




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
北師大版9年級數(shù)學上冊期末測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題24分)一、單選題(6小題,每小題2分,共計12分)1、如圖1,點Q為菱形ABCD的邊BC上一點,將菱形ABCD沿直線AQ翻折,點B的對應(yīng)點P落在BC的延長線上.已知動點M從點B出發(fā),在射線BC上以每秒1個單位長度運動.設(shè)點M運動的時間為x,△APM的面積為y.圖2為y關(guān)于x的函數(shù)圖象,則菱形ABCD的面積為(
)A.12 B.24 C.10 D.202、一元二次方程配方后可化為(
)A. B.C. D.3、如圖,正比例函數(shù)和反比例函數(shù)的圖象在第一象限交于點且則的值為(
)A. B. C. D.4、如圖,把長40,寬30的矩形紙板剪掉2個小正方形和2個小矩形(陰影部分即剪掉部分),將剩余的部分折成一個有蓋的長方體盒子,設(shè)剪掉的小正方形邊長為(紙板的厚度忽略不計),若折成長方體盒子的表面積是950,則的值是(
)A.3 B.4 C.4.8 D.55、點P是△ABC中AB邊上一點(不與A、B重合),過P作直線截△ABC使得截得的三角形與△ABC相似,這樣的直線最多作()A.2條 B.3條 C.4條 D.5條6、如圖,菱形ABCD中,∠BAD=60°,AC、BD交于點O,E為CD延長線上的一點,且CD=DE,連接BE分別交AC,AD于點F、G,連結(jié)OG、AE.則下列結(jié)論:①OG=AB;
②四邊形ABDE是菱形;③;其中正確的是(
)A.①② B.①③ C.②③ D.①②③二、多選題(6小題,每小題2分,共計12分)1、設(shè)點和B(,)是反比例函數(shù)圖象上的兩個點,當<<0時,<,則一次函數(shù)的圖象經(jīng)過的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限2、如圖,在△ABC中,點D在邊AC上,下列條件中,不能判斷△BDC與△ABC相似的是(
)A.AB·CB=CA·CD B.AB·CD=BD·BCC.BC2=AC·DC D.BD2=CD·DA3、如圖,點P在函數(shù)(x>0,k>2,k為常數(shù))的圖象上,PC⊥x軸交的圖象于點A,PD⊥y軸于點D,交,當點P在(x>0,k>2,k為常數(shù))的圖象上運動時(
)A.ODB與OCA的面積相等 B.四邊形PAOB的面積不會發(fā)生變化C.PA與PB始終相等 D.4、下列說法中,正確的是(
)A.兩角對應(yīng)相等的兩個三角形相似B.兩邊對應(yīng)成比例的兩個三角形相似C.兩邊對應(yīng)成比例且夾角相等的兩個三角形相似D.三邊對應(yīng)成比例的兩個三角形相似5、已知兩個直角三角形的三邊長分別為3,4,m和6,8,n,且這兩個直角三角形不相似,則m+n的值為(
).A.5+2B.15C.10+D.15+36、如圖,在⊙O中,AB為直徑,BC為切線,弦ADOC,直線CD交BA的延長線于點E,連接BD.下列結(jié)論正確的是(
)A.CD是⊙O的切線 B.CO⊥DBC.△EDA∽△EBD D.第Ⅱ卷(非選擇題76分)三、填空題(8小題,每小題2分,共計16分)1、如圖,已知在平面直角坐標系中,直線分別交軸,軸于點和點,分別交反比例函數(shù),的圖象于點和點,過點作軸于點,連結(jié).若的面積與的面積相等,則的值是_____.2、如圖,在長方形ABCD中,AD=8,AB=6,點E為線段DC上一個動點,把△ADE沿AE折疊,使點D落在點F處,若△CEF為直角三角形時,則DE的長為___.3、如圖,△ABC與△是位似圖形,點是位似中心,若,,則=________.4、如圖,在平行四邊形中,點在邊上,,連接交于點,則的面積與四邊形的面積之比為___
5、某商場銷售一批名牌襯衫,平均每天可售出20件,每件盈利40元,由于疫情,為了擴大銷售量,盡快減少庫存,商場決定采取適當?shù)慕祪r措施,經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價1元,商場平均每天可多售出2件.若商場平均每天銷售這種襯衫的盈利要達到1200元,則每件襯衫應(yīng)降價多少元?設(shè)每件襯衫降價x元,由題意列得方程______.6、關(guān)于的方程有兩個不相等的實數(shù)根,則的取值范圍是________.7、如圖,在中,,點D是的中點,過點D作,垂足為點E,連接,若,,則________.8、如圖,四邊形ABCD是一個正方形,E是BC延長線上一點,且AC=EC,則∠DAE的度數(shù)為_________.四、解答題(6小題,每小題10分,共計60分)1、勾股定理有著悠久的歷史,它曾引起很多人的興趣.1955年希臘發(fā)行了二枚以勾股圖為背景的郵票.所謂勾股圖是指以直角三角形的三邊為邊向外作正方形構(gòu)成(圖1:△ABC中,∠BAC=90°).(1)如圖2,若以直角三角形的三邊為邊向外作等邊三角形,則它們的面積、、之間的數(shù)量關(guān)系是(
).(2)如圖3,若以直角三角形的三邊為直徑向外作半圓,則它們的面積、、之間的數(shù)量關(guān)系是(
),請說明理由.(3)如圖4,在四邊形ABCD中,AD∥BC,∠ABC+∠BCD=90°,BC=2AD,分別以AB、CD、AD、BC為邊向四邊形外作正方形,其面積分別為、、、,則、、、之間的數(shù)量關(guān)系式為(),請說明理由.2、如圖,某校數(shù)學興趣小組利用自制的直角三角形硬紙板DEF來測量操場旗桿AB的高度,他們通過調(diào)整測量位置,使斜邊DF與地面保持平行,并使邊DE與旗桿頂點A在同一直線上,已知DE=0.5米,EF=0.25米,目測點D到地面的距離DG=1.5米,到旗桿的水平距離DC=20米,求旗桿的高度.3、已知:.(1)求代數(shù)式的值;(2)如果,求的值.4、(1)證明推斷:如圖(1),在正方形中,點,分別在邊,上,于點,點,分別在邊,上,.求證:;(2)類比探究:如圖(2),在矩形中,將矩形沿折疊,使點落在邊上的點處,得到四邊形,交于點,連接交于點.試探究與之間的數(shù)量關(guān)系,并說明理由;(3)拓展應(yīng)用:在(2)的條件下,連接,若,,求的長.5、如圖,在正方形ABCD中,對角線AC與BD相交于點O,點E是BC上的一個動點,連接DE,交AC于點F.(1)如圖①,當時,求的值;(2)如圖②,當點E是BC的中點時,過點F作FG⊥BC于點G,求證:CG=BG.
6、已知點P(2,2)在反比例函數(shù)y=(k≠0)的圖象上.(1)當x=-3時,求y的值;(2)當1<x<3時,求y的取值范圍.-參考答案-一、單選題1、D【解析】【分析】由圖2,可知BP=6,S△ABP=12,由圖1翻折可知,AQ⊥BP,進而得出AQ=4,由勾股定理,可知BC=AB=5,菱形ABCD的面積為BC×AQ即可求出.【詳解】解:由圖2,得BP=6,S△ABP=12∴AQ=4由翻折可知,AQ⊥BP由勾股定理,得BC=AB==5∴菱形ABCD的面積為BC×AQ=5×4=20故選:D【考點】本題是一道幾何變換綜合題,解決本題主要用到勾股定理,翻折的性質(zhì),根據(jù)函數(shù)圖象找出幾何圖形中的對應(yīng)關(guān)系是解決本題的關(guān)鍵.2、B【解析】【分析】根據(jù)題意直接對一元二次方程配方,然后把常數(shù)項移到等號右邊即可.【詳解】解:根據(jù)題意,把一元二次方程配方得:,即,∴化成的形式為.故選:B.【考點】本題考查配方法解一元二次方程,注意掌握配方法的一般步驟:把常數(shù)項移到等號的右邊;把二次項的系數(shù)化為1;等式兩邊同時加上一次項系數(shù)一半的平方.選擇用配方法解一元二次方程時,最好使方程的二次項的系數(shù)為1,一次項的系數(shù)是2的倍數(shù).3、D【解析】【分析】根據(jù)點在直線正比例函數(shù)上,則它的坐標應(yīng)滿足直線的解析式,故點的坐標為.再進一步利用了勾股定理,求出點的坐標,根據(jù)待定系數(shù)法進一步求解.【詳解】解:作軸于.設(shè)A點坐標為,在中,即,解得(舍去)、;∴點坐標為,將代入數(shù)得:.故選:.【考點】此題考查了正比例函數(shù)圖象上點的坐標特征和用待定系數(shù)法求函數(shù)解析式,構(gòu)造直角三角形求出點A坐標是解題關(guān)鍵,構(gòu)思巧妙,難度不大.4、D【解析】【分析】觀察圖形可知陰影部分小長方形的長為,再根據(jù)去除陰影部分的面積為950,列一元二次方程求解即可.【詳解】解:由圖可得出,整理,得,解得,(不合題意,舍去).故選:D.【考點】本題考查的知識點是一元二次方程的應(yīng)用,根據(jù)圖形找出陰影部分小長方形的長是解此題的關(guān)鍵.5、C【解析】【分析】根據(jù)相似三角形的判定方法分析,即可做出判斷.【詳解】滿足條件的直線有4條,如圖所示:如圖1,過P作PE∥AC,則有△BPE∽△BAC;如圖2,過P作PE∥BC,則有△APE∽△ABC;如圖3,過P作∠AEP=∠B,又∠A=∠A,則有△APE∽△ACB;如圖4,過P作∠BEP=∠A,又∠B=∠B,則有△BEP∽△BAC,故選:C.【考點】本題考查了相似三角形的判定,解答的關(guān)鍵是對相似三角形的判定方法的理解與靈活運用.6、D【解析】【分析】證明四邊形ABDE為平行四邊形可得OB=OD,由菱形ABCD可得AG=DG,根據(jù)三角形中位線定理可判斷①;根據(jù)等邊三角形的性質(zhì)和判定可得△ABD為等邊三角形AB=BD,從而可判斷平行四邊形ABDE是菱形,由此判斷②;借助相似三角形的性質(zhì)和判定,三角形中線有關(guān)的面積問題可判斷③.【詳解】解:∵四邊形ABCD是菱形,∴AB∥CD,AB=CD=AD,OA=OC,OB=OD,∵CD=DE,∴AB=DE.又∵AB∥DE,∴四邊形ABDE是平行四邊形,∴BG=EG,AB=DE,AG=DG,又∵OD=OB,∴OG是△BDA是中位線,∴OG=AB,故①正確;∵∠BAD=60°,AB=AD,∴△BAD是等邊三角形,∴BD=AB,∴是菱形,故②正確;∵OB=OD,AG=DG,∴OG是△ABD的中位線,∴OG∥AB,OG=AB,∴△GOD∽△ABD(ASA),△ABF∽△OGF(ASA),∴△GOD的面積=△ABD的面積,△ABF的面積=△OGF的面積的4倍,AF:OF=2:1,∴△AFG的面積=△OGF的面積的2倍,又∵△GOD的面積=△AOG的面積=△BOG的面積,∴S四邊形ODGF=S△ABF;故③正確;故選:D.【考點】本題考查了菱形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、等邊三角形的判定與性質(zhì)、三角形中位線定理、相似三角形的判定與性質(zhì)等知識.判斷①的關(guān)鍵是三角形中位線定理的運用,②的關(guān)鍵是利用等邊三角形證明BD=AB;③的關(guān)鍵是通過相似得出面積之間的關(guān)系.二、多選題1、BCD【解析】【分析】根據(jù)反比例函數(shù)圖象的性質(zhì)得出k的取值范圍,進而根據(jù)一次函數(shù)的性質(zhì)得出一次函數(shù)y=?2x+k的圖象不經(jīng)過的象限.【詳解】解:∵點和B(,)是反比例函數(shù)圖象上的兩個點,當<<0時,<,∴<<0時,y隨x的增大而增大,∴k<0,∴一次函數(shù)y=?2x+k的圖象不經(jīng)過第一象限.故答案為:BCD.【考點】此題主要考查了一次函數(shù)圖象與系數(shù)的關(guān)系以及反比例函數(shù)的性質(zhì),根據(jù)反比例函數(shù)的性質(zhì)得出k的取值范圍是解題關(guān)鍵.2、ABD【解析】【分析】根據(jù)三角形相似的判斷方法逐個判斷即可.【詳解】解:A、AB·CB=CA·CD,不能判定△BDC∽△ABC,符合題意;B、AB·CD=BD·BC,不能判定△BDC∽△ABC,符合題意;C、BC2=AC·DC,∠BCD=∠ACB,∴△BDC∽△ABC,故選項不符合題意;D、BD2=CD·DA,不能判定△BDC與△ABC,符合題意;故選:ABD.【考點】此題考查了三角形相似的判定方法,解題的關(guān)鍵是熟練掌握三角形相似的判定方法.3、AB【解析】【分析】由反比例函數(shù)k的幾何意義可判斷出各個結(jié)論的正誤.【詳解】解:A.∵點A,B在函數(shù)的圖象上,∴,故選項A正確;B.∵矩形OCPD、三角形ODB、三角形OCA為定值,則四邊形PAOB的面積不會發(fā)生變化;故此選項正確.C.PA與PB不一定相等,只有當四邊形OCPD是正方形時滿足PA=PB,故此選項不正確;D.∵A、B在上,∴S△AOC=S△BOE,∴?OC?AC=?OD?BD,∴OC?AC=OD?BD,∵OC=PD,OD=PC,∴PD?AC=DB?PC,∴.故此選項不正確.故選AB【考點】此題是反比例函數(shù)綜合題,主要考查了反比例函數(shù)(k≠0)中k的幾何意義,即過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積為|k|,是經(jīng)??疾榈囊粋€知識點;這里體現(xiàn)了數(shù)形結(jié)合的思想,做此類題一定要正確理解k的幾何意義.4、ACD【解析】【分析】根據(jù)相似三角形的判定定理判斷即可.【詳解】A
“兩角對應(yīng)相等的兩個三角形相似”是正確的;B
“兩邊對應(yīng)成比例的兩個三角形相似”是錯誤的,還需添上條件“且夾角相等”才成立;C
“兩邊對應(yīng)成比例且夾角相等的兩個三角形相似”是正確的;D
“三邊對應(yīng)成比例的兩個三角形相似”是正確的故選:ACD【考點】本題考查了相似三角形的判定定理,做題的關(guān)鍵是熟練掌握相似三角形的判定定理.5、AC【解析】【分析】根據(jù)相似三角形的性質(zhì)、分情況計算即可.【詳解】解:當3,4為直角邊,6,8也為直角邊時,此時兩三角形相似;當三邊分別為3,4,,和6,8,2,此時兩三角形相似;當3,4為直角邊時,m=5;則8為另一三角形的斜邊,其直角邊為:n==2,故m+n=5+2;當6,8為直角邊,n=10;則4為另一三角形的斜邊,其直角邊為:m==,故m+n=10+;綜上所述:m+n的值為5+2或10+,故選:A、C.【考點】本題主要考查了勾股定理以及相似三角形的性質(zhì),在直角三角形中對未知邊是直角邊還是斜邊進行不同情況的討論是解題的關(guān)鍵.6、ABC【解析】【分析】由切線的性質(zhì)得∠CBO=90°,首先連接OD,易證得△COD≌△COB(SAS),然后由全等三角形的對應(yīng)角相等,求得∠CDO=90°,即可證得直線CD是⊙O的切線;根據(jù)全等三角形的性質(zhì)得到CD=CB,根據(jù)線段垂直平分線的判定定理得到即CO⊥DB;根據(jù)余角的性質(zhì)得到∠ADE=∠BDO,等量代換得到∠EDA=∠DBE,根據(jù)相似三角形的判定定理得到△EDA∽△EBD;根據(jù)相似三角形的性質(zhì)得到,于是得到ED?BC=BO?BE.【詳解】解:A.證明:連接DO.∵AB為⊙O的直徑,BC為⊙O的切線,∴∠CBO=90°,∵ADOC,∴∠DAO=∠COB,∠ADO=∠COD.又∵OA=OD,∴∠DAO=∠ADO,∴∠COD=∠COB.在△COD和△COB中,,∴△COD≌△COB(SAS),∴∠CDO=∠CBO=90°.又∵點D在⊙O上,∴CD是⊙O的切線;故選項正確,符合題意;B.證明:∵△COD≌△COB,∴CD=CB,∵OD=OB,∴CO垂直平分DB,即CO⊥DB,故選項正確,符合題意;C.證明:∵AB為⊙O的直徑,DC為⊙O的切線,∴∠EDO=∠ADB=90°,∴∠EDA+∠ADO=∠BDO+∠ADO=90°,∴∠ADE=∠BDO,∵OD=OB,∴∠ODB=∠OBD,∴∠EDA=∠DBE,∵∠E=∠E,∴△EDA∽△EBD,故選項正確,符合題意;D.證明:∵∠EDO=∠EBC=90°,∠E=∠E,∴△EOD∽△ECB,∴,∵OD=OB,∴ED?BC=BO?BE,故選項錯誤,不符合題意.故選:ABC.【考點】本題主要考查了切線的判定、全等三角形的判定與性質(zhì)以及相似三角形的判定與性質(zhì),注意掌握輔助線的作法,注意數(shù)形結(jié)合思想的應(yīng)用是解答此題的關(guān)鍵.三、填空題1、2.【解析】【分析】過點作軸于.根據(jù)k的幾何意義,結(jié)合三角形面積之間的關(guān)系,求出交點D的坐標,代入即可求得k的值.【詳解】如圖,過點作軸于.把y=0代入得:x=2,故OA=2由反比例函數(shù)比例系數(shù)的幾何意義,可得,.∵,
∴,∴.易證,從而,即的橫坐標為,而在直線上,∴∴.故答案為2【考點】本題是一次函數(shù)與反比例函數(shù)的交點問題,主要考查了一次函數(shù)和反比例函數(shù)的圖象與性質(zhì),反比例函數(shù)“k“的幾何意義,一次函數(shù)圖象與反比例函數(shù)圖象的交點問題,關(guān)鍵是根據(jù)兩個三角形的面積相等列出k的方程.2、或8或或【解析】【分析】當△CEF為直角三角形時,有兩種情況:①當點F落在矩形內(nèi)部時,如答圖1所示.先利用勾股定理計算出AC=10,根據(jù)折疊的性質(zhì)得∠AFE=∠D=90°,設(shè)DE=x,則EF=x,CE=6-x,然后在Rt△CEF中運用勾股定理可計算出x即可.②當點F落在AB邊上時,如答圖2所示.此時四邊形ADEF為正方形,得出DE=AD=8.③當點F落在BC邊上時,利用勾股定理即可解決問題;④如圖4中,當點F在CB的延長線上時,根據(jù)勾股定理列出方程求解即可.【詳解】解:∵四邊形ABCD是矩形,∴∠D=∠B=90°,CD=AB=6,,當△CEF為直角三角形時,有兩種情況:①當點F落在矩形內(nèi)部時,F(xiàn)落在AC上,如圖1所示.由折疊的性質(zhì)得:EF=DE,AF=AD=8,設(shè)DE=x,則EF=x,CE=6-x,在Rt△CEF中,由勾股定理得:∵EF2+CF2=CE2,∴x2+22=(6-x)2,解得x=,∴DE=;②當點F落在AB邊上時,如圖2所示.此時ADEF為正方形,∴DE=AD=8.③如圖4,當點F落在BC邊上時,易知BF,設(shè)DE=EF=x,在Rt△EFC中,,,,④如圖3中,當點F在CB的延長線上時,設(shè)DE=EF=x,則BF,在Rt△CEF中,,解得x=,綜上所述,BE的長為或8或或.【考點】本題考查了折疊的性質(zhì)、矩形的性質(zhì)、勾股定理、正方形的判定與性質(zhì)等知識;熟練掌握折疊和矩形的性質(zhì)是解決問題的關(guān)鍵.3、16【解析】【分析】題干已知△ABC與△是位似圖形,利用面積相似比進行分析求解.【詳解】解:△ABC與△是位似圖形,得到,利用相似圖形,面積比即是對應(yīng)線段比的平方比得到,由,得到=16.【考點】本題考查位似圖形,利用相似圖形的面積比即是對應(yīng)線段比的平方比,從而分析求解.4、【解析】【分析】由DE:EC=3:1,可得DF:FB=3:4,根據(jù)在高相等的情況下三角形面積比等于底邊的比,可得S△EFD:S△BEF=3:4,S△BDE:S△BEC=3:1,可求△DEF的面積與四邊形BCEF的面積的比值.【詳解】解:連接BE∵DE:EC=3:1∴設(shè)DE=3k,EC=k,則CD=4k∵ABCD是平行四邊形∴AB∥CD,AB=CD=4k,∴,∴S△EFD:S△BEF=3:4∵DE:EC=3:1∴S△BDE:S△BEC=3:1設(shè)S△BDE=3a,S△BEC=a則S△EFD=,,S△BEF=,∴SBCEF=S△BEC+S△BEF=,∴則△DEF的面積與四邊形BCEF的面積之比9:19故答案為:.【考點】本題考查了平行線分線段成比例,平行四邊形的性質(zhì),關(guān)鍵是運用在高相等的情況下三角形面積比等于底邊的比求三角形的面積比值.5、【解析】【分析】設(shè)每件襯衫降價x元,根據(jù)每件襯衫每降價1元,商場平均每天可多售出2件可得銷售量為,則每件襯衫的利潤為,根據(jù)銷售量乘以每件襯衫的利潤等于1200元,列出一元二次方程即可【詳解】解:設(shè)每件襯衫降價x元,根據(jù)題意得,故答案為:【考點】本題考查了一元二次方程的應(yīng)用,根據(jù)題意列出一元二次方程是解題的關(guān)鍵.6、且【解析】【分析】若一元二次方程有兩個不相等的實數(shù)根,則△=b2-4ac>0,建立關(guān)于k的不等式,求得k的取值范圍,還要使二次項系數(shù)不為0.【詳解】∵方程有兩個不相等的實數(shù)根,∴解得:,又二次項系數(shù)故答案為且【考點】考查一元二次方程根的判別式,當時,方程有兩個不相等的實數(shù)根.當時,方程有兩個相等的實數(shù)根.當時,方程沒有實數(shù)根.7、3【解析】【分析】根據(jù)直角三角形的性質(zhì)得到AB=10,利用勾股定理求出AC,再說明DE∥AC,得到,即可求出DE.【詳解】解:∵∠ACB=90°,點D為AB中點,∴AB=2CD=10,∵BC=8,∴AC==6,∵DE⊥BC,AC⊥BC,∴DE∥AC,∴,即,∴DE=3,故答案為:3.【考點】本題考查了直角三角形的性質(zhì),勾股定理,平行線分線段成比例,解題的關(guān)鍵是通過平行得到比例式.8、22.5°【解析】【分析】由四邊形ABCD是一個正方形,根據(jù)正方形的性質(zhì),可得∠ACB=45°,又由AC=EC,根據(jù)等邊對等角,可得∠E=∠CAE,繼而根據(jù)等腰三角形的性質(zhì)和三角形的內(nèi)角和求得∠EAC的度數(shù),進一步即可求得∠DAE的度數(shù).【詳解】解:∵四邊形是正方形,∴,∴,又∵,∴,則.故答案為:22.5°【考點】此題考查了正方形的性質(zhì)以及等腰三角形的性質(zhì).此題比較簡單,注意掌握數(shù)形結(jié)合思想的應(yīng)用.四、解答題1、(1);(2);理由見解析;(3),理由見解析.【解析】【分析】(1)利用直角的邊長就可以表示出等邊三角形、、的大小,滿足勾股定理;(2)利用直角的邊長就可以表示出半圓、、的大小,滿足勾股定理;(3)利用BC、AD的長分別表示正方形、、、的大小,根據(jù)BC=2AD,即可求解.【詳解】解:(1)由題意可得:,,,,,故答案為:;(2)由題意得:,,,,故答案為:;(3)過D作,交BC于點E,∵AD∥BC,∴四邊形ABED為平行四邊形,故,又∵BC=2AD,∴,,∴,∵,,,,∴,故答案為:.【考點】本題主要考查的是三角形、正方形、圓形的計算面積以及勾股定理,熟練掌握三角形、正方形、圓形的面積的計算公式是解答本題的關(guān)鍵.2、旗桿的高度為11.5m【解析】【分析】根據(jù)相似三角形的性質(zhì)列式計算即可;【詳解】解:由題意可得:△DEF∽△DCA,則,∵DE=0.5米,EF=0.25米,DG=1.5m,DC=20m,∴,解得:AC=10,故AB=AC+BC=10+1.5=11.5(m).答:旗桿的高度為11.5m.【考點】本題主要考查了相似三角形的性質(zhì)應(yīng)用,準確分析計算是解題的關(guān)鍵.3、(1)1;(2)【解析】【分析】(1)設(shè)a=2k,b=3k,c=5k,代入代數(shù)式,即可求出答案;(2)把a、b、c的值代入,求出即可.【詳解】∵∴設(shè)a=2k,b=3k,c=5k,(1);(2)∵∴6k-3k+5k=24,∴k=3,∴a=2×3=6,b=3×3=9,c=5×3=15.【考點】本題考查了比例的性質(zhì)的應(yīng)用,主要考查學生的計算能力.4、(1)見解析;(2);見解析;(3)【解析】【分析】(1)先△ABE≌△DAQ,可得AE=DQ;再證明四邊形DQFG是平行四邊形即可解決問題;(2)如圖2中,作GM⊥AB于M.然后證明△ABE∽△GMF即可解決問題;(3)如圖3中,作PM⊥BC交BC的延長線于M.利用相似三角形的性質(zhì)求出PM,CM即可解決問題.【詳解】(1)如圖(1),∵四邊形ABCD是正方形,∴AB=DA,∠ABE=90°=∠DAQ.∴∠QAO+∠OAD=90°.∵AE⊥DQ,∴∠ADO+∠OAD=90°.∴∠QAO=∠ADO.∴△ABE≌△DAQ(ASA),∴AE=DQ.∵四邊形ABCD是正方形,AE⊥DQ,AE⊥GF,∴DG∥QF,DQ∥GF,∴四邊形DQFG是平行四邊形,∴DQ
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廢舊船舶拆解作業(yè)人員培訓與技能提升方案
- 鄉(xiāng)村文化傳承與創(chuàng)新方案
- 城市道路照明施工安全管理方案
- 牛群健康管理與監(jiān)控方案
- 中藥煎服中藥煎服煎藥工作制度及操作常規(guī)52課件
- 二零二五年度戶外廣告創(chuàng)意策劃與執(zhí)行合同
- 二零二五年度工業(yè)自動化項目承建勞務(wù)承包合同
- 2025版股權(quán)激勵計劃實施與協(xié)同發(fā)展框架協(xié)議
- 二零二五年建筑工程項目管理合同承包標準
- 二零二五年度代購服務(wù)安全協(xié)議
- 安全顧問聘請協(xié)議
- 糖尿病酮癥酸中毒的護理課件
- 設(shè)備材料進場報驗單
- 班組長計劃管理能力考試題庫-上(選擇題)
- (完整版)《機械制造工藝基礎(chǔ)》教案
- 小學四年級數(shù)學口算題(每頁60道直接打印).文檔
- 誘思探究理論
- 銑床日常點檢保養(yǎng)記錄表
- 農(nóng)產(chǎn)品貯藏與加工教案
- 04某污水處理廠630kW柔性支架光伏發(fā)電項目建議書
- 2022中國移動通信集團重慶限公司招聘上岸筆試歷年難、易錯點考題附帶參考答案與詳解
評論
0/150
提交評論