




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
青島版8年級下冊數學期末試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、下列圖案中,是軸對稱圖形但不是中心對稱圖形的是(
)A. B. C. D.2、一個等腰三角形一邊長為2,另一邊長為,那么這個等腰三角形的周長是(
)A. B. C.或 D.以上都不對3、若在實數范圍內有意義,則的取值范圍是(
)A. B. C. D.4、如圖是一個放置在水平桌面上的錐形瓶,向錐形瓶中勻速注水,則水面高度與注水時間之間的函數關系圖象大致是(
)A. B.C. D.5、2022年新年賀詞中提到“人不負青山,青山定不負人”,下列四個有關環(huán)保的圖形中,是軸對稱圖形,但不是中心對稱圖形的是(
)A. B. C. D.6、小明用四根長度相同的木條制作了能夠活動的菱形學具,他先活動學具成為圖1所示菱形,并測得∠B=60°,對角線AC=10cm,接著活動學具成為圖2所示正方形,則圖2中對角線AC的長為()A.10cm B.20cm C.30cm D.cm7、的算術平方根是(
)A.9 B. C.3 D.8、下列各數中,無理數是()A. B.3.14 C. D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、如圖,直線AB的解析式為y=﹣x+b分別與x,y軸交于A,B兩點,點A的坐標為(3,0),過點B的直線交x軸負半軸于點C,且,在x軸上方存在點D,使以點A,B,D為頂點的三角形與△ABC全等,則點D的坐標為_____.2、如圖,長方體的長EF=8,寬AE=2,高AD=4,已知螞蟻從頂點G出發(fā),沿長方體的表面到達棱AD的中點B處,則它爬行的最短路程為_____.(結果保留根號)3、如圖,邊長為1的正六邊形放置于平面直角坐標系中,邊在軸正半軸上,頂點在軸正半軸上,將正六邊形繞坐標原點順時針旋轉,每次旋轉,那么經過第2022次旋轉后,頂點的坐標為________.4、如圖,一次函數y=x+2的圖像與坐標軸分別交于A,B兩點,點P,C分別是線段AB,OB上的點,且∠OPC=45°,PC=PO,則點P的坐標為______.5、如圖,矩形紙片ABCD中,AB=6,BC=10,先按圖②操作:將矩形紙片ABCD沿過點A的直線折疊,使點B落在邊AD上的點E處,折痕為AF;再按圖③操作,沿過點E的直線折疊,使點D落在EF上的點H處,折痕為EG,則FH=_____.6、若“*”表示一種新運算,它的意義是:,例,計算____________.7、若一個直角三角形的三邊長分別為x,12,13,則x=_____.三、解答題(7小題,每小題10分,共計70分)1、某郵遞公司收費方式有兩種:方式一:郵遞物品不超過3千克,按每千克2元收費;超過3千克,3千克以內每千克2元,超過的部分按每千克1.5元收費.方式二:基礎服務費4元,另外每千克加收1元.小王通過該郵遞公司郵寄一箱物品的質量為x千克(x>3).(1)請分別直接寫出小王用兩種付費方式所需的郵遞費用y(元)與x(千克)之間的函數關系式,并在如圖所示的直角坐標系中畫出圖象;(2)若兩種付費方式所需郵遞費用相同,求這箱物品的質量;(3)若采用“方式二”所需要郵遞費用比采用“方式一”便宜5元,求這箱物品的質量.2、某學校為進一步做好疫情防控工作,計劃購進A,B兩種口罩.已知每箱A種口罩比每箱B種口罩多10包,每箱A種口罩和每箱B種口罩的價格分別是630元和600元,而每包A種口罩和每包B種口罩的價格分別是這一批口罩平均每包價格的0.9倍和1.2倍.(1)求這一批口罩平均每包的價格是多少元.(2)如果購進A,B兩種口罩共5500包,最多購進3500包A種口罩,為了使總費用最低,應購進A種口罩和B種口罩各多少包?總費用最低是多少元?3、在△ABC中,∠ACB=90°,AC=BC=10,點D為AB的中點,連結DC.點E以每秒1個單位長度的速度從點A出發(fā),沿射線AC方向運動,連結DE.過點D作DF⊥DE,交射線CB于點F,連結EF.設點E的運動時間為t(秒).(1)如圖,當0<t<10時.①求證:∠ADE=∠CDF;②試探索四邊形CEDF的面積是否為定值?若為定值,求出這個定值;若不為定值,請說明理由;(2)當t≥10時,試用含t的代數式表示△DEF的面積.4、如圖1,在Rt△ABC中,∠ACB=90°,E是邊AC上任意一點(點E與點A,C不重合),以CE為一直角邊作Rt△ECD,∠ECD=90°,連接BE,AD.若AC=BC,CE=CD.(1)猜想線段BE,AD之間的數量關系及所在直線的位置關系,寫出結論并說明理由;(2)現(xiàn)將圖1中的Rt△ECD繞著點C順時針旋轉銳角α,得到圖2,請判斷①中的結論是否仍然成立,若成立,請證明;若不成立,請說明理由.5、小李在某網店選中A、B兩款玩偶,確定從該網店進貨并銷售.兩款玩偶的進貨價和銷售價如表:類別價格A款玩偶B款玩偶進貨價(元/個)4030銷售價(元/個)5645(1)第一次小李用1100元購進了A、B兩款玩偶共30個,求兩款玩偶各購進多少個?(2)第二次小李進貨時,網店規(guī)定A款玩偶進貨數量不得超過B款玩偶進貨數量的一半,小李計劃購進兩款玩偶60個.設小李購進A款玩偶m個,售完兩款玩偶共獲得利潤W元,問應如何設計進貨方案才能獲得最大利潤?并求W的最大值.6、如圖,四邊形ABCD是矩形紙片,,,在上取一點,將紙片沿AE翻折,使點D落在BC邊上的點F處.(1)AF的長=______;(2)BF的長=______;(3)CF的長=______;(4)求DE的長.7、先閱讀短文,然后回答短文后面所給出的問題:對于三個數a、b、c的平均數,最小的數都可以給出符號來表示,我們規(guī)定M{a,b,c}表示這三個數的平均數,min{a,b,c}表示這三個數中的最小的數,max{a,b,c}表示這三個數中最大的數.例如:M{﹣1,2,3}=,min{﹣1,2,3}=﹣1,max{﹣1,2,3}=3;M{﹣1,2,a}==,min{﹣1,2,a}=.(1)請?zhí)羁眨簃in{﹣1,3,0}=;若x<0,則max{2,x2+2,x+1}=;(2)若min{2,2x+2,4﹣2x}=M{x﹣1,5﹣4x,3x+2},求x的取值范圍.(3)若M{2,x+1,2x}=min{2,x+1,2x},求x的值.-參考答案-一、單選題1、B【解析】【分析】根據軸對稱圖形與中心對稱圖形的概念逐一判斷即可得答案.【詳解】A.既不是軸對稱圖形也不是中心對稱圖形,不符合題意,B.是軸對稱圖形但不是中心對稱圖形,符合題意,C.不是軸對稱圖形但是中心對稱圖形,不符合題意,D.既不是軸對稱圖形也不是中心對稱圖形,不符合題意,故選:B.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念:軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分沿對稱軸折疊后可重合;中心對稱圖形是要尋找對稱中心,旋轉180度后與原圖重合.2、C【解析】【分析】題目給出等腰三角形有兩條邊長為2和,而沒有明確腰、底分別是多少,所以要進行討論,還要應用三角形的三邊關系驗證能否組成三角形.【詳解】解:分兩種情況:當腰為2時,2+2>,所以能構成三角形,周長是:2+2+=4+;當腰為時,2+>,所以能構成三角形,周長是:2++=2+2.所以這個等腰三角形的周長是4+或2+2,故選:C.【點睛】本題考查了等腰三角形的性質和三角形的三邊關系;已知沒有明確腰和底邊的題目一定要想到兩種情況,分類進行討論,還應驗證各種情況是否能構成三角形進行解答,這點非常重要,也是解題的關鍵.3、A【解析】【分析】直接利用二次根式中的被開方數是非負數,求出答案即可.【詳解】解:∵在實數范圍內有意義,∴3-x≥0,∴x≤3,故選:A【點睛】本題考查二次根式有意義,解題的關鍵是正確理解二次根式有意義的條件,本題屬于基礎題型.4、B【解析】【分析】根據注水速度與水面高度的關系和錐形瓶的形狀,即可得到函數大致圖像,此題得解.【詳解】解:向錐形瓶中勻速注水,則水面上升的速度由慢變快,最后到了到達錐形瓶上部時,上升的速度不變,即圖象開始的曲線由緩到陡,最后是一條線段,故符合題意的圖象是選項B.故選:B.【點睛】熟練掌握自變量與因變量之間的關系,此題需要重點關注的是錐形瓶的形狀.5、D【解析】【分析】軸對稱圖形:如果一個平面圖形沿著一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形.中心對稱圖形:在平面內,把一個圖形繞著某個點旋轉180°,如果旋轉后的圖形與另一個圖形重合,那么就說明這兩個圖形的形狀關于這個點成中心對稱.根據軸對稱圖形、和中心對稱圖形的概念,即可完成解題.【詳解】解:根據軸對稱和中心對稱的概念,選項A、B、C、D中,是軸對稱圖形的是B、D,是中心對稱圖形的是B.故選:B.【點睛】本題主要軸對稱圖形、中心對稱圖形的概念,熟練掌握知識點是解答本題的關鍵.6、D【解析】【分析】分別連接圖1與圖2中的AC,證明圖1中△ABC是等邊三角形,求出BC,利用勾股定理求出圖2中AC.【詳解】解:分別連接圖1與圖2中的AC,在圖1中:∵四邊形ABCD是菱形,∴AB=BC,∵∠B=60°,∴△ABC是等邊三角形,∴AB=AC=10cm,在圖2中,BC=AB=10cm,∠B=90°,∴cm,故選:D.【點睛】此題考查了菱形的性質,正方形的性質,等邊三角形的判定及性質,勾股定理,解題的關鍵是理解兩圖中的邊長相等.7、C【解析】【分析】根據算術平方根的定義求解即可.【詳解】解:∵,∴的算術平方根為3,故選:C.【點睛】本題考查算術平方根,會求一個數的算術平方根是解答的關鍵.8、D【解析】【分析】根據無理數是無限不循環(huán)小數進行逐項判斷即可.【詳解】解:A、-2是有理數,不符合題意;B、3.14是有理數,不符合題意;C、是有理數,不符合題意;D、是無理數,符合題意,故選:D.【點睛】本題主要考查無理數,解答的關鍵掌握無理數與有理數的概念:有理數包含整數和分數、無理數為無限不循環(huán)小數.二、填空題1、(4,3)或(3,4)【解析】【分析】求出的坐標,分平行軸,不平行軸兩種情況,求解計算即可.【詳解】解:將點A的坐標代入函數表達式得:0=﹣3+b,解得:b=3∴直線AB的表達式為:y=﹣x+3,∴點B(0,3)∵OB:OC=3:1∴OC=1,∴點C(﹣1,0);①如圖,當BD平行x軸時,以點為頂點的三角形與全等,則四邊形為平行四邊形則BD=AC=1+3=4,則點D(4,3);②當BD不平行x軸時,則S△ABD=S△ABD′,則點D、D′到AB的距離相等,∴直線DD′∥AB,設直線DD′的表達式為:y=﹣x+n,將點D的坐標代入y=﹣x+n中解得:n=7,∴直線DD′的表達式為:y=﹣x+7,設點D′(m,7﹣m),∵A,B,D′為頂點的三角形與△ABC全等,則BD′=BC=,解得:m=3,故點D′(3,4);故答案為:(4,3)或(3,4).【點睛】本題考查了一次函數圖象上點的坐標特征,三角形全等,平行線的性質,勾股定理等知識.解題的關鍵與難點在于分情況求解.2、【解析】【分析】分三種情況:展開長方體的正面和上面,展開長方體的正面和右面,展開長方體的左面和上面,利用勾股定理分別求出對應的最小長度,最后比較即可.【詳解】解:如圖所示展開正面和上面,連接BG,,∴EF=CG=HD=8,AE=GH=2,∠H=90°,∵B是AD的中點,AD=4,∴,∴BH=HD+BD=10,∴;同理可以求出當展開正面和右面時,,當展開左面和上面時,,∵,∴,∴它爬行的最短路程為,故答案為:.【點睛】本題主要考查了勾股定理的應用,實數比較大小,解題的關鍵在于能夠根據題意利用分類討論的思想求解.3、【解析】【分析】連接AD、BD,由勾股定理可得BD,求出∠OFA=30°,得到OA的值,進而求得OB的值,得到點D的坐標,由題意可得6次一個循環(huán),即可求出經過第2022次旋轉后,頂點的坐標.【詳解】解:如圖,連接AD,BD,在正六邊形ABCDEF中,,∴,在中,,∴,∴,∴,∴,∵將正六邊形ABCDEF繞坐標原點O順時針旋轉,每次旋轉60°,∴6次一個循環(huán),∵,∴經過第2022次旋轉后,頂點D的坐標與第一象限中D點的坐標相同,故答案為:.【點睛】此題考查了正六邊形的性質,平面直角坐標系中圖形規(guī)律問題,解題的關鍵是正確分析出點D坐標的規(guī)律.4、【解析】【分析】根據∠OPC=45°,PC=PO,證明∠BPC=∠AOP,從而證明△BPC≌△AOP,得到PB=AO=2,過點P作PD⊥y軸,求得PD,BD,DO,根據點所在象限即可確定點P的坐標.【詳解】∵一次函數y=x+2的圖像與坐標軸分別交于A,B兩點,∴A(-2,0),B(0,2),∴OA=OB,∴∠PAO=∠CBP=45°,∵∠OPC=45°,PC=PO,∴∠PCO=∠COP=67.5°,∴∠BPC=∠AOP=22.5°,∴△BPC≌△AOP,∴PB=AO=2,過點P作PD⊥y軸,垂注為D,則PD=BD==,∴DO=OB-BD=2-,∵點P在第二象限,∴點P(,),故答案為:(,).【點睛】本題考查了一次函數與坐標軸的交點,三角形全等的判定和性質,等腰三角形的性質,坐標與象限和線段之間的關系,熟練掌握一次函數與坐標軸的交點確定,靈活運用三角形全等的判定和性質是接退的關鍵.5、【解析】【分析】根據折疊的性質可得,,,,進而可得【詳解】解:∵將矩形紙片ABCD沿過點A的直線折疊,使點B落在邊AD上的點E處,折痕為AF;∴,沿過點E的直線折疊,使點D落在EF上的點H處,折痕為EG,故答案為:2【點睛】本題考查了矩形的性質,折疊的性質,等腰三角形的性質,掌握折疊的性質是解題的關鍵.6、-13【解析】【分析】根據新定義列式計算即可.【詳解】解:∵,∴=-15+2=-13.故答案為:-13.【點睛】本題考查了新定義,以及有理數的四則混合運算,根據新定義列出算式是解答本題的關鍵.7、5或##或5【解析】【分析】由于此題中直角三角形的斜邊不能確定,故應分5是直角三角形的斜邊和直角邊兩種情況討論.【詳解】解:∵這個直角三角形的三邊長分別為x,12,13,∴①當13是此直角三角形的斜邊時,由勾股定理得到:x==5;②當12,13是此直角三角形的直角邊時,由勾股定理得到:x=.故選:5或.【點睛】本題考查的是勾股定理,解答此題時要注意要分類討論,不要漏解.三、解答題1、(1),,見解析(2)5千克(3)15千克【解析】【分析】(1)根據題意,可以寫出兩種付費方式所需的郵遞費用y(元)與x(千克)之間的函數關系式,并在直角坐標系中畫出圖象;(2)根據題意和(1)中的函數解析式,令它們的函數值相等,求出相應的x的值即可;(3)根據題意,可以列出相應的方程,然后求解即可.(1)由題意可得,方式一:所需的郵遞費用y(元)與x(千克)之間的函數關系式是y=3×2+(x?3)×1.5=1.5x+1.5,當x=4時,y=7.5,當x=5時,y=9;方式二:所需的郵遞費用y(元)與x(千克)之間的函數關系式是y=x+4,當x=4時,y=8,當x=5時,y=9;它們的函數圖象如圖所示:(2)由題意可得:1.5x+1.5=x+4,解得x=5,答:兩種付費方式所需郵遞費用相同,這箱物品的質量是5千克.(3)由題意可得:(1.5x+1.5)?(x+4)=5,解得x=15,答:這箱物品的質量是15千克.【點睛】本題考查一次函數的應用、一元一次方程的應用,解答本題的關鍵是明確題意,寫出相應的函數解析式,列出相應的方程.2、(1)20元(2)購進A種口罩3500包,B種口罩2000包時,能使總費用最低,總費用最低是111000元.【解析】【分析】(1)設這一批口罩平均每包的價格是x元,根據“每箱A種口罩比每箱B種口罩多10包,每箱A種口罩和每箱B種口罩的價格分別是630元和600元,而每包A種口罩和每包B種口罩的價格分別是這一批口罩平均每包價格的0.9倍和1.2倍”列分式方程解答即可;(2)設購進A種口罩t包,這批口罩的總費用為w元,根據題意得出w與t的函數關系式,再根據t的取值范圍以及一次函數的性質解答即可.(1)解:設這一批口罩平均每包的價格是x元,根據題意得:,解得x=20,經檢驗,x=20是原方程的解,并符合題意,答:這一批口罩平均每包的價格是20元;(2)解:由(1)可知,A種口罩每包價格為20×0.9=18(元),B種口罩每包價格為20×1.2=24(元),設購進A種口罩t包,這批口罩的總費用為w元,根據題意得:w=18t+24(5500﹣t)=﹣6t+132000,∵w是t的一次函數,k=﹣6<0,∴w隨t的增大而減小,由∵t≤3500,∴當t=3500時,w最小,此時B種口罩有:5500﹣3500=2000(包),w=﹣6×3500+132000=111000,答:購進A種口罩3500包,B種口罩2000包時,能使總費用最低,總費用最低是111000元.【點睛】此題主要考查了分式方程的應用,一次函數的應用,正確得出等量關系是解題關鍵.3、(1)①見解析;②是,25(2)【解析】【分析】(1)①利用等腰三角形的三線合一的性質證明即可;②結論:四邊形CEDF的面積為定值.證明△ADE≌△CDF(ASA),可得結論;(2)當t≥10時,點E在AC的延長線上.過點D分別作DG⊥BC,DH⊥AC,垂足分別為點G,H.證明△DBF≌△DCE(ASA),推出BF=CE=t﹣10,CF=CB+BF=10+(t﹣10)=t.再根據S△DEF=S四邊形DCEF﹣S△DCE,求解即可.(1)證明:(1)①∵AC=BC,點D為AB的中點,∴CD⊥AB,∵DF⊥DE,∴∠ADE+∠CDE=∠CDF+∠CDE=90°,∴∠ADE=∠CDF;②結論:四邊形CEDF的面積為定值,理由如下:∵AC=BC,點D為AB的中點,∠ACB=90°,∴∠A=∠B=∠ACD=∠BCD=45°,,∴AD=BD=CD,∵∠ADE=∠CDF,∴△ADE≌△CDF(ASA),∴S△ADE=S△CDF,∴S四邊形CEDF=S△CDE+S△CDF=S△CDE+S△ADE=S△ACD=.∴四邊形CEDF的面積為定值.(2)解:當t≥10時,點E在AC的延長線上.過點D分別作DG⊥BC,DH⊥AC,垂足分別為點G,H.∵∠FDC=∠FDE+∠CDE=∠BDC+∠BDF,∴∠BDF=∠CDE.由②得:AD=BD=CD,∠ABC=∠ACD=45°,∴∠DBF=∠DCE=135°,∴△DBF≌△DCE(ASA),∴BF=CE=t﹣10,∴CF=CB+BF=10+(t﹣10)=t.∵,DG⊥BC,DH⊥AC,∴,∵AD=BD=CD,AC=BC=10,∴DG=DH=5.∵=,∴.【點睛】本題主要考查了等腰三角形的判定和性質,角平分線的性質定理,直角三角形的性質,全等三角形的判定和性質,熟練掌握相關知識點是解題的關鍵.4、(1)BE=AD,BE⊥AD;理由見解析(2)BE=AD,BE⊥AD仍然成立;證明見解析【解析】【分析】(1)延長BE,交AD于點F,證明△BCE≌△ACD,得到∠EBC+∠ADC=90°,從而得到∠BFD=90°即可得證.(2)仿照(1)的思路,證明△ACD≌△BCE,得到∠AFG+∠CAD=90°,從而得證∠AGF=90°.(1)BE=AD,BE⊥AD;理由:在△BCE和△ACD中,,∴△BCE≌△ACD(SAS),∴BE=AD,∠BEC=∠ADC,∵∠EBC+∠BEC=90°,∴∠EBC+∠ADC=90°,延長BE,交AD于點F,∴∠BFD=90°,∴BE⊥AD.(2)BE=AD,BE⊥AD仍然成立;理由:設BE與AC的交點為點F,BE與AD的交點為點G,如圖,∵∠ACB=∠ECD=90°,∴∠ACD=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴AD=BE,∠CAD=∠CBE.∵∠BFC=∠AFG,∠BFC+∠CBE=90°,∴∠AFG+∠CAD=90°.∴∠AGF=90°.∴BE⊥AD.【點睛】本題考查了直角三角形的全等證明和性質,運用兩角互余證明垂直,旋轉的性質,熟練掌握全等三角形的判定,靈活運用互余關系是解題的關鍵.5、(1)A款玩偶購進20個,B款玩偶購進10個;(2)按照A款玩偶購進20個,B款玩偶購進40個的方案進貨才能獲得最大利潤,最大利潤是920元.【解析】【分析】(1)根據第一次購進30個,設A款玩偶購進x個,則B款玩偶購進(30-x)個,再由用1100元購進了A,B兩款玩偶建立方程求出其解即可;(2)根據第二次購進兩款玩偶60個,設A款玩偶購進m個,則B款玩偶購進(60-m)個,獲利W元,根據題意可以得到利潤與A款玩偶數量的函數關系,然后根據A款玩偶進貨數量不得超過B款玩偶進貨數量的一半,可以求得A款玩偶數量的取值范圍,再根據一次函數的性質,即可求得如何設計進貨方案才能獲得最大利潤.(1)解:設A款玩偶購進x個,B款玩偶購進(30-x)個,由題意可得,解得,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025若合同協(xié)議只有英文版,沒有中文版,是否可認為無效
- 2025租房中介服務合同協(xié)議樣本
- 2025工程承包合同違約金的計算
- 2025關于終止技術服務合同的的情形
- 設施維修維護合同范本
- 裝修增補項目合同范本
- 房建拆除合同范本
- 北京轉租房合同范本
- 2025重慶汽車租賃合同模板
- 小區(qū)活動招商合同范本
- 2024全新標前協(xié)議書范本下載
- 企業(yè)員工職業(yè)道德考核制度
- 公司安全事故隱患內部舉報、報告獎勵制度
- 【初中物理】質量與密度練習題 2024-2025學年初中物理人教版八年級上冊
- 南外初中小語種課程設計
- 【上海市塑料探究所企業(yè)員工激勵機制存在的問題及優(yōu)化建議探析(論文)8200字】
- Unit2 Whats your hobby-教案人教精通版英語六年級上冊
- 【必刷題】2024五年級英語上冊一般過去時專項專題訓練(含答案)
- T-CTSS 86-2024 原味茶飲料標準
- NB-T 10436-2020 電動汽車快速更換電池箱冷卻接口通.用技術要求
- 簡易財務報表附注模板
評論
0/150
提交評論