




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》定向測(cè)試考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、如圖,若,則的理由是(
)A.SAS B.AAS C.ASA D.HL2、下列關(guān)于全等三角形的說法不正確的是A.全等三角形的大小相等 B.兩個(gè)等邊三角形一定是全等三角形C.全等三角形的形狀相同 D.全等三角形的對(duì)應(yīng)邊相等3、下列語句中正確的是()A.斜邊和一銳角對(duì)應(yīng)相等的兩個(gè)直角三角形全等B.有兩邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等C.有兩個(gè)角對(duì)應(yīng)相等的兩個(gè)直角三角形全等D.有一直角邊和一銳角對(duì)應(yīng)相等的兩個(gè)直角三角形全等4、如圖是用直尺和圓規(guī)作一個(gè)角等于已知角的示意圖,說明的依據(jù)是(
)A. B. C. D.5、如圖,在和中,,連接交于點(diǎn),連接.下列結(jié)論:①;②;③平分;④平分.其中正確的個(gè)數(shù)為().A.4 B.3 C.2 D.1第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖,在和中,,,直線交于點(diǎn)M,連接.以下結(jié)論:①;②;③;④平分.其中正確的是___________(填序號(hào)).2、如圖是教科書中的一個(gè)片段,由畫圖我們可以得到△,判定這兩個(gè)三角形全等的依據(jù)是__.(1)畫;(2)分別以點(diǎn),為圓心,線段,長為半徑畫弧,兩弧相交于點(diǎn);(3)連接線段,.3、如圖,中,,三角形的外角和的平分線交于點(diǎn)E,則的度數(shù)為________.4、如圖,中,以點(diǎn)O為圓心,任意長為半徑作弧,交于點(diǎn)M,交于點(diǎn)N,分別以點(diǎn)M,N為圓心,以大于的長為半徑作弧,兩弧交于點(diǎn)C,作射線,過點(diǎn)C作于點(diǎn)D.交于點(diǎn)E,若,則的度數(shù)為_______________.5、如圖,△ABC≌△DBE,△ABC的周長為30,AB=9,BE=8,則AC的長是__.三、解答題(5小題,每小題10分,共計(jì)50分)1、如圖,已知,.求證:.2、在中,,直線經(jīng)過點(diǎn)C,且于D,于E,(1)當(dāng)直線繞點(diǎn)C旋轉(zhuǎn)到圖1的位置時(shí),顯然有:(不必證明);(2)當(dāng)直線繞點(diǎn)C旋轉(zhuǎn)到圖2的位置時(shí),求證:;(3)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖3的位置時(shí),試問、、具有怎樣的等量關(guān)系?請(qǐng)直接寫出這個(gè)等量關(guān)系.3、如圖,在四邊形ABCD中,BC>BA,AD=CD,BD平分∠ABC,求證:∠A+∠C=180°.4、【閱讀理解】課外興趣小組活動(dòng)時(shí),老師提出了如下問題:如圖,△ABC中,若AB=8,AC=6,求BC邊上的中線AD的取值范圍.小明在組內(nèi)經(jīng)過合作交流,得到了如下的解決方法:如圖,延長AD到點(diǎn)E,使DE=AD,連結(jié)BE.請(qǐng)根據(jù)小明的方法思考:(1)由已知和作圖能得到的理由是(
).A.SSS
B.SAS
C.AAS
D.ASA(2)AD的取值范圍是(
).A.
B.
C.
D.(3)【感悟】解題時(shí),條件中若出現(xiàn)“中點(diǎn)”、“中線”字樣,可以考慮延長中線構(gòu)造全等三角形,把分散的已知條件和所求證的結(jié)論轉(zhuǎn)化到同一個(gè)三角形中.【問題解決】如圖,AD是△ABC的中線,BE交AC于點(diǎn)E,交AD于F,且AE=EF.求證:AC=BF.5、如圖,在中,.(1)如圖①所示,直線過點(diǎn),于點(diǎn),于點(diǎn),且.求證:.(2)如圖②所示,直線過點(diǎn),交于點(diǎn),交于點(diǎn),且,則是否成立?請(qǐng)說明理由.-參考答案-一、單選題1、D【解析】【分析】根據(jù)兩直角三角形全等的判定定理HL推出即可.【詳解】解:∠B=∠C=90°,在Rt△ABD和Rt△ACD中,,∴Rt△ABD≌Rt△ACD(HL),故選:D.【考點(diǎn)】本題考查了全等三角形的判定定理,能熟記全等三角形的判定定理是解此題的關(guān)鍵,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,兩直角三角形全等還有HL.2、B【解析】【分析】根據(jù)全等三角形的定義與性質(zhì)即可求解.【詳解】A、全等三角形的大小相等,說法正確,故A選項(xiàng)錯(cuò)誤;B、兩個(gè)等邊三角形,三個(gè)角對(duì)應(yīng)相等,但邊長不一定相等,所以不一定是全等三角形,故B選項(xiàng)正確;C、全等三角形的形狀相同,說法正確,故C選項(xiàng)錯(cuò)誤;D、全等三角形的對(duì)應(yīng)邊相等,說法正確,故D選項(xiàng)錯(cuò)誤.故選B.【考點(diǎn)】本題考查了全等三角形的定義與性質(zhì),能夠完全重合的兩個(gè)三角形叫做全等三角形,即形狀相同、大小相等兩個(gè)三角形叫做全等三角形;全等三角形的對(duì)應(yīng)邊相等,對(duì)應(yīng)角相等.3、A【解析】【分析】根據(jù)全等三角形的判定定理,用排除法以每一個(gè)選項(xiàng)進(jìn)行分析從而確定最終答案.【詳解】A、正確,利用AAS來判定全等;B、不正確,兩邊的位置不確定,不一定全等;C、不正確,兩個(gè)三角形不一定全等;D、不正確,有一直角邊和一銳角對(duì)應(yīng)相等不一定能推出兩直角三角形全等,沒有相關(guān)判定方法對(duì)應(yīng).故選A【考點(diǎn)】本題考核知識(shí)點(diǎn):全等三角形的判定.解題關(guān)鍵點(diǎn):熟記全等三角形的相關(guān)判定.4、B【解析】【分析】由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依據(jù)SSS可判定△COD≌△C'O'D'.【詳解】解:由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依據(jù)SSS可判定△COD≌△C'O'D',故選B.【考點(diǎn)】本題主要考查了尺規(guī)作圖—作已知角相等的角,解題的關(guān)鍵在于能夠熟練掌握全等三角形的判定條件.5、B【解析】【分析】根據(jù)題意逐個(gè)證明即可,①只要證明,即可證明;②利用三角形的外角性質(zhì)即可證明;④作于,于,再證明即可證明平分.【詳解】解:∵,∴,即,在和中,,∴,∴,①正確;∴,由三角形的外角性質(zhì)得:∴°,②正確;作于,于,如圖所示:則°,在和中,,∴,∴,∴平分,④正確;正確的個(gè)數(shù)有3個(gè);故選B.【考點(diǎn)】本題是一道幾何的綜合型題目,難度系數(shù)偏上,關(guān)鍵在于利用三角形的全等證明來證明線段相等,角相等.二、填空題1、①②③【解析】【分析】由SAS證明△AOC≌△BOD得出∠OAC=∠OBD,AC=BD,①②正確;由全等三角形的性質(zhì)得出∠OAC=∠OBD,由三角形的外角性質(zhì)得:∠AMB+∠OBD=∠OAC+∠AOB,得出∠AMB=∠AOB=α,可得③正確;作OG⊥AM于G,OH⊥DM于H,利用全等三角形的對(duì)應(yīng)高相等得出OG=OH,由角平分線的判定方法得∠AMO=∠DMO,假設(shè)OM平分∠BOC,則可求出∠AOM=∠DOM,由全等三角形的判定定理可得△AMO≌△DMO,得AO=OD,而OC=OD,所以O(shè)A=OC,而OA<OC,故④錯(cuò)誤;即可得出結(jié)論.【詳解】解:∵∠AOB=∠COD=α,∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD,在△AOC和△BOD中,,∴△AOC≌△BOD(SAS),∴∠OAC=∠OBD,AC=BD,故①②正確;由三角形的內(nèi)角和定理得:∠AMB+∠OBD=∠OAC+∠AOB,∵∠OAC=∠OBD,∴∠AMB=∠AOB=α,,故③正確;作OG⊥AM于G,OH⊥DM于H,如圖所示,△AOC≌△BOD,∴結(jié)合全等三角形的對(duì)應(yīng)高可得:OG=OH,∴MO平分∠AMD,∴∠AMO=∠DMO,假設(shè)OM平分∠BOC,則∠BOM=∠COM,∵∠AOB=∠COD,∴∠AOB+∠BOM=∠COD+∠COM,即∠AOM=∠DOM,在△AMO與△DMO中,,∴△AMO≌△DMO(ASA),∴OA=OD,∵OC=OD,∴OA=OC,而OA<OC,故④錯(cuò)誤;正確的個(gè)數(shù)有3個(gè);故答案為:①②③.【考點(diǎn)】本題屬于三角形的綜合題,是中考填空題的壓軸題,本題考查了全等三角形的判定與性質(zhì)、三角形的外角性質(zhì)、角平分線的判定等知識(shí),證明三角形全等是解題的關(guān)鍵.2、【解析】【分析】根據(jù)全等三角形的判定方法解決問題即可.【詳解】解:在和△中,,,故答案為:.【考點(diǎn)】本題考查了作圖?復(fù)雜作圖,全等三角形的判定等知識(shí),解題的關(guān)鍵是理解題意,靈活應(yīng)用所學(xué)知識(shí)解決問題.3、【解析】【分析】本題先通過三角形內(nèi)角和求解∠BAC與∠BCA的和,繼而利用鄰補(bǔ)角以及角分線定義求解∠EAC與∠ECA的和,最后利用三角形內(nèi)角和求解此題.【詳解】∵,∴,又∵,,∴.∵三角形的外角和的平分線交于點(diǎn)E,∴,,∴,即.故填:.【考點(diǎn)】本題考查三角形內(nèi)角和公式以及角分線和鄰補(bǔ)角的定義,難度較低,按照對(duì)應(yīng)考點(diǎn)定義求解即可.4、65°或65度【解析】【分析】根據(jù)作圖先得出OC平分∠AOB,根據(jù),得出,根據(jù)為的外角,得出,即可求出,根據(jù),得出,即可求解.【詳解】解:根據(jù)作圖可知,OC平分∠AOB,∴,∵,,,為的外角,,,,,.故答案為:.【考點(diǎn)】本題主要考查了角平分線的基本作圖,平行線的性質(zhì),三角形外角的性質(zhì),直角三角形的性質(zhì),根據(jù)題意求出是解題的關(guān)鍵.5、13【解析】【分析】根據(jù)全等三角形的性質(zhì)求出BC,根據(jù)三角形的周長公式計(jì)算,得到答案.【詳解】解:∵△ABC≌△DBE,BE=8,∴BC=BE=8,∵△ABC的周長為30,∴AB+AC+BC=30,∴AC=30﹣AB﹣BC=13,故答案為:13.【考點(diǎn)】此題主要考查全等三角形的性質(zhì),解題的關(guān)鍵是熟知全等三角形的性質(zhì).三、解答題1、見詳解.【解析】【分析】根據(jù)SSS定理推出△ADB≌△BCA即可證明.【詳解】證明:在△ADB和△BCA中,∴△ADB≌△BCA(SSS),∴.【考點(diǎn)】本題考查了全等三角形的性質(zhì)和判定,能正確進(jìn)行推理證明全等是解此題的關(guān)鍵.2、(1)見解析;(2)見解析;(3)DE=BE-AD【解析】【分析】(1)由于△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點(diǎn)C,且AD⊥MN于D,BE⊥MN于E,由此即可證明△ADC≌△CEB,然后利用全等三角形的性質(zhì)即可解決問題;(2)由于△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點(diǎn)C,且AD⊥MN于D,BE⊥MN于E,由此仍然可以證明△ADC≌△CEB,然后利用全等三角形的性質(zhì)也可以解決問題;(3)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖(3)的位置時(shí),仍然△ADC≌△CEB,然后利用全等三角形的性質(zhì)可以得到DE=BE-AD.【詳解】解:(1)∵△ABC中,∠ACB=90°,∴∠ACD+∠BCE=90°,又直線MN經(jīng)過點(diǎn)C,且AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠CEB=90°∴∠ACD+∠DAC=90°,∴∠BCE=∠DAC,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS),∴CD=BE,CE=AD,∴DE=CD+CE=AD+BE;(2)∵△ABC中,∠ACB=90°,直線MN經(jīng)過點(diǎn)C,且AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠CEB=90°,∠ACD+∠BCE=∠BCE+∠CBE=90°,而AC=BC,∴△ADC≌△CEB,∴CD=BE,CE=AD,∴DE=CE-CD=AD-BE;(3)如圖3,∵△ABC中,∠ACB=90°,直線MN經(jīng)過點(diǎn)C,且AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠CEB=90°,∠ACD+∠BCE=∠BCE+∠CBE=90°,∴∠ACD=∠CBE,∵AC=BC,∴△ADC≌△CEB,∴CD=BE,CE=AD,∴DE=CD-CE=BE-AD;DE、AD、BE之間的關(guān)系為DE=BE-AD.【考點(diǎn)】此題需要考查了全等三角形的判定與性質(zhì),也利用了直角三角形的性質(zhì),是一個(gè)探究性題目,對(duì)于學(xué)生的能力要求比較高.3、見解析【解析】【分析】先在線段BC上截取BE=BA,連接DE,根據(jù)BD平分∠ABC,可得∠ABD=∠EBD,根據(jù),可判定△ABD≌△EBD,根據(jù)全等三角形的性質(zhì)可得:AD=ED,∠A=∠BED.再根據(jù)AD=CD,等量代換可得ED=CD,根據(jù)等邊對(duì)等角可得:∠DEC=∠C.由∠BED+∠DEC=180°,可得∠A+∠C=180°.【詳解】證明:在線段BC上截取BE=BA,連接DE,如圖所示,∵BD平分∠ABC,∴∠ABD=∠EBD,在△ABD和△EBD中,,∴△ABD≌△EBD(SAS),∴AD=ED,∠A=∠BED.∵AD=CD,∴ED=CD,∴∠DEC=∠C.∵∠BED+∠DEC=180°,∴∠A+∠C=180°.【考點(diǎn)】本題主要考查全等三角形的判定和性質(zhì),解決本題的關(guān)鍵是要熟練掌握全等三角形的判定和性質(zhì).4、(1)B(2)C(3)見解析【解析】【分析】(1)根據(jù)AD=DE,∠ADC=∠BDE,BD=DC推出△ADC和△EDB全等即可;(2)根據(jù)全等得出BE=AC=6,AE=2AD,由三角形三邊關(guān)系定理得出8-6<2AD<8+6,求出即可;(3)延長AD到M,使AD=DM,連接BM,根據(jù)SAS證△ADC≌△MDB,推出BM=AC,∠CAD=∠M,根據(jù)AE=EF,推出∠CAD=∠AFE=∠BFD,求出∠BFD=∠M,根據(jù)等腰三角形的性質(zhì)求出即可.(1)∵在△ADC和△EDB中,∴△ADC≌△EDB(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025福建福州市水路運(yùn)輸事業(yè)發(fā)展中心招聘編外人員1人考前自測(cè)高頻考點(diǎn)模擬試題附答案詳解(完整版)
- 鹿門寺樁基施工合同6篇
- 2025江蘇連云港市海州灣發(fā)展集團(tuán)有限公司及子公司招聘20人模擬試卷及完整答案詳解1套
- 2025年甘肅省民航航空發(fā)展有限公司職業(yè)經(jīng)理人選聘模擬試卷附答案詳解(完整版)
- 2025年雷州市市級(jí)機(jī)關(guān)公開遴選考試真題
- 2025年炸藥、煙火及火工產(chǎn)品合作協(xié)議書
- 2025河南鄭州聯(lián)勤保障中心二季度社會(huì)人才招聘132人考前自測(cè)高頻考點(diǎn)模擬試題及答案詳解一套
- 2025年年大數(shù)據(jù)項(xiàng)目合作計(jì)劃書
- 2025第十三屆貴州人才博覽會(huì)黔東南州企事業(yè)單位招聘考前自測(cè)高頻考點(diǎn)模擬試題及答案詳解(奪冠系列)
- 2025年西安航天基地公辦學(xué)校教職工招聘(74人)考前自測(cè)高頻考點(diǎn)模擬試題及答案詳解(網(wǎng)校專用)
- 2025年貴州高考生物試卷真題及答案詳解(精校打印版)
- 2025四川成都高新投資集團(tuán)有限公司選聘中高層管理人員4人筆試參考題庫附答案解析
- 湖南省九校聯(lián)盟2026屆高三上學(xué)期9月第一次聯(lián)考物理試題(含答案)
- 水利工程水利工程施工技術(shù)規(guī)范
- 健康安全緊急培訓(xùn)內(nèi)容課件
- 從安全感缺失剖析《榆樹下的欲望》中愛碧的悲劇根源與啟示
- 2025中證金融研究院招聘11人考試參考題庫及答案解析
- 遼寧省名校聯(lián)盟2025年高三9月份聯(lián)合考試政治(含答案)
- 國產(chǎn)美妝品牌完美日記短視頻營銷策略研究
- 漁業(yè)現(xiàn)場(chǎng)執(zhí)法培訓(xùn)課件
- 居住空間設(shè)計(jì)案例方案
評(píng)論
0/150
提交評(píng)論