




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
滬科版9年級下冊期末試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、如圖,將△OAB繞點O逆時針旋轉80°得到△OCD,若∠A的度數(shù)為110°,∠D的度數(shù)為40°,則∠AOD的度數(shù)是()A.50° B.60° C.40° D.30°2、如圖,為正六邊形邊上一動點,點從點出發(fā),沿六邊形的邊以1cm/s的速度按逆時針方向運動,運動到點停止.設點的運動時間為,以點、、為頂點的三角形的面積是,則下列圖像能大致反映與的函數(shù)關系的是()A. B.C. D.3、在平面直角坐標系中,已知點與點關于原點對稱,則的值為()A.4 B.-4 C.-2 D.24、在圓內(nèi)接四邊形ABCD中,∠A、∠B、∠C的度數(shù)之比為2:4:7,則∠B的度數(shù)為()A.140° B.100° C.80° D.40°5、下列說法中正確的是()A.“打開電視,正在播放《新聞聯(lián)播》”是必然事件B.某次抽獎活動中獎的概率為,說明每買100張獎券,一定有一次中獎C.想了解某市城鎮(zhèn)居民人均年收入水平,宜采用抽樣調(diào)查D.我區(qū)未來三天內(nèi)肯定下雪6、如圖,與相切于點,連接交于點,點為優(yōu)弧上一點,連接,,若,的半徑,則的長為()A.4 B. C. D.17、如圖,在中,,,,將繞原點O逆時針旋轉90°,則旋轉后點A的對應點的坐標是()A. B. C. D.8、“2022年春節(jié)期間,中山市會下雨”這一事件為()A.必然事件 B.不可能事件 C.確定事件 D.隨機事件第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、如圖,在Rt△ABC,∠B=90°,AB=BC=1,將△ABC繞著點C逆時針旋轉60°,得到△MNC,那么BM=______________.2、數(shù)學興趣活動課上,小方將等腰的底邊BC與直線l重合,問:(1)如圖(1)已知,,點P在BC邊所在的直線l上移動,小方發(fā)現(xiàn)AP的最小值是______;(2)如圖(2)在直角中,,,,點D是CB邊上的動點,連接AD,將線段AD順時針旋轉60°,得到線段AP,連接CP,線段CP的最小值是______.3、已知如圖,AB=8,AC=4,∠BAC=60°,BC所在圓的圓心是點O,∠BOC=60°,分別在、線段AB和AC上選取點P、E、F,則PE+EF+FP的最小值為____________.4、如圖,正三角形ABC的邊長為,D、E、F分別為BC,CA,AB的中點,以A,B,C三點為圓心,長為半徑作圓,圖中陰影部分面積為______.5、已知圓O的圓心到直線l的距離為2,且圓的半徑是方程x2﹣5x+6=0的根,則直線l與圓O的的位置關系是______.6、現(xiàn)有A、B兩個不透明的袋子,各裝有三個小球,A袋中的三個小球上分別標記數(shù)字1,2,3;B袋中的三個小球上分別標記數(shù)字2,3,4.這六個小球除標記的數(shù)字外,其余完全相同.將A、B兩個袋子中的小球搖勻,然后從A、B袋中各隨機摸出一個小球,則摸出的這兩個小球標記的數(shù)字之和為5的概率為______.7、如圖AB為⊙O的直徑,點P為AB延長線上的點,過點P作⊙O的切線PE,切點為M,過A、B兩點分別作PE垂線AC、BD,垂足分別為C、D,連接AM,則下列結論正確的是______(寫所有正確論的號)①AM平分∠CAB;②;③若AB=4,∠APE=30°,則的長為;④若AC=3BD,則有tan∠MAP=.三、解答題(7小題,每小題0分,共計0分)1、綜合與實踐“利用尺規(guī)作圖三等分一個任意角”曾是數(shù)學史上一大難題,之后被數(shù)學家證明是不可能完成的.人們根據(jù)實際需要,發(fā)明了一種簡易操作工具——三分角器.圖1是它的示意圖,其中與半圓的直徑在同一直線上,且的長度與半圓的半徑相等;與垂直于點,足夠長.使用方法如圖2所示,若要把三等分,只需適當放置三分角器,使經(jīng)過的頂點,點落在邊上,半圓與另一邊恰好相切,切點為,則,就把三等分了.為了說明這一方法的正確性,需要對其進行證明.獨立思考:(1)如下給出了不完整的“已知”和“求證”,請補充完整.已知:如圖2,點,,,在同一直線上,,垂足為點,________,切半圓于.求證:________________.探究解決:(2)請完成證明過程.應用實踐:(3)若半圓的直徑為,,求的長度.2、隨著科技的發(fā)展,溝通方式越來越豐富.一天,甲、乙兩位同學同步從“微信”“QQ”,“電話”三種溝通方式中任意選一種與同學聯(lián)系.(1)用恰當?shù)姆椒信e出甲、乙兩位同學選擇溝通方式的所有可能;(2)求甲、乙兩位同學恰好選擇同一種溝通方式的概率.3、在平面直角坐標系xOy中,給出如下定義:若點P在圖形M上,點Q在圖形N上,稱線段PQ長度的最小值為圖形M,N的“近距離”,記為d(M,N),特別地,若圖形M,N有公共點,規(guī)定d(M,N)=0.已知:如圖,點A(,0),B(0,).(1)如果⊙O的半徑為2,那么d(A,⊙O)=,d(B,⊙O)=.(2)如果⊙O的半徑為r,且d(⊙O,線段AB)=0,求r的取值范圍;(3)如果C(m,0)是x軸上的動點,⊙C的半徑為1,使d(⊙C,線段AB)<1,直接寫出m的取值范圍.4、如圖,在中,,以AC為直徑的半圓交斜邊AB于點D,E為BC的中點,連結DE,CD.過點D作于點F.(1)求證:DE是的切線;(2)若,,求的半徑.5、如圖,以四邊形的對角線為直徑作圓,圓心為,點、在上,過點作的延長線于點,已知平分.(1)求證:是切線;(2)若,,求的半徑和的長.6、如圖,AB是⊙O的直徑,點C是⊙O上一點,連接BC,半徑OD弦BC.(1)求證:弧AD=弧CD;(2)連接AC、BD相交于點F,AC與OD相交于點E,連接CD,若⊙O的半徑為5,BC=6,求CD和EF的長.7、電影《長津湖》以抗美援朝戰(zhàn)爭第二次戰(zhàn)役中的長津湖戰(zhàn)役為背景,講述71年前,中國人民志愿軍赴朝作戰(zhàn),在極寒嚴酷環(huán)境下,東線作戰(zhàn)部隊憑著鋼鐵意志和英勇無畏的戰(zhàn)斗精神一路追擊,奮勇殺敵的真實歷史.為紀念歷史,緬懷先烈,我校團委將電影中的四位歷史英雄人物頭像制成編號為A、B、C、D的四張卡片(除編號和頭像外其余完全相同),活動時學生根據(jù)所抽取的卡片來講述他們在影片中波瀾壯闊、可歌可泣的歷史事跡.規(guī)則如下:先將四張卡片背面朝上,洗勻放好,小強從中隨機抽取一張,然后放回并洗勻,小葉再從中隨機抽取一張.請用列表或畫樹狀圖的方法求小強和小葉抽到的兩張卡片恰好是同一英雄人物的概率.-參考答案-一、單選題1、A【分析】根據(jù)旋轉的性質(zhì)求解再利用三角形的內(nèi)角和定理求解再利用角的和差關系可得答案.【詳解】解:將△OAB繞點O逆時針旋轉80°得到△OCD,∠A的度數(shù)為110°,∠D的度數(shù)為40°,故選A【點睛】本題考查的是三角形的內(nèi)角和定理的應用,旋轉的性質(zhì),掌握“旋轉前后的對應角相等”是解本題的關鍵.2、A【分析】設正六邊形的邊長為1,當在上時,過作于而求解此時的函數(shù)解析式,當在上時,延長交于點過作于并求解此時的函數(shù)解析式,當在上時,連接并求解此時的函數(shù)解析式,由正六邊形的對稱性可得:在上的圖象與在上的圖象是對稱的,在上的圖象與在上的圖象是對稱的,從而可得答案.【詳解】解:設正六邊形的邊長為1,當在上時,過作于而當在上時,延長交于點過作于同理:則為等邊三角形,當在上時,連接由正六邊形的性質(zhì)可得:由正六邊形的對稱性可得:而由正六邊形的對稱性可得:在上的圖象與在上的圖象是對稱的,在上的圖象與在上的圖象是對稱的,所以符合題意的是A,故選A【點睛】本題考查的是動點問題的函數(shù)圖象,銳角三角函數(shù)的應用,正多邊形的性質(zhì),清晰的分類討論是解本題的關鍵.3、C【分析】根據(jù)關于原點對稱的點的坐標特點:兩個點關于原點對稱時,它們的坐標符號相反即可得到答案.【詳解】解:點與點關于原點對稱,,,.故選:C.【點睛】此題主要考查了原點對稱點的坐標特點,解題的關鍵是掌握點的變化規(guī)律.4、C【分析】,,,進而求解的值.【詳解】解:由題意知∵∴∴∵∴故選C.【點睛】本題考查了圓內(nèi)接四邊形中對角互補.解題的關鍵在于根據(jù)角度之間的數(shù)量關系求解.5、C【分析】根據(jù)必然事件,隨機事件的定義,判斷全面調(diào)查與抽樣調(diào)查,逐項分析判斷即可,根據(jù)確定事件和隨機事件的定義來區(qū)分判斷即可,必然事件和不可能事件統(tǒng)稱確定性事件;必然事件:在一定條件下,一定會發(fā)生的事件稱為必然事件;不可能事件:在一定條件下,一定不會發(fā)生的事件稱為不可能事件;隨機事件:在一定條件下,可能發(fā)生也可能不發(fā)生的事件稱為隨機事件.【詳解】A.“打開電視,正在播放《新聞聯(lián)播》”是隨機事件,故該選項不正確,不符合題意;B.某次抽獎活動中獎的概率為,說明每買100張獎券,不一定有一次中獎,故該選項不正確,不符合題意;C.想了解某市城鎮(zhèn)居民人均年收入水平,宜采用抽樣調(diào)查,故該選項正確,符合題意;D.我區(qū)未來三天內(nèi)不一定下雪,故該選項不正確,不符合題意;故選C【點睛】本題考查了必然事件,隨機事件,判斷全面調(diào)查與抽樣調(diào)查,掌握以上知識是解題的關鍵.6、B【分析】連接OB,根據(jù)切線性質(zhì)得∠ABO=90°,再根據(jù)圓周角定理求得∠AOB=60°,進而求得∠A=30°,然后根據(jù)含30°角的直角三角形的性質(zhì)解答即可.【詳解】解:連接OB,∵AB與相切于點B,∴∠ABO=90°,∵∠BDC=30°,∴∠AOB=2∠BDC=60°,在Rt△ABO中,∠A=90°-60°=30°,OB=OC=2,∴OA=2OB=4,∴,故選:B.【點睛】本題考查切線的性質(zhì)、圓周角定理、直角三角形的銳角互余、含30°角的直角三角形性質(zhì)、勾股定理,熟練掌握相關知識的聯(lián)系與運用是解答的關鍵.7、C【分析】過點A作AC⊥x軸于點C,設,則,根據(jù)勾股定理,可得,從而得到,進而得到∴,可得到點,再根據(jù)旋轉的性質(zhì),即可求解.【詳解】解:如圖,過點A作AC⊥x軸于點C,設,則,∵,,∴,∵,,∴,解得:,∴,∴,∴點,∴將繞原點O順時針旋轉90°,則旋轉后點A的對應點的坐標是,∴將繞原點O逆時針旋轉90°,則旋轉后點A的對應點的坐標是.故選:C【點睛】本題考查坐標與圖形變化一旋轉,解直角三角形等知識,解題的關鍵是求出點A的坐標,屬于中考??碱}型.8、D【分析】根據(jù)事件發(fā)生的可能性大小判斷相應事件的類型即可.【詳解】解:“2022年年春節(jié)期間,中山市會下雨”這一事件為隨機事件,故選:D.【點睛】本題考查的是必然事件、不可能事件、隨機事件的概念,必然事件指在一定條件下,一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件,不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.二、填空題1、【分析】設BN與AC交于D,過M作MF⊥BA于F,過M作ME⊥BC于E,連接AM,先證明△EMC≌△FMA得ME=MF,從而可得∠CBD=45°,∠CDB=180°-∠BCA-∠CBD=90°,再在Rt△BCD、Rt△CDM中,分別求出BD和DM,即可得到答案.【詳解】解:設BN與AC交于D,過M作MF⊥BA于F,過M作ME⊥BC于E,連接AM,如圖:∵△ABC繞著點C逆時針旋轉60°,∴∠ACM=60°,CA=CM,∴△ACM是等邊三角形,∴CM=AM①,∠ACM=∠MAC=60°,∵∠B=90°,AB=BC=1,∴∠BCA=∠CAB=45°,AC==CM,∴∠BCM=∠BCA+∠ACM=105°,∠BAM=∠CAB+∠MAC=105°,∴∠ECM=∠MAF=75°②,∵MF⊥BA,ME⊥BC,∴∠E=∠F=90°③,由①②③得△EMC≌△FMA,∴ME=MF,而MF⊥BA,ME⊥BC,∴BM平分∠EBF,∴∠CBD=45°,∴∠CDB=180°-∠BCA-∠CBD=90°,Rt△BCD中,BD=BC=,Rt△CDM中,DM=CM=,∴BM=BD+DM=,故答案為:.【點睛】本題考查等腰三角形性質(zhì)、等邊三角形的性質(zhì)及判定,解題的關鍵是證明∠CDB=90°.2、105【分析】(1)如圖,作AH⊥BC于H.根據(jù)垂線段最短,求出AH即可解決問題.(2)如圖,在AB上取一點K,使得AK=AC,連接CK,DK.由△PAC≌△DAK(SAS),推出PC=DK,易知KD⊥BC時,KD的值最小,求出KD的最小值即可解決問題.【詳解】解:如圖作AH⊥BC于H,∵AB=AC=20,,∴,∵,∴,根據(jù)垂線段最短可知,當AP與AH重合時,PA的值最小,最小值為10.∴AP的最小值是10;(2)如圖,在AB上取一點K,使得AK=AC,連接CK,DK.∵∠ACB=90°,∠B=30°,∴∠CAK=60°,∴∠PAD=∠CAK,∴∠PAC=∠DAK,∵PA=DA,CA=KA,∴△PAC≌△DAK(SAS),∴PC=DK,∵KD⊥BC時,KD的值最小,∵,是等邊三角形,∴,∴PC的最小值為5.【點睛】本題屬于幾何變換綜合題,考查了等腰三角形的性質(zhì),垂線段最短,全等三角形的判定和性質(zhì)等知識,解題的關鍵是學會用轉化的思想思考問題.3、12【分析】如圖,連接BC,AO,作點P關于AB的對稱點M,作點P關于AC的對稱點N,連接MN交AB于E,交AC于F,此時△PEF的周長=PE+PF+EF=EM+EF+FM=MN,想辦法求出MN的最小值即可解決問題.【詳解】解:如圖,連接BC,AO,作點P關于AB的對稱點M,作點P關于AC的對稱點N,連接MN交AB于E,交AC于F,此時△PEF的周長=PE+PF+EF=EM+EF+FM=MN,∴當MN的值最小時,△PEF的值最小,∵AP=AM=AN,∠BAM=∠BAP,∠CAP=∠CAN,∠BAC=60°,∴∠MAN=120°,∴MN=AM=PA,∴當PA的值最小時,MN的值最小,取AB的中點J,連接CJ.∵AB=8,AC=4,∴AJ=JB=AC=4,∵∠JAC=60°,∴△JAC是等邊三角形,∴JC=JA=JB,∴∠ACB=90°,∴BC=,∵∠BOC=60°,OB=OC,∴△OBC是等邊三角形,∴OB=OC=BC=4,∠BCO=60°,∴∠ACH=30°,∵AH⊥OH,AH=AC=2,CH=AH=2,∴OH=6,∴OA==4,∵當點P在直線OA上時,PA的值最小,最小值為-,∴MN的最小值為?(-)=-12.故答案:-12.【點睛】本題考查了圓周角定理,垂徑定理,軸對稱-最短問題等知識,解題的關鍵是學會利用軸對稱解決最短問題,屬于中考填空題中的壓軸題.4、【分析】陰影部分的面積等于等邊三角形的面積減去三個扇形面積,而這三個扇形拼起來正好是一個半徑為半圓的面積,即陰影部分面積=等邊三角形面積?半徑為半圓的面積,因此求出半圓面積,連接AD,則可求得AD的長,從而可求得等邊三角形的面積,即可求得陰影部分的面積.【詳解】連接AD,如圖所示則AD⊥BC∵D點是BC的中點∴由勾股定理得∴∵S半圓=∴S陰影=S△ABC?S半圓故答案為:【點睛】本題是求組合圖形的面積,扇形面積及三角形面積的計算.關鍵是把不規(guī)則圖形面積通過割補轉化為規(guī)則圖形的面積計算.5、相切或相交【詳解】首先求出方程的根,再利用半徑長度,由點O到直線l的距離為d,若d<r,則直線與圓相交;若d=r,則直線于圓相切;若d>r,則直線與圓相離,從而得出答案.【分析】解:∵x2﹣5x+6=0,(x﹣2)(x﹣3)=0,解得:x1=2,x2=3,∵圓的半徑是方程x2﹣5x+6=0的根,即圓的半徑為2或3,∴當半徑為2時,直線l與圓O的的位置關系是相切,當半徑為3時,直線l與圓O的的位置關系是相交,綜上所述,直線l與圓O的的位置關系是相切或相交.故答案為:相切或相交.【點睛】本題考查的是直線與圓的位置關系,因式分解法解一元二次方程,解決此類問題可通過比較圓心到直線距離d與圓的半徑大小關系完成判定.6、【分析】先列表,再利用表格信息得到所有的等可能的結果數(shù)與符合條件的結果數(shù),再利用概率公式進行計算即可.【詳解】解:列表如下:12321+2=32+2=42+3=533+1=43+2=53+3=644+1=54+2=64+3=7可得:所有的等可能的結果數(shù)有9種,而和為5的結果數(shù)有3種,摸出的這兩個小球標記的數(shù)字之和為5的概率為:故答案為:【點睛】本題考查的是利用列表法或畫樹狀圖的方法求解簡單隨機事件的概率,掌握“列表或畫樹狀圖的方法”是解本題的關鍵.7、①②④【分析】連接OM,由切線的性質(zhì)可得,繼而得,再根據(jù)平行線的性質(zhì)以及等邊對等角即可求得,由此可判斷①;通過證明,根據(jù)相似三角形的對應邊成比例可判斷②;求出,利用弧長公式求得的長可判斷③;由,,,可得,繼而可得,,進而有,在中,利用勾股定理求出PD的長,可得,由此可判斷④.【詳解】解:連接OM,∵PE為的切線,∴,∵,∴,∴,∵,,∴,即AM平分,故①正確;∵AB為的直徑,∴,∵,,∴,∴,∴,故②正確;∵,∴,∵,∴,∴的長為,故③錯誤;∵,,,∴,∴,∴,∴,又∵,,,∴,又∵,∴,設,則,∴,在中,,∴,∴,由①可得,,故④正確,故答案為:①②④.【點睛】本題考查了切線的性質(zhì),平行線分線段成比例定理,相似三角形的判定與性質(zhì),勾股定理等,正確添加輔助線,熟練掌握和靈活運用相關知識是解題的關鍵.三、解答題1、(1),,將三等分;(2)見解析;(3)【分析】(1)根據(jù)題意即可得;(2)先證明與全等,然后根據(jù)全等的性質(zhì)可得,再由圓的切線的性質(zhì)可得,可得三個角相等,即可證明結論;(3)連,延長與相交于點,由(2)結論可得,再由切線的性質(zhì),,然后利用勾股定理及線段間的數(shù)量關系可得,最后利用相似三角形的判定和性質(zhì)求解即可得.【詳解】解:(1),,將三等分,故答案為:;,將三等分,(2)證明:在與中,,,.,是的切線.、都是的切線,,,,將三等分.(3)如圖,連,延長與相交于點,由(2),知.是的切線,,,.∵半徑,∴由勾股定理得,在中,,,.∵,,,,即,.【點睛】題目主要考查全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),圓的切線的性質(zhì),勾股定理等,理解題意,結合圖形綜合運用這些知識點是解題關鍵.2、(1)3種可能,分別是“微信”“QQ”,“電話”(2)【分析】(1)用例舉法可得甲,乙兩位同學選擇溝通方式都有3種可能.(2)畫樹狀圖展示所有9種等可能的結果數(shù),再找出恰好選中同一種溝通方式的結果數(shù),然后根據(jù)概率公式求解.(1)解:甲,乙兩位同學選擇溝通方式都有3種可能,分別是“微信”“QQ”,“電話”.(2)解:畫出樹狀圖,如圖所示所有情況共有9種情況,其中恰好選擇同一種溝通方式的共有3種情況,故兩人恰好選中同一種溝通方式的概率為.【點睛】本題考查了判斷簡單隨機事件的可能性,利用列表法與樹狀圖法求解等可能事件的概率;利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數(shù)目m,然后利用概率公式求事件A或B的概率.3、(1)0,;(2);(3)【分析】(1)根據(jù)新定義,即可求解;(2)過點O作OD⊥AB于點D,根據(jù)三角形的面積,可得,再由d(⊙O,線段AB)=0,可得當⊙O的半徑等于OD時最小,當⊙O的半徑等于OB時最大,即可求解;(3)過點C作CN⊥AB于點N,利用銳角三角函數(shù),可得∠OAB=60°,然后分三種情況:當點C在點A的右側時,當點C與點A重合時,當點C在點A的左側時,即可求解.【詳解】解:(1)∵⊙O的半徑為2,A(,0),B(0,).∴,∴點A在⊙O上,點B在⊙O外,∴d(A,⊙O)=,∴d(B,⊙O)=;(2)過點O作OD⊥AB于點D,∵點A(,0),B(0,).∴,∴,∵,∴∴,∵d(⊙O,線段AB)=0,∴當⊙O的半徑等于OD時最小,當⊙O的半徑等于OB時最大,∴r的取值范圍是,(3)如圖,過點C作CN⊥AB于點N,∵點A(,0),B(0,).∴,∴,∴∠OAB=60°,∵C(m,0),當點C在點A的右側時,,∴,∴,∵d(⊙C,線段AB)<1,⊙C的半徑為1,∴,解得:,當點C與點A重合時,,此時d(⊙C,線段AB)=0,當點C在點A的左側時,,∴,∴,解得:,∴.【點睛】本題主要考查了點與圓的位置關系,點與直線的位置關系,理解新定義,熟練掌握點與圓的位置關系,點與直線的位置關系是解題的關鍵.4、(1)見解析(2)【分析】(1)連接,先根據(jù)等腰三角形的性質(zhì)可得,再根據(jù)圓周角定理可得,然后根據(jù)直角三角形的性質(zhì)可得,根據(jù)等腰三角形的性質(zhì)可得,從而可得,最后根據(jù)圓的切線的判定即可得證;(2)連接,先利用勾股定理可得,設的半徑為,從而可得,再在中,利用勾股定理即可得.(1)證明:如圖,連接,,,是的直徑,,,點是的中點,,,,即,又是的半徑,是的切線;(2)解:如圖,連接,,,設的半徑為,則,在中,,即,解得,故的半徑為.【點睛】本題考查了圓周角定理、等腰三角形的性質(zhì)、圓的切線的判定、勾股定理等知識點,熟練掌握圓周角定理和圓的切線的判定是解題關鍵.5、(1)證明見解析(2)【分析】(1)連接OA,根據(jù)已知條件證明OA⊥AE即可解決問題;(2)取CD中點F,連接OF,根據(jù)垂徑定理可得OF⊥CD,所以四邊形AEFO
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 環(huán)保監(jiān)測責任應對承諾書5篇范文
- 江蘇省鹽城市五校聯(lián)考2024-2025學年高三上學期10月月考地理試題(解析版)
- 2025廣西來賓市政協(xié)辦公室商調(diào)所屬事業(yè)單位工作人員1人考前自測高頻考點模擬試題及答案詳解(典優(yōu))
- 2025年4月四川成都中醫(yī)藥大學附屬醫(yī)院(川省中醫(yī)醫(yī)院)招聘輔助崗人員5人模擬試卷附答案詳解(完整版)
- 2025內(nèi)蒙古呼和浩特市金信金融糾紛調(diào)解中心招聘5人考前自測高頻考點模擬試題及1套參考答案詳解
- 2025福建廈門市集美區(qū)英村(兌山)幼兒園非在編教職工招聘4人考前自測高頻考點模擬試題及答案詳解(易錯題)
- 從課本中看到的智慧話作文(11篇)
- 2025北京鐵路局集團招聘76人(三)模擬試卷及答案詳解(全優(yōu))
- 2025昆明市祿勸縣教育體育局所屬事業(yè)單位面向縣內(nèi)學校選調(diào)人員(4人)考前自測高頻考點模擬試題有完整答案詳解
- 2025江蘇揚州大學附屬醫(yī)院招聘20人模擬試卷及參考答案詳解
- 小學生自己修改作文能力的培養(yǎng)研究課題結題報告.文檔
- CREO基礎培訓教程
- GA/T 2012-2023竊照專用器材鑒定技術規(guī)范
- 蔣廷黻中國近代史
- 詩化小說示范課
- (17)-第三節(jié) 反抗外國武裝侵略的斗爭
- 04質(zhì)量獎(現(xiàn)場)評審報告
- 湖北省荊州市《公共基礎知識》國考招聘考試真題含答案
- GB/T 9728-2007化學試劑硫酸鹽測定通用方法
- 全身式安全帶定期檢查表
- 《中藥商品學》考試復習題庫(含答案)
評論
0/150
提交評論