難點(diǎn)解析-福建省武夷山市中考數(shù)學(xué)真題分類(勾股定理)匯編專題攻克試卷(含答案詳解版)_第1頁(yè)
難點(diǎn)解析-福建省武夷山市中考數(shù)學(xué)真題分類(勾股定理)匯編專題攻克試卷(含答案詳解版)_第2頁(yè)
難點(diǎn)解析-福建省武夷山市中考數(shù)學(xué)真題分類(勾股定理)匯編專題攻克試卷(含答案詳解版)_第3頁(yè)
難點(diǎn)解析-福建省武夷山市中考數(shù)學(xué)真題分類(勾股定理)匯編專題攻克試卷(含答案詳解版)_第4頁(yè)
難點(diǎn)解析-福建省武夷山市中考數(shù)學(xué)真題分類(勾股定理)匯編專題攻克試卷(含答案詳解版)_第5頁(yè)
已閱讀5頁(yè),還剩22頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

福建省武夷山市中考數(shù)學(xué)真題分類(勾股定理)匯編專題攻克考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計(jì)14分)1、小明想知道學(xué)校旗桿的高,他發(fā)現(xiàn)旗桿上的繩子垂到地面還多1m,當(dāng)它把繩子的下端拉開(kāi)4m后,發(fā)現(xiàn)下端剛好接觸地面,則旗桿的高為(

)A.7m B.7.5m C.8m D.9m2、若直角三角形的三邊長(zhǎng)分別為2,4,x,則x的可能值有(

)A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)3、已知直角三角形紙片的兩條直角邊長(zhǎng)分別為m和n(m<n),過(guò)銳角頂點(diǎn)把該紙片剪成兩個(gè)三角形,若這兩個(gè)三角形都為等腰三角形,則()A.m2+2mn+n2=0 B.m2﹣2mn+n2=0 C.m2+2mn﹣n2=0 D.m2﹣2mn﹣n2=04、下列四組數(shù)中,是勾股數(shù)的是()A.5,12,13 B.4,5,6 C.2,3,4 D.1,,5、如圖,長(zhǎng)方形紙片ABCD中,AB=3cm,AD=9cm,將此長(zhǎng)方形紙片折疊,使點(diǎn)D與點(diǎn)B重合,點(diǎn)C落在點(diǎn)H的位置,折痕為EF,則△ABE的面積為(

)A.6cm2 B.8cm2 C.10cm2 D.12cm26、如圖,在中,,兩直角邊,,現(xiàn)將AC沿AD折疊,使點(diǎn)C落在斜邊AB上的點(diǎn)E處,則CD長(zhǎng)為(

)A. B. C. D.7、勾股定理是人類最偉大的科學(xué)發(fā)現(xiàn)之一,在我國(guó)古算書《周髀算經(jīng)》中早有記載.如圖1,以直角三角形的各邊為邊分別向外作正方形,再把較小的兩張正方形紙片按圖2的方式放置在最大正方形內(nèi).若知道圖中陰影部分的面積,則一定能求出(

)A.直角三角形的面積B.最大正方形的面積C.較小兩個(gè)正方形重疊部分的面積D.最大正方形與直角三角形的面積和第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計(jì)16分)1、如圖,在四邊形中,,分別以四邊向外做正方形甲、乙、丙、丁,若甲的面積為30,乙的面積為16,丙的面積為17,則丁的面積為_(kāi)_____.2、對(duì)角線互相垂直的四邊形叫做“垂美”四邊形,現(xiàn)有如圖所示的“垂美”四邊形ABCD,對(duì)角線AC、BD交于點(diǎn)O.若AD=3,BC=5,則____________.3、在Rt△ABC中,∠C=90°,AC=9,AB=15,則點(diǎn)C到AB的距離是_______.4、某小區(qū)兩面直立的墻壁之間為安全通道,一架梯子斜靠在左墻DE時(shí),梯子A到左墻的距離AE為0.7m,梯子頂端D到地面的是樣子離DE為2.4m,若梯子底端A保持不動(dòng),將梯子斜塞在右墻BC上,梯子頂端C到地面的距離CB為1.5m,則這兩面直立墻壁之間的安全道的寬BE為_(kāi)_________m.5、如圖,已知四邊形中,,則四邊形的面積等于________.6、如圖,Rt△ABC的兩條直角邊,.分別以Rt△ABC的三邊為邊作三個(gè)正方形.若四個(gè)陰影部分面積分別為,,,,則的值為_(kāi)_____,的值為_(kāi)_____.7、勘測(cè)隊(duì)按實(shí)際需要構(gòu)建了平面直角坐標(biāo)系,并標(biāo)示了A,B,C三地的坐標(biāo),數(shù)據(jù)如圖(單位:km).筆直鐵路經(jīng)過(guò)A,B兩地.(1)A,B間的距離為_(kāi)_____km;(2)計(jì)劃修一條從C到鐵路AB的最短公路l,并在l上建一個(gè)維修站D,使D到A,C的距離相等,則C,D間的距離為_(kāi)_____km.8、若△ABC中,cm,cm,高cm,則BC的長(zhǎng)為_(kāi)_______cm.三、解答題(7小題,每小題10分,共計(jì)70分)1、如圖,小明家在一條東西走向的公路北側(cè)米的點(diǎn)處,小紅家位于小明家北米(米)、東米(米)點(diǎn)處.(1)求小明家離小紅家的距離;(2)現(xiàn)要在公路上的點(diǎn)處建一個(gè)快遞驛站,使最小,請(qǐng)確定點(diǎn)的位置,并求的最小值.2、在一條東西走向河的一側(cè)有一村莊C,河邊原有兩個(gè)取水點(diǎn)A,B,其中AB=AC,由于種種原因,由C到A的路現(xiàn)在已經(jīng)不通了,某村為方便村民取水決定在河邊新建一個(gè)取水點(diǎn)H(A,H,B在一條直線上),并新修一條路CH,測(cè)得CB=3千米,CH=2.4千米,HB=1.8千米.(1)問(wèn)CH是不是從村莊C到河邊的最近路,請(qǐng)通過(guò)計(jì)算加以說(shuō)明;(2)求原來(lái)的路線AC的長(zhǎng).3、我們知道,到線段兩端距離相等的點(diǎn)在線段的垂直平分線上.由此,我們可以引入如下新定義:到三角形的兩個(gè)頂點(diǎn)距離相等的點(diǎn),叫做此三角形的準(zhǔn)外心.(1)如圖1,點(diǎn)P在線段BC上,∠ABP=∠APD=∠PCD=90°,BP=CD.求證:點(diǎn)P是△APD的準(zhǔn)外心;(2)如圖2,在Rt△ABC中,∠BAC=90°,BC=5,AB=3,△ABC的準(zhǔn)外心P在△ABC的直角邊上,試求AP的長(zhǎng).4、閱讀理解:課堂上學(xué)習(xí)了勾股定理后,知道“勾三、股四、弦五”.王老師給出一組數(shù)讓學(xué)生觀察:3,4,5;5,12,13;7,24,25;9,40,41;……學(xué)生發(fā)現(xiàn)這些勾股數(shù)的勾都是奇數(shù),且從3起就沒(méi)有間斷過(guò),于是王老師提出以下問(wèn)題讓學(xué)生解決.(1)請(qǐng)你根據(jù)上述的規(guī)律寫出下一組勾股數(shù):11,_________,_________;(2)若第一個(gè)數(shù)用字母(為奇數(shù),且)表示,則后兩個(gè)數(shù)用含的代數(shù)式分別怎么表示?聰明的小明發(fā)現(xiàn)每組第二個(gè)數(shù)有這樣的規(guī)律:,,,……于是他很快表示出了第二個(gè)數(shù)為,則用含的代數(shù)式表示第三個(gè)數(shù)為_(kāi)________.(3)用所學(xué)知識(shí)說(shuō)明(2)中用表示的三個(gè)數(shù)是勾股數(shù).5、如圖,CE⊥AB于點(diǎn)E,BD⊥AC于點(diǎn)D,AB=AC.(1)求證:△ABD≌△ACE.(2)連接BC,若AD=6,CD=4,求△ABC的面積.6、在尋找某墜毀飛機(jī)的過(guò)程中,兩艘搜救艇接到消息,在海面上有疑似漂浮目標(biāo)A、B.于是,一艘搜救艇以16海里/時(shí)的速度離開(kāi)港口O(如圖)沿北偏東40°的方向向目標(biāo)A前進(jìn),同時(shí),另一艘搜救艇也從港口O出發(fā),以12海里/時(shí)的速度向著目標(biāo)B出發(fā),1.5小時(shí)后,他們同時(shí)分別到達(dá)目標(biāo)A、B.此時(shí),他們相距30海里,請(qǐng)問(wèn)第二艘搜救艇的航行方向是北偏西多少度?7、2020年春季“新冠肺炎”在武漢全面爆發(fā),蔓延全國(guó),危及到人民生命安全,為了積極響應(yīng)國(guó)家防控政策,雙流區(qū)某鎮(zhèn)政府采用了移動(dòng)宣講的形式進(jìn)行宣傳防控措施,如圖,筆直公路的一側(cè)點(diǎn)處有一村莊,村莊到公路的距離為600米,假設(shè)宣講車周圍1000米以內(nèi)能聽(tīng)到廣播宣傳,宣講車在公路上沿方向行駛時(shí):(1)請(qǐng)問(wèn)村莊能否聽(tīng)到宣傳,請(qǐng)說(shuō)明理由;(2)如果能聽(tīng)到,已知宣講車的速度是200米/分鐘,那么村莊總共能聽(tīng)到多長(zhǎng)時(shí)間的宣傳?-參考答案-一、單選題1、B【解析】【分析】根據(jù)題意,畫出圖形,設(shè)旗桿AB=x米,則AC=(x+1)米,在Rt△ABC中,根據(jù)勾股定理的方程(x+1)2=x2+42,解方程求得x的值即可.【詳解】如圖所示:設(shè)旗桿AB=x米,則AC=(x+1)米,在Rt△ABC中,AC2=AB2+BC2,即(x+1)2=x2+42,解得:x=7.5.故選B.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,解決本題的基本思路是是畫出示意圖,利用勾股定理列方程求解.2、B【解析】【詳解】分析:x可為斜邊也可為直角邊,因此解本題時(shí)要對(duì)x的取值進(jìn)行討論.解答:解:當(dāng)x為斜邊時(shí),x2=22+42=20,所以x=2;當(dāng)4為斜邊時(shí),x2=16-4=12,x=2.故選B.點(diǎn)評(píng):本題考查了勾股定理的應(yīng)用,注意要分兩種情況討論.3、C【解析】【分析】如圖,根據(jù)等腰三角形的性質(zhì)和勾股定理可得m2+m2=(n-m)2,整理即可求解【詳解】m2+m2=(n﹣m)2,2m2=n2﹣2mn+m2,m2+2mn﹣n2=0.故選C.4、A【解析】【分析】欲判斷是否為勾股數(shù),必須根據(jù)勾股數(shù)是正整數(shù),同時(shí)還需驗(yàn)證兩小邊的平方和是否等于最長(zhǎng)邊的平方.【詳解】解:A、52+122=132,都是正整數(shù),是勾股數(shù),故此選項(xiàng)符合題意;B、42+52≠62,不是勾股數(shù),故此選項(xiàng)不合題意;C、22+32≠42,不是勾股數(shù),故此選項(xiàng)不合題意;D、,不是正整數(shù),不是勾股數(shù),故此選項(xiàng)不合題意;故選:A.【考點(diǎn)】此題主要考查了勾股數(shù),解答此題要用到勾股數(shù)組的定義,如果a,b,c為正整數(shù),且滿足a2+b2=c2,那么,a、b、c叫做一組勾股數(shù).5、A【解析】【分析】根據(jù)折疊的條件可得:,在中,利用勾股定理就可以求解.【詳解】將此長(zhǎng)方形折疊,使點(diǎn)與點(diǎn)重合,,,根據(jù)勾股定理得:,解得:..故選:A.【考點(diǎn)】本題考查了利用勾股定理解直角三角形,掌握直角三角形兩直角邊的平方和等于斜邊的平方是解題的關(guān)鍵.6、A【解析】【分析】先根據(jù)勾股定理求得AB的長(zhǎng),再根據(jù)折疊的性質(zhì)求得AE,BE的長(zhǎng),從而利用勾股定理可求得CD的長(zhǎng).【詳解】解:∵AC=6cm,BC=8cm,∠C=90°,∴AB=(cm),由折疊的性質(zhì)得:AE=AC=6cm,∠AED=∠C=90°,∴BE=10cm?6cm=4cm,∠BED=90°,設(shè)CD=x,則BD=BC?CD=8?x,在Rt△DEB中,BE2+DE2=BD2,即42+x2=(8?x)2,解得:x=3,∴CD=3cm,故選:A.【考點(diǎn)】本題考查了折疊的性質(zhì),勾股定理等知識(shí);熟記折疊性質(zhì)并表示出Rt△DEB的三邊,然后利用勾股定理列出方程是解題的關(guān)鍵.7、C【解析】【分析】根據(jù)勾股定理得到c2=a2+b2,根據(jù)正方形的面積公式、長(zhǎng)方形的面積公式計(jì)算即可.【詳解】設(shè)直角三角形的斜邊長(zhǎng)為c,較長(zhǎng)直角邊為b,較短直角邊為a,由勾股定理得,c2=a2+b2,陰影部分的面積=c2-b2-a(c-b)=a2-ac+ab=a(a+b-c),較小兩個(gè)正方形重疊部分的長(zhǎng)=a-(c-b),寬=a,則較小兩個(gè)正方形重疊部分底面積=a(a+b-c),∴知道圖中陰影部分的面積,則一定能求出較小兩個(gè)正方形重疊部分的面積,故選C.【考點(diǎn)】本題考查的是勾股定理,如果直角三角形的兩條直角邊長(zhǎng)分別是a,b,斜邊長(zhǎng)為c,那么a2+b2=c2.二、填空題1、29【解析】【分析】如圖(見(jiàn)解析),先根據(jù)正方形的面積公式可得,再利用勾股定理可得的值,由此即可得出答案.【詳解】如圖,連接AC,由題意得:,在中,,,在中,,,則正方形丁的面積為,故答案為:29.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,熟練掌握勾股定理是解題關(guān)鍵.2、34【解析】【分析】在Rt△COB和Rt△AOB中,根據(jù)勾股定理得BO2+CO2=CB2,OD2+OA2=AD2,進(jìn)一步得BO2+CO2+OD2+OA2=9+25,再根據(jù)AB2=BO2+AO2,CD2=OC2+OD2,最后求得AB2+CD2=34.【詳解】解:∵BD⊥AC,∴∠COB=∠AOB=∠AOD=∠COD=90°,在Rt△COB和Rt△AOB中,根據(jù)勾股定理得,BO2+CO2=CB2,OD2+OA2=AD2,∴BO2+CO2+OD2+OA2=9+25,∵AB2=BO2+AO2,CD2=OC2+OD2,∴AB2+CD2=34;故答案為:34.【考點(diǎn)】本題考查勾股定理的應(yīng)用,熟練掌握勾股定理在實(shí)際問(wèn)題中的應(yīng)用,從題中抽象出勾股定理這一數(shù)學(xué)模型是解題關(guān)鍵.3、【解析】【分析】首先根據(jù)勾股定理求出直角邊BC的長(zhǎng),再根據(jù)三角形的面積為定值即可求出則點(diǎn)C到AB的距離【詳解】在Rt△ABC中,∠C=90°,則有AC2+BC2=AB2∵AC=9,BC=12,∴AB=在Rt△ABC中,∠C=90°,則有AC2+BC2=AB2,∵AC=9,AB=15,∴BC==12,∵S△ABC=AC?BC=AB?h,∴h==故答案為【考點(diǎn)】本題考查了勾股定理,熟知在任何一個(gè)直角三角形中,兩條直角邊長(zhǎng)的平方之和一定等于斜邊長(zhǎng)的平方是解題的關(guān)鍵4、2.7【解析】【分析】先根據(jù)勾股定理求出AD的長(zhǎng),同理可得出AB的長(zhǎng),進(jìn)而可得出結(jié)論.【詳解】在Rt△ACB中,∵∠ACB=90°,AE=0.7米,DE=2.4米,∴AD2=0.72+2.42=6.25.在Rt△A′BD中,∵∠ABC=90°,BC=1.5米,AB2+BC2=AC2,∴AB2+1.52=6.25,∴AB2=4.∵AB>0,∴AB=2米.∴BE=AE+AB=0.7+2=2.7米.故答案為2.7.【考點(diǎn)】本題考查的是勾股定理的應(yīng)用,在應(yīng)用勾股定理解決實(shí)際問(wèn)題時(shí),勾股定理與方程的結(jié)合是解決實(shí)際問(wèn)題常用的方法,關(guān)鍵是從題中抽象出勾股定理這一數(shù)學(xué)模型,畫出準(zhǔn)確的示意圖.領(lǐng)會(huì)數(shù)形結(jié)合的思想的應(yīng)用.5、36【解析】【分析】連接AC,先根據(jù)勾股定理求出AC的長(zhǎng)度,再根據(jù)勾股定理的逆定理判斷出△ACD的形狀,最后利用三角形的面積公式求解即可.【詳解】連接AC,如下圖所示:∵∠ABC=90°,AB=3,BC=4,∴AC=,在△ACD中,AC2+AD2=25+144=169=CD2,∴△ACD是直角三角形,∴S四邊形ABCD=AB?BC+AC?AD=×3×4+×5×12=36.【考點(diǎn)】本題考查了勾股定理及勾股定理的逆定理,正確作出輔助線是解題的關(guān)鍵.6、

24

0【解析】【分析】先證明從而可得再利用圖形的面積關(guān)系可得:兩式相減可得:而證明從而可得第二空的答案.【詳解】解:如圖,以Rt△ABC的三邊為邊作三個(gè)正方形,兩式相減可得:而故答案為:24,0【考點(diǎn)】本題考查的是正方形的性質(zhì),全等三角形的判定與性質(zhì),圖形面積之間的關(guān)系,證明是解本題的關(guān)鍵.7、

20

13【解析】【分析】(1)由垂線段最短以及根據(jù)兩點(diǎn)的縱坐標(biāo)相同即可求出AB的長(zhǎng)度;(2)根據(jù)A、B、C三點(diǎn)的坐標(biāo)可求出CE與AE的長(zhǎng)度,設(shè)CD=x,根據(jù)勾股定理即可求出x的值.【詳解】(1)由A、B兩點(diǎn)的縱坐標(biāo)相同可知:AB∥x軸,∴AB=12﹣(﹣8)=20;(2)過(guò)點(diǎn)C作l⊥AB于點(diǎn)E,連接AC,作AC的垂直平分線交直線l于點(diǎn)D,由(1)可知:CE=1﹣(﹣17)=18,AE=12,設(shè)CD=x,∴AD=CD=x,由勾股定理可知:x2=(18﹣x)2+122,∴解得:x=13,∴CD=13.故答案為(1)20;(2)13.【考點(diǎn)】本題考查了勾股定理,解題的關(guān)鍵是根據(jù)A、B、C三點(diǎn)的坐標(biāo)求出相關(guān)線段的長(zhǎng)度,本題屬于中等題型.8、28或8##8或28【解析】【分析】高的位置不確定,應(yīng)分情況進(jìn)行討論:(1)高在內(nèi)部;(2)高在外部,依此即可求解.【詳解】解:如圖(1)cm,cm,,則,,則;如圖(2),由(1)得,,則.則的長(zhǎng)為或.故答案為或.【考點(diǎn)】此題考查了勾股定理,本題需注意高的位置不確定,應(yīng)根據(jù)三角形的形狀分兩種情況討論.三、解答題1、(1)米;(2)見(jiàn)解析,米【解析】【分析】(1)如圖,連接AB,根據(jù)勾股定理即可得到結(jié)論;(2)如圖,作點(diǎn)A關(guān)于直線MN的對(duì)稱點(diǎn)A',連接A'B交MN于點(diǎn)P.驛站到小明家和到小紅家距離和的最小值即為A'B,根據(jù)勾股定理即可得到結(jié)論.【詳解】解:(1)如圖,連接AB,由題意知AC=500,BC=1200,∠ACB=90°,在Rt△ABC中,∵∠ACB=90°,∴AB2=AC2+BC2=5002+12002=1690000,∵AB>0∴AB=1300米;(2)如圖,作點(diǎn)A關(guān)于直線MN的對(duì)稱點(diǎn)A',連接A'B交MN于點(diǎn)P.驛站到小明家和到小紅家距離和的最小值即為A'B,由題意知AD=200米,A'C⊥MN,∴A'C=AC+AD+A'D=500+200+200=900米,在Rt△A'BC中,∵∠ACB=90°,∴A'B2=A'C2+BC2=9002+12002=2250000,∵A'B>0,∴A'B=1500米,即從驛站到小明家和到小紅家距離和的最小值為1500米.【考點(diǎn)】本題考查軸對(duì)稱-最短問(wèn)題,勾股定理,題的關(guān)鍵是學(xué)會(huì)利用軸對(duì)稱解決最短問(wèn)題.2、(1)是,理由見(jiàn)解析;(2)2.5米.【解析】【分析】(1)先根據(jù)勾股定理逆定理證得Rt△CHB是直角三角形,然后根據(jù)點(diǎn)到直線的距離中,垂線段最短即可解答;(2)設(shè)AC=AB=x,則AH=x-1.8,在Rt△ACH中,根據(jù)勾股定理列方程求得x即可.【詳解】(1)∵,即,∴Rt△CHB是直角三角形,即CH⊥BH,∴CH是從村莊C到河邊的最近路(點(diǎn)到直線的距離中,垂線段最短);(2)設(shè)AC=AB=x,則AH=x-1.8,∵在Rt△ACH,∴,即,解得x=2.5,∴原來(lái)的路線AC的長(zhǎng)為2.5米.【考點(diǎn)】本題主要考查了勾股定理的應(yīng)用,靈活應(yīng)用勾股定理的逆定理和定理是解答本題的關(guān)鍵.3、(1)見(jiàn)解析;(2)AP的長(zhǎng)為或2或【解析】【分析】(1)利用AAS證明△ABP≌△PCD,得到AP=PD,由定義可知點(diǎn)P是△APD的準(zhǔn)外心;(2)先利用勾股定理計(jì)算AC=4,再進(jìn)行討論:當(dāng)P點(diǎn)在AB上,PA=PB,當(dāng)P點(diǎn)在AC上,PA=PC,易得對(duì)應(yīng)AP的值;當(dāng)P點(diǎn)在AC上,PB=PC,設(shè)AP=t,則PC=PB=4﹣x,利用勾股定理得到32+t2=(4﹣t)2,然后解方程得到此時(shí)AP的長(zhǎng).【詳解】(1)證明:∵∠ABP=∠APD=∠PCD=90°,∴∠APB+∠PAB=90°,∠APB+∠DPC=90°,∴∠PAB=∠DPC,在△ABP和△PCD中,,∴△ABP≌△PCD(AAS),∴AP=PD,∴點(diǎn)P是△APD的準(zhǔn)外心;(2)解:∵∠BAC=90°,BC=5,AB=3,∴AC4,當(dāng)P點(diǎn)在AB上,PA=PB,則APAB;當(dāng)P點(diǎn)在AC上,PA=PC,則APAC=2,當(dāng)P點(diǎn)在AC上,PB=PC,如圖2,設(shè)AP=t,則PC=PB=4﹣x,在Rt△ABP中,32+t2=(4﹣t)2,解得t,即此時(shí)AP,綜上所述,AP的長(zhǎng)為或2或.【考點(diǎn)】本題考查了全等三角形的判定與性質(zhì),勾股定理及新定義的運(yùn)用能力.理解題中給的定義是解題的關(guān)鍵.4、(1)60,61(2)(3)見(jiàn)解析【解析】【分析】(1)分析所給四組的勾股數(shù):3、4、5;5、12、13;7、24、25;9、40、41;可得下一組一組勾股數(shù):11,60,61;(2)根據(jù)所提供的例子發(fā)現(xiàn)股是勾的平方減去1的二分之一,弦是勾的平方加1的二分之一;(3)依據(jù)勾股定理的逆定理進(jìn)行證明即可.(1)解:∵3、4、5;5、12、13;7、24、25;9、40、41;…,∴11,60,61;故答案為:60,61;(2)解:第一個(gè)數(shù)用字母a(a為奇數(shù),且a≥3)表示,第二數(shù)為;則用含a的代數(shù)式表示第三

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論