dāng)點與點、在一直線上時,作圖如下,∵AB∥CD,∠FHP=60°,,∴=∠FHP=60°,∴∠EFD=180°-∠GEP=180°-60°=120°,∴∠PFD=120°,故答案為:120°;(2)滿足關(guān)系式為∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP.證明:根據(jù)點P是動點,分三種情況討論:①當(dāng)點P在AB與CD之間時,過點P作PQ∥AB,如下圖,∵AB∥CD,∴PQ∥AB∥CD,∴∠AEP=∠EPQ,∠CFP=∠FPQ,∴∠EPF=∠EPQ+∠FPQ=∠AEP+∠CFP,即∠EPF=∠AEP+∠CFP;②當(dāng)點P在AB上方時,如下圖所示,∵∠AEP=∠EPF+∠EQP,∵AB∥CD,∴∠CFP=∠EQP,∴∠AEP=∠EPF+∠CFP;③當(dāng)點P在CD下方時,∵AB∥CD,∴∠AEP=∠EQF,∴∠EQF=∠EPF+∠CFP,∴∠AEP=∠EPF+∠CFP,綜上所述,∠AEP、∠EPF、∠CFP之間滿足的關(guān)系式為:∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,故答案為:∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP.【點睛】本題考查了平行線的性質(zhì),外角的性質(zhì),掌握平行線的性質(zhì)是解題的關(guān)鍵,注意分情況討論問題.2.(1)∠E=45°;(2)∠E=;(3)不變化,【分析】(1)由三角形內(nèi)角和定理,可得∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,由角平分線的性質(zhì),可得∠ECD=∠ECB=∠解析:(1)∠E=45°;(2)∠E=;(3)不變化,【分析】(1)由三角形內(nèi)角和定理,可得∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,由角平分線的性質(zhì),可得∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,則可得∠E=(∠D+∠B),繼而求得答案;(2)首先延長BC交AD于點F,由三角形外角的性質(zhì),可得∠BCD=∠B+∠BAD+∠D,又由角平分線的性質(zhì),即可求得答案.(3)由三角形內(nèi)角和定理,可得,利用角平分線的性質(zhì)與三角形的外角的性質(zhì)可得答案.【詳解】解:(1)∵CE平分∠BCD,AE平分∠BAD∴∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,∵∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,∴∠D+∠ECD+∠B+∠EAB=∠E+∠EAD+∠E+∠ECB∴∠D+∠B=2∠E,∴∠E=(∠D+∠B),∵∠ADC=50°,∠ABC=40°,∴∠AEC=×(50°+40°)=45°;(2)延長BC交AD于點F,∵∠BFD=∠B+∠BAD,∴∠BCD=∠BFD+∠D=∠B+∠BAD+∠D,∵CE平分∠BCD,AE平分∠BAD∴∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,∵∠E+∠ECB=∠B+∠EAB,∴∠E=∠B+∠EAB-∠ECB=∠B+∠BAE-∠BCD=∠B+∠BAE-(∠B+∠BAD+∠D)=(∠B-∠D),∠ADC=α°,∠ABC=β°,即∠AEC=(3)的值不發(fā)生變化,理由如下:如圖,記與交于,與交于,①,②,①-②得:AD平分∠BAC,【點睛】此題考查了三角形內(nèi)角和定理、三角形外角的性質(zhì)以及角平分線的定義.此題難度較大,注意掌握整體思想與數(shù)形結(jié)合思想的應(yīng)用.3.(1)∠EPB=170°;(2)①當(dāng)交點P在直線b的下方時:∠EPB=20°,②當(dāng)交點P在直線a,b之間時:∠EPB=160°,③當(dāng)交點P在直線a的上方時:∠EPB=∠1﹣50°=20°;(3)①當(dāng)解析:(1)∠EPB=170°;(2)①當(dāng)交點P在直線b的下方時:∠EPB=20°,②當(dāng)交點P在直線a,b之間時:∠EPB=160°,③當(dāng)交點P在直線a的上方時:∠EPB=∠1﹣50°=20°;(3)①當(dāng)交點P在直線a,b之間時:∠EPB=180°﹣|n°﹣50°|;②當(dāng)交點P在直線a上方或直線b下方時:∠EPB=|n°﹣50°|.【分析】(1)利用外角和角平分線的性質(zhì)直接可求解;(2)分三種情況討論:①當(dāng)交點P在直線b的下方時;②當(dāng)交點P在直線a,b之間時;③當(dāng)交點P在直線a的上方時;分別畫出圖形求解;(3)結(jié)合(2)的探究,分兩種情況得到結(jié)論:①當(dāng)交點P在直線a,b之間時;②當(dāng)交點P在直線a上方或直線b下方時;【詳解】解:(1)∵BD平分∠ABC,∴∠ABD=∠DBC=∠ABC=50°,∵∠EPB是△PFB的外角,∴∠EPB=∠PFB+∠PBF=∠1+(180°﹣50°)=170°;(2)①當(dāng)交點P在直線b的下方時:∠EPB=∠1﹣50°=20°;②當(dāng)交點P在直線a,b之間時:∠EPB=50°+(180°﹣∠1)=160°;③當(dāng)交點P在直線a的上方時:∠EPB=∠1﹣50°=20°;(3)①當(dāng)交點P在直線a,b之間時:∠EPB=180°﹣|n°﹣50°|;②當(dāng)交點P在直線a上方或直線b下方時:∠EPB=|n°﹣50°|;【點睛】考查知識點:平行線的性質(zhì);三角形外角性質(zhì).根據(jù)動點P的位置,分類畫圖,結(jié)合圖形求解是解決本題的關(guān)鍵.?dāng)?shù)形結(jié)合思想的運用是解題的突破口.4.(1)證明見解析;(2)900°,180°(n-1);(3)(180n-180-2m)°【詳解】【模型】(1)證明:過點E作EF∥CD,∵AB∥CD,∴EF∥AB,∴∠1+∠MEF解析:(1)證明見解析;(2)900°,180°(n-1);(3)(180n-180-2m)°【詳解】【模型】(1)證明:過點E作EF∥CD,∵AB∥CD,∴EF∥AB,∴∠1+∠MEF=180°,同理∠2+∠NEF=180°∴∠1+∠2+∠MEN=360°【應(yīng)用】(2)分別過E點,F(xiàn)點,G點,H點作L1,L2,L3,L4平行于AB,利用(1)的方法可得∠1+∠2+∠3+∠4+∠5+∠6=180×5=900°;由上面的解題方法可得:∠1+∠2+∠3+∠4+∠5+∠6+…+∠n=180°(n-1),故答案是:900°,180°(n-1);(3)過點O作SR∥AB,∵AB∥CD,∴SR∥CD,∴∠AM1O=∠M1OR同理∠CMnO=∠MnOR∴∠AM1O+∠CMnO=∠M1OR+∠MnOR,∴∠AM1O+∠CMnO=∠M1OMn=m°,∵M(jìn)1O平分∠AM1M2,∴∠AM1M2=2∠AM1O,同理∠CMnMn-1=2∠CMnO,∴∠AM1M2+∠CMnMn-1=2∠AM1O+2∠CMnO=2∠M1OMn=2m°,又∵∠AM1M2+∠2+∠3+∠4+∠5+∠6+……+∠n-1+∠CMnMn-1=180°(n-1),∴∠2+∠3+∠4+∠5+∠6+…+∠n-1=(180n-180-2m)°點睛:本題考查了平行線的性質(zhì),角平分線的定義,解決此類題目,過拐點作平行線是解題的關(guān)鍵,準(zhǔn)確識圖理清圖中各角度之間的關(guān)系也很重要.5.(1)∠AEB的大小不會發(fā)生變化,∠ACB=45°;(2)30°,60°;(3)60°或72°.【分析】(1)由直線MN與直線PQ垂直相交于O,得到∠AOB=90°,根據(jù)三角形的外角的性質(zhì)得到∠解析:(1)∠AEB的大小不會發(fā)生變化,∠ACB=45°;(2)30°,60°;(3)60°或72°.【分析】(1)由直線MN與直線PQ垂直相交于O,得到∠AOB=90°,根據(jù)三角形的外角的性質(zhì)得到∠PAB+∠ABM=270°,根據(jù)角平分線的定義得到∠BAC=∠PAB,∠ABC=∠ABM,于是得到結(jié)論;(2)由于將△ABC沿直線AB折疊,若點C落在直線PQ上,得到∠CAB=∠BAQ,由角平分線的定義得到∠PAC=∠CAB,即可得到結(jié)論;根據(jù)將△ABC沿直線AB折疊,若點C落在直線MN上,得到∠ABC=∠ABN,由于BC平分∠ABM,得到∠ABC=∠MBC,于是得到結(jié)論;(3)由∠BAO與∠BOQ的角平分線相交于E可得出∠E與∠ABO的關(guān)系,由AE、AF分別是∠BAO和∠OAG的角平分線可知∠EAF=90°,在△AEF中,由一個角是另一個角的倍分情況進(jìn)行分類討論即可.【詳解】解:(1)∠ACB的大小不變,∵直線MN與直線PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∴∠PAB+∠ABM=270°,∵AC、BC分別是∠BAP和∠ABM角的平分線,∴∠BAC=∠PAB,∠ABC=∠ABM,∴∠BAC+∠ABC=(∠PAB+∠ABM)=135°,∴∠ACB=45°;(2)∵將△ABC沿直線AB折疊,若點C落在直線PQ上,∴∠CAB=∠BAQ,∵AC平分∠PAB,∴∠PAC=∠CAB,∴∠PAC=∠CAB=∠BAO=60°,∵∠AOB=90°,∴∠ABO=30°,∵將△ABC沿直線AB折疊,若點C落在直線MN上,∴∠ABC=∠ABN,∵BC平分∠ABM,∴∠ABC=∠MBC,∴∠MBC=∠ABC=∠ABN,∴∠ABO=60°,故答案為:30°,60°;(3)∵AE、AF分別是∠BAO與∠GAO的平分線,∴∠EAO=∠BAO,∠FAO=∠GAO,∴∠E=∠EOQ﹣∠EAO=(∠BOQ﹣∠BAO)=∠ABO,∵AE、AF分別是∠BAO和∠OAG的角平分線,∴∠EAF=∠EAO+∠FAO=(∠BAO+∠GAO)=90°.在△AEF中,∵∠BAO與∠BOQ的角平分線相交于E,∴∠EAO=∠BAO,∠EOQ=∠BOQ,∴∠E=∠EOQ-∠EAO=(∠BOQ-∠BAO)=∠ABO,∵有一個角是另一個角的倍,故有:①∠EAF=∠F,∠E=30°,∠ABO=60°;②∠F=∠E,∠E=36°,∠ABO=72°;③∠EAF=∠E,∠E=60°,∠ABO=120°(舍去);④∠E=∠F,∠E=54°,∠ABO=108°(舍去);∴∠ABO為60°或72°.【點睛】本題主要考查的是角平分線的性質(zhì)以及三角形內(nèi)角和定理的應(yīng)用.解決這個問題的關(guān)鍵就是要能根據(jù)角平分線的性質(zhì)將外角的度數(shù)與三角形的內(nèi)角聯(lián)系起來,然后再根據(jù)內(nèi)角和定理進(jìn)行求解.另外需要分類討論的時候一定要注意分類討論的思想.6.閱讀材料:,見解析;拓展延伸:.【分析】(1)作,,,由平行線性質(zhì)可得,結(jié)合已知,可證,進(jìn)而得到,從而,,將代入可得.(2)過H點作HP∥MN,可得∠CHA=∠PHA+∠PHC,結(jié)合(1)的結(jié)解析:閱讀材料:,見解析;拓展延伸:.【分析】(1)作,,,由平行線性質(zhì)可得,結(jié)合已知,可證,進(jìn)而得到,從而,,將代入可得.(2)過H點作HP∥MN,可得∠CHA=∠PHA+∠PHC,結(jié)合(1)的結(jié)論和CG平分∠ECD可得∠PHC=∠FCH=120°-,即可得.【詳解】解:【閱讀材料】作,,(如圖1).∵,∴.∴.∵,∴.∴.∴.∵,∴.∵,∴.∴,.∴.∵,∴.【拓展延伸】結(jié)論:.理由:如圖,作,過H點作HP∥MN,∴∠PHA=∠MAH=,由(1)得FC∥MN,∴FC∥HP,∴∠PHC=∠FCH,∵,CG平分∠ECD,∴∠ECG=20°+,∴∠FCH==180°-()-(20°+)=120°-∴∠CHA=∠PHA+∠PHC=+(120°-)=120°-即:.【點評】本題主要考查了平行線的性質(zhì)的運用,解決問題的關(guān)鍵是作平行線構(gòu)造內(nèi)錯角,運用等角的余角(補(bǔ)角)相等進(jìn)行推導(dǎo).余角和補(bǔ)角計算的應(yīng)用,常常與等式的性質(zhì)、等量代換相關(guān)聯(lián).解題時注意方程思想的運用.7.(1)=;(2),20;(3)S四邊形ADOE=13.理由見解析.【分析】(1)利用三角形的面積公式計算即可得出結(jié)論;(2)利用題干所給解答方法解答即可;(3)連接AO,利用(2)中的方法,解析:(1)=;(2),20;(3)S四邊形ADOE=13.理由見解析.【分析】(1)利用三角形的面積公式計算即可得出結(jié)論;(2)利用題干所給解答方法解答即可;(3)連接AO,利用(2)中的方法,設(shè)S△ADO=x,S△CEO=y(tǒng),則S△BDO=x,S△AEO=2y,利用已知條件列出方程組,解方程組即可得出結(jié)論.【詳解】解:(1)如圖1,過A作AH⊥BC于H,∵AD是△ABC的BC邊上的中線,∴BD=CD,∴,,∴S△ABD=S△ACD,故答案為:=;(2)解方程組得,∴S△AOD=S△BOD=10,∴S四邊形ADOB=S△AOD+S△AOE=10+10=20,故答案為:,20;(3)如圖3,連接AO,∵AD:DB=1:3,∴S△ADO=S△BDO,∵CE:AE=1:2,∴S△CEO=S△AEO,設(shè)S△ADO=x,S△CEO=y(tǒng),則S△BDO=3x,S△AEO=2y,由題意得:S△ABE=S△ABC=40,S△ADC=S△ABC=15,可列方程組為:,解得:,∴S四邊形ADOE=S△ADO+S△AEO=x+2y=13.【點睛】本題是一道四邊形的綜合題,主要考查了三角形的面積公式,等底同高的三角形面積相等,高相同的三角形的面積比等于底的比,二元一次方程組的解法.本題是閱讀型題目,準(zhǔn)確理解題干中的方法并正確應(yīng)用是解題的關(guān)鍵.8.(1)證明見解析;(2),理由見解析;(3).【分析】(1)只需要證明即可證明;(2)作.由平行線的性質(zhì)即可證明,同理可證明,由此再根據(jù)角平分線的定義和平角的性質(zhì)可得;(3)設(shè),.,則,想辦解析:(1)證明見解析;(2),理由見解析;(3).【分析】(1)只需要證明即可證明;(2)作.由平行線的性質(zhì)即可證明,同理可證明,由此再根據(jù)角平分線的定義和平角的性質(zhì)可得;(3)設(shè),.,則,想辦法構(gòu)建方程即可解決問題;【詳解】解:(1)如圖1中,,,,.(2)結(jié)論:如圖2中,.理由:作.,,,,,,,同理可證:,∵平分,平分,,,∵,,;(3)設(shè),.,∵,∴,∵,∴,,,,平分,,,平分,,,,,,.【點睛】本題考查平行線的判定和性質(zhì),角平分線的定義等知識,(2)中能正確作出輔助線是解題關(guān)鍵;(3)中能熟練掌握相關(guān)性質(zhì),找到角度之間的關(guān)系是解題關(guān)鍵.9.(2);;理由見解析;(3)B;(4)①,理由見解析;②45°或60°【分析】(2)由(1)中結(jié)論可得,依據(jù)角平分線的定義,即可得出和均為直角;再根據(jù)四邊形內(nèi)角和進(jìn)行計算,即可得到的度數(shù)以及與的解析:(2);;理由見解析;(3)B;(4)①,理由見解析;②45°或60°【分析】(2)由(1)中結(jié)論可得,依據(jù)角平分線的定義,即可得出和均為直角;再根據(jù)四邊形內(nèi)角和進(jìn)行計算,即可得到的度數(shù)以及與的關(guān)系;(3)由(1)中結(jié)論可得,再根據(jù)垂線的定義以及三角形外角性質(zhì),即可得出,進(jìn)而得到;(4)①根據(jù),即可得到,再根據(jù)角平分線的定義,即可得到,依據(jù),即可判定;②由①可得,即可得出,再根據(jù)在中一個內(nèi)角等于的倍,分三種情況討論,即可得出的度數(shù).【詳解】解:(2)由(1)可得,,∵是外角與外角的平分線和的交點,是與的平分線和的交點,∴,同理可得,∴四邊形中,,故答案為:;若,則與關(guān)系為:.理由:由(1)可得,,∵是外角與外角的平分線和的交點,是與的平分線和的交點,∴,同理可得,∴四邊形中,.(3)由(1)可得,,∵,平分,∴,,∵是的外角,∴,∴,故答案為:;(4)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論