




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
京改版數(shù)學(xué)9年級(jí)上冊(cè)期末試題考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題26分)一、單選題(6小題,每小題2分,共計(jì)12分)1、如圖,△ABC內(nèi)接于⊙O,∠A=50°.E是邊BC的中點(diǎn),連接OE并延長(zhǎng),交⊙O于點(diǎn)D,連接BD,則∠D的大小為()A.55° B.65° C.60° D.75°2、如圖A、B、C在⊙O上,連接OA、OB、OC,若∠BOC=3∠AOB,劣弧AC的度數(shù)是120o,OC=.則圖中陰影部分的面積是(
)A. B. C. D.3、關(guān)于函數(shù),下列說(shuō)法:①函數(shù)的最小值為1;②函數(shù)圖象的對(duì)稱軸為直線x=3;③當(dāng)x≥0時(shí),y隨x的增大而增大;④當(dāng)x≤0時(shí),y隨x的增大而減小,其中正確的有()個(gè).A.1 B.2 C.3 D.44、關(guān)于的方程有兩個(gè)不相等的實(shí)根、,若,則的最大值是(
)A.1 B. C. D.25、已知⊙O的半徑為4,點(diǎn)O到直線m的距離為d,若直線m與⊙O公共點(diǎn)的個(gè)數(shù)為2個(gè),則d可取()A.5 B.4.5 C.4 D.06、如圖,在RtABC中,∠C=90°,AC=3cm,BC=4cm,D從A出發(fā)沿AC方向以1cm/s向終點(diǎn)C勻速運(yùn)動(dòng),過(guò)點(diǎn)D作DEAB交BC于點(diǎn)E,過(guò)點(diǎn)E作EF⊥BC交AB于點(diǎn)F,當(dāng)四邊形ADEF為菱形時(shí),點(diǎn)D運(yùn)動(dòng)的時(shí)間為()sA. B. C. D.二、多選題(7小題,每小題2分,共計(jì)14分)1、下列命題不正確的是(
)A.三角形的內(nèi)心到三角形三個(gè)頂點(diǎn)的距離相等B.三角形的內(nèi)心不一定在三角形的內(nèi)部C.等邊三角形的內(nèi)心,外心重合D.一個(gè)圓一定有唯一一個(gè)外切三角形2、如圖,在2×3的方格中,畫(huà)有格點(diǎn)△ABC,下列選項(xiàng)的方格中所畫(huà)格點(diǎn)三角形(陰影部分)與△ABC不相似的是()A. B. C. D.3、如圖,下列條件能判定△ABC與△ADE相似的是(
)A. B.∠B=∠ADEC. D.∠C=∠AED4、如圖是二次函數(shù)圖象的一部分,過(guò)點(diǎn),,對(duì)稱軸為直線.則錯(cuò)誤的有(
)A. B. C. D.5、下列用尺規(guī)等分圓周的說(shuō)法中,正確的是(
)A.在圓上依次截取等于半徑的弦,就可以六等分圓B.作相互垂直的兩條直徑,就可以四等分圓C.按A的方法將圓六等分,六個(gè)等分點(diǎn)中三個(gè)不相鄰的點(diǎn)三等分圓D.按B的方法將圓四等分,再平分四條弧,就可以八等分圓周6、已知,⊙的半徑為5,,某條經(jīng)過(guò)點(diǎn)的弦的長(zhǎng)度為整數(shù),則該弦的長(zhǎng)度可能為(
)A.4 B.6 C.8 D.107、如圖,在正方形ABCD中,E是BC的中點(diǎn),F(xiàn)是CD上一點(diǎn),且,下列結(jié)論:①∠BAE=30°,②△ABE∽△AEF,③AE⊥EF,④△ADF∽△ECF.其中正確的為(
)A.① B.② C.③ D.④第Ⅱ卷(非選擇題74分)三、填空題(7小題,每小題2分,共計(jì)14分)1、制作一塊3m×2m長(zhǎng)方形廣告牌的成本是120元,在每平方米制作成本相同的情況下,若將此廣告牌的四邊都擴(kuò)大為原來(lái)的3倍,那么擴(kuò)大后長(zhǎng)方形廣告牌的成本是_____元.2、如圖,四邊形內(nèi)接于⊙O若,則_______°.3、如圖,在⊙O中,,,則圖中陰影部分的面積是_________.(結(jié)果保留)4、若,則________.5、如圖,點(diǎn)O是正方形ABCD的對(duì)稱中心,射線OM,ON分別交正方形的邊AD,CD于E,F(xiàn)兩點(diǎn),連接EF,已知,.(1)以點(diǎn)E,O,F(xiàn),D為頂點(diǎn)的圖形的面積為_(kāi)________;(2)線段EF的最小值是_________.6、如圖,點(diǎn)P,A,B,C在同一平面內(nèi),點(diǎn)A,B,C在同一直線上,且PC⊥AC,在點(diǎn)A處測(cè)得點(diǎn)P在北偏東60°方向上,在點(diǎn)B處測(cè)得點(diǎn)P在北偏東30°方向上,若AP=12千米,則A,B兩點(diǎn)的距離為_(kāi)__千米.7、如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,AC=,BC的中點(diǎn)為D,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)任意一個(gè)角度得到△FEC,EF的中點(diǎn)為G,連接DG,在旋轉(zhuǎn)過(guò)程中,DG的最大值是________四、解答題(6小題,每小題10分,共計(jì)60分)1、如圖,拋物線y=a(x﹣2)2+3(a為常數(shù)且a≠0)與y軸交于點(diǎn)A(0,).(1)求該拋物線的解析式;(2)若直線y=kx(k≠0)與拋物線有兩個(gè)交點(diǎn),交點(diǎn)的橫坐標(biāo)分別為x1,x2,當(dāng)x12+x22=10時(shí),求k的值;(3)當(dāng)﹣4<x≤m時(shí),y有最大值,求m的值.2、如圖所示,直線y=x+2與坐標(biāo)軸交于A、B兩點(diǎn),與反比例函數(shù)y=(x>0)交于點(diǎn)C,已知AC=2AB.(1)求反比例函數(shù)解析式;(2)若在點(diǎn)C的右側(cè)有一平行于y軸的直線,分別交一次函數(shù)圖象與反比例函數(shù)圖象于D、E兩點(diǎn),若CD=CE,求點(diǎn)D坐標(biāo).3、已知二次函數(shù)().(1)求二次函數(shù)圖象的對(duì)稱軸;(2)若該二次函數(shù)的圖象開(kāi)口向上,當(dāng)時(shí),函數(shù)圖象的最高點(diǎn)為,最低點(diǎn)為,點(diǎn)的縱坐標(biāo)為,求點(diǎn)和點(diǎn)的坐標(biāo);(3)在(2)的條件下,對(duì)直線下方二次函數(shù)圖象上的一點(diǎn),若,求點(diǎn)的坐標(biāo).4、在矩形中,于點(diǎn),點(diǎn)是邊上一點(diǎn).(1)若平分,交于點(diǎn),PF⊥BD,如圖(1),證明四邊形是菱形;(2)若,如圖(2),求證:.5、內(nèi)接于⊙O,在劣弧上,連交于,連,.(1)如圖1,求證:;(2)如圖2,平分,求證:;(3)如圖3,在(2)條件下,點(diǎn)在延長(zhǎng)線上,連,于,,,,求⊙O半徑的長(zhǎng).6、頂點(diǎn)為D的拋物線y=﹣x2+bx+c交x軸于A、B(3,0),交y軸于點(diǎn)C,直線y=﹣x+m經(jīng)過(guò)點(diǎn)C,交x軸于E(4,0).(1)求出拋物線的解析式;(2)如圖1,點(diǎn)M為線段BD上不與B、D重合的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)M作x軸的垂線,垂足為N,設(shè)點(diǎn)M的橫坐標(biāo)為x,四邊形OCMN的面積為S,求S與x之間的函數(shù)關(guān)系式,并求S的最大值;(3)點(diǎn)P為x軸的正半軸上一個(gè)動(dòng)點(diǎn),過(guò)P作x軸的垂線,交直線y=﹣x+m于G,交拋物線于H,連接CH,將△CGH沿CH翻折,若點(diǎn)G的對(duì)應(yīng)點(diǎn)F恰好落在y軸上時(shí),請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo).-參考答案-一、單選題1、B【解析】【分析】連接CD,根據(jù)圓內(nèi)接四邊形的性質(zhì)得到∠CDB=180°﹣∠A=130°,根據(jù)垂徑定理得到OD⊥BC,求得BD=CD,根據(jù)等腰三角形的性質(zhì)即可得到結(jié)論.【詳解】解:連接CD,∵∠A=50°,∴∠CDB=180°﹣∠A=130°,∵E是邊BC的中點(diǎn),∴OD⊥BC,∴BD=CD,∴∠ODB=∠ODC=∠BDC=65°,故選:B.【考點(diǎn)】本題考查了圓內(nèi)接四邊形的性質(zhì),垂徑定理,等腰三角形的性質(zhì)等知識(shí).正確理解題意是解題的關(guān)鍵.2、C【解析】【分析】首先根據(jù)∠BOC=3∠AOB,劣弧AC的度數(shù)是120o得到∠AOB=30°,從而得到∠COB為直角,然后利用S陰影=S扇形OBC-S△OEC求解即可.【詳解】解:設(shè)OB與AC相交于點(diǎn)E,如圖∵劣弧AC的度數(shù)是120o∴∠AOC=120°∵OA=OC∴∠OCA=∠OAC=30°∵∠BOC=3∠AOB又∵∠AOC=∠AOB+∠BOC∴∠AOC=∠AOB+3∠AOB=120°∴∠AOB=30°∴∠BOC=3∠AOB=90°在Rt△OCE中,OC=2∴OE=OCtan∠OCE=2tan30°=2×=2∴S△OEC=×2×2=2S扇形OBC=∴用S陰影=S扇形OBC-S△OEC=-2故選C.【考點(diǎn)】本題考查了扇形面積的計(jì)算,解直角三角形等知識(shí).在求不規(guī)則的陰影部分的面積時(shí)常常轉(zhuǎn)化為幾個(gè)規(guī)則幾何圖形的面積的和或差.3、B【解析】【分析】根據(jù)所給函數(shù)的頂點(diǎn)式得出函數(shù)圖象的性質(zhì)從而判斷選項(xiàng)的正確性.【詳解】解:∵,∴該函數(shù)圖象開(kāi)口向上,有最小值1,故①正確;函數(shù)圖象的對(duì)稱軸為直線,故②錯(cuò)誤;當(dāng)x≥0時(shí),y隨x的增大而增大,故③正確;當(dāng)x≤﹣3時(shí),y隨x的增大而減小,當(dāng)﹣3≤x≤0時(shí),y隨x的增大而增大,故④錯(cuò)誤.故選:B.【考點(diǎn)】本題考查二次函數(shù)的性質(zhì),解題的關(guān)鍵是能夠根據(jù)函數(shù)解析式分析出函數(shù)圖象的性質(zhì).4、D【解析】【分析】根據(jù)一元二次方程根與系數(shù)的關(guān)系,求得兩根之和和兩根之積,再根據(jù)兩根關(guān)系,求得系數(shù)的關(guān)系,代入代數(shù)式,配方法化簡(jiǎn)求值即可.【詳解】解:由方程有兩個(gè)不相等的實(shí)根、可得,,,∵,可得,,即化簡(jiǎn)得則故最大值為故選D【考點(diǎn)】此題考查了一元二次方程根與系數(shù)的關(guān)系,涉及了配方法求解代數(shù)式的最大值,根據(jù)一元二次方程根與系數(shù)的關(guān)系得到系數(shù)的關(guān)系是解題的關(guān)鍵.5、D【解析】【分析】根據(jù)直線和圓的位置關(guān)系判斷方法,可得結(jié)論.【詳解】∵直線m與⊙O公共點(diǎn)的個(gè)數(shù)為2個(gè)∴直線與圓相交∴d<半徑=4故選D.【考點(diǎn)】本題考查了直線與圓的位置關(guān)系,掌握直線和圓的位置關(guān)系判斷方法:設(shè)⊙O的半徑為r,圓心O到直線l的距離為d.①直線l和⊙O相交?d<r②直線l和⊙O相切?d=r,③直線l和⊙O相離?d>r.6、D【解析】【分析】由勾股定理可求AB的長(zhǎng),由銳角三角函數(shù)可得,即可求解.【詳解】解:設(shè)經(jīng)過(guò)t秒后,四邊形ADEF是菱形,∴AD=DE=t,DE∥AB,∴CD=(3-t)(cm),∠ABC=∠DEC,∵∠C=90°,AC=3cm,BC=4cm,∴(cm),∵sin∠DEC=sin∠ABC=,∴,∴,故選:D.【考點(diǎn)】本題考查了菱形的性質(zhì),勾股定理,銳角三角函數(shù)等知識(shí),靈活運(yùn)用這些性質(zhì)解決問(wèn)題是本題的關(guān)鍵.二、多選題1、ABD【解析】【分析】根據(jù)三角形內(nèi)心的定義和圓的外切三角形的定義判斷即可.【詳解】解:A、三角形的內(nèi)心是三個(gè)內(nèi)角平分線的交點(diǎn),內(nèi)心到三角形三邊的距離相等,錯(cuò)誤,該選項(xiàng)符合題意;B、三角形的內(nèi)心是三個(gè)內(nèi)角平分線的交點(diǎn),三角形的內(nèi)心一定在三角形的內(nèi)部,錯(cuò)誤,該選項(xiàng)符合題意;C、等邊三角形的內(nèi)心,外心重合,正確,該選項(xiàng)不符合題意;D、經(jīng)過(guò)圓上的三點(diǎn)作圓的切線,三條切線相交,即可得到圓的一個(gè)外切三角形,所以一個(gè)圓有無(wú)數(shù)個(gè)外切三角形,錯(cuò)誤,該選項(xiàng)符合題意;故選:ABD.【考點(diǎn)】本題主要考查了內(nèi)心和外心以及命題的真假判斷,正確的命題叫真命題,錯(cuò)誤的命題叫做假命題.判斷命題的真假關(guān)鍵是要熟悉課本中的定義與定理.2、BCD【解析】【分析】先判斷格中所畫(huà)格點(diǎn)三角形為直角三角形,利用兩組對(duì)應(yīng)邊的比相等且?jiàn)A角對(duì)應(yīng)相等的兩個(gè)三角形相似,否則不相似,對(duì)各選項(xiàng)進(jìn)行判斷.【詳解】解:由圖知:∠ACB=90°,AC=2,BC=1,AC:BC=2,A選項(xiàng)中,三條線段的長(zhǎng)為,因?yàn)?,此三角形為直角三角形,長(zhǎng)直角邊與短直角邊的比為2,所以A選項(xiàng)的方格中所畫(huà)格點(diǎn)三角形(陰影部分)與△ABC相似,不符合題意;B選項(xiàng)中,長(zhǎng)直角邊與短直角邊的比為3,所以B中格點(diǎn)三角形與△ABC不相似,符合題意;C選項(xiàng)中,三條線段的長(zhǎng)為√,因?yàn)?,此三角形為直角三角形,兩直角邊的比?,所以C選項(xiàng)的方格中所畫(huà)格點(diǎn)三角形(陰影部分)與△ABC不相似,符合題意;D選項(xiàng)中,三角形的兩直角邊的比為1:1.所以D中格點(diǎn)三角形與△ABC不相似,符合題意,故選:BCD.【考點(diǎn)】本題考查相似三角形的判定,能在格點(diǎn)中表示各個(gè)線段的長(zhǎng)度和掌握相似三角形的判定定理是解決此題的關(guān)鍵.3、ABD【解析】【分析】利用兩組對(duì)應(yīng)邊的比相等且?jiàn)A角對(duì)應(yīng)相等的兩個(gè)三角形相似可對(duì)A、C進(jìn)行判斷;根據(jù)有兩組角對(duì)應(yīng)相等的兩個(gè)三角形相似可對(duì)B、C進(jìn)行判斷.【詳解】解:∵∠EAD=∠BAC,當(dāng),∠A=∠A,∴△ABC∽△ADE,故選項(xiàng)A符合題意;當(dāng)∠B=∠ADE時(shí),△ABC∽△ADE,故選項(xiàng)B符合題意;C選項(xiàng)中角A不是成比例的兩邊的夾角,故選項(xiàng)C不符合題意;當(dāng)∠C=∠AED時(shí),△ABC∽△ADE,故選項(xiàng)D符合題意;故選:ABD.【考點(diǎn)】本題考查了相似三角形的判定:①有兩個(gè)對(duì)應(yīng)角相等的三角形相似;②有兩個(gè)對(duì)應(yīng)邊的比相等,且其夾角相等,則兩個(gè)三角形相似;③三組對(duì)應(yīng)邊的比相等,則兩個(gè)三角形相似.4、BD【解析】【分析】由拋物線的開(kāi)口方向判斷a的符號(hào),由拋物線與y軸的交點(diǎn)判斷c的符號(hào),然后根據(jù)對(duì)稱軸x=?1可得2a+b的符號(hào);再由根的判別式可得,根據(jù)二次函數(shù)的對(duì)稱性進(jìn)而對(duì)所得結(jié)論進(jìn)行判斷.【詳解】解:A、由拋物線的開(kāi)口向下知a<0,與y軸的交點(diǎn)在y軸的正半軸上,知c>0,∵對(duì)稱軸為直線,得2a=b,∴a、b同號(hào),即b<0,∴abc>0;故本選項(xiàng)正確,不符合題意;B、∵對(duì)稱軸為,得2a=b,∴2a+b=4a,且a≠0,∴2a+b≠0;故本選項(xiàng)錯(cuò)誤,符合題意;C、從圖象知,該函數(shù)與x軸有兩個(gè)不同的交點(diǎn),所以根的判別式,即;故本選項(xiàng)正確,不符合題意;D、∵?3<x1<?2,∴根據(jù)二次函數(shù)圖象的對(duì)稱性,知當(dāng)x=1時(shí),y<0;又由A知,2a=b,∴a+b+c<0;∴b+b+c<0,即3b+2c<0;故本選項(xiàng)錯(cuò)誤,符合題意.故選:BD.【考點(diǎn)】本題主要考查了二次函數(shù)圖象與系數(shù)之間的關(guān)系,熟練運(yùn)用對(duì)稱軸的范圍求2a與b的關(guān)系,二次函數(shù)與方程及不等式之間的關(guān)系是解決本題的關(guān)鍵.5、ABCD【解析】【分析】由圓心角、弧、弦的關(guān)系定理得出ABCD正確,即可得出結(jié)論.【詳解】解:根據(jù)圓心角、弧、弦的關(guān)系定理得:在圓上依次截取等于半徑的弦,六條弧相等,就可以六等分圓,∴A正確;∵相互垂直的兩條直徑得出4個(gè)相等的圓心角是直角,∴4條弧相等,∴B正確;在圓上依次截取等于半徑的弦,六條弧相等,六個(gè)等分點(diǎn)中三個(gè)不相鄰的點(diǎn)三等分圓,∴C正確;∵相互垂直的兩條直徑得出4個(gè)相等的圓心角是直角,再平分四條弧,就可以八等分圓周,∴D正確;故選:ABCD.【考點(diǎn)】本題考查了正多邊形和圓、圓心角、弧、弦的關(guān)系定理;熟練掌握?qǐng)A心角、弧、弦的關(guān)系定理,由題意得出相等的弧是解題的關(guān)鍵.6、CD【解析】【分析】過(guò)P作弦AB⊥OP,連接OA,根據(jù)垂徑定理求出AP=BP,根據(jù)勾股定理求出AP,再求出AB,再得出答案即可.【詳解】解:過(guò)P作弦AB⊥OP,連接OA,如圖,∵OA=5,OP=3,∴,∵OP⊥AB,OP過(guò)圓心O,∴AP=BP=4,即AB=4+4=8,∴過(guò)P點(diǎn)長(zhǎng)度為整數(shù)的弦有4條,①過(guò)P點(diǎn)最短的弦的長(zhǎng)度是8,②過(guò)P點(diǎn)最長(zhǎng)的弦的長(zhǎng)度是10,③還有兩條弦,長(zhǎng)度是9,故答案為:CD.【考點(diǎn)】本題考查了勾股定理和垂徑定理,能熟記垂徑定理是解此題的關(guān)鍵.7、BC【解析】【分析】根據(jù)相似三角形的定義,已知條件判定相似的三角形,再利用相似三角形的性質(zhì)逐一判斷選項(xiàng)即可.【詳解】解:在正方形中,是的中點(diǎn),是上一點(diǎn),且,,..,.,,,..,.②③正確.故選:BC.【考點(diǎn)】本題考查了相似三角形的判定與性質(zhì),解題的關(guān)鍵是掌握判定定理有①有兩個(gè)對(duì)應(yīng)角相等的三角形相似,②有兩個(gè)對(duì)應(yīng)邊的比相等,且其夾角相等,則兩個(gè)三角形相似;③三組對(duì)應(yīng)邊的比相等,則兩個(gè)三角形相似.三、填空題1、1080【解析】【分析】直接利用相似多邊形的性質(zhì)進(jìn)而得出答案.【詳解】∵將此廣告牌的四邊都擴(kuò)大為原來(lái)的3倍,∴面積擴(kuò)大為原來(lái)的9倍,∴擴(kuò)大后長(zhǎng)方形廣告牌的成本為:120×9=1080(元).故答案為:1080.【考點(diǎn)】此題考查相似多邊形的性質(zhì),相似多邊形的面積的比等于相似比的平方.2、104【解析】【分析】根據(jù)圓內(nèi)接四邊形的對(duì)角互補(bǔ)列式計(jì)算即可.【詳解】解:∵四邊形ABCD內(nèi)接于⊙O,∴∠A+∠C=180°,∴∠C=180°﹣∠A=180°﹣76°=104°,故答案為:104.【考點(diǎn)】本題考查的是圓內(nèi)接四邊形的性質(zhì),掌握?qǐng)A內(nèi)接四邊形的對(duì)角互補(bǔ)是解題的關(guān)鍵.3、【解析】【分析】由,根據(jù)圓周角定理得出,根據(jù)S陰影=S扇形AOB-可得出結(jié)論.【詳解】解:∵,∴,∴S陰影=S扇形AOB-,故答案為:.【考點(diǎn)】本題主要考查圓周角定理、扇形的面積計(jì)算,根據(jù)題意求得三角形與扇形的面積是解答此題的關(guān)鍵.4、【解析】【分析】設(shè),,代入求解即可.【詳解】由可設(shè),,k是非零整數(shù),則.故答案為:.【考點(diǎn)】本題主要考查了比例的基本性質(zhì),準(zhǔn)確利用性質(zhì)變形是解題的關(guān)鍵.5、
1
【解析】【分析】(1)連接AO,DO,證明,可得,求出即可求解;(2)設(shè),則,由勾股定理可得,即可求EF的最小值.【詳解】解:(1)連接AO,DO,∵,∴,∵四邊形ABCD是正方形,O是中心,∴,,,∴,∴,∴,∴,∵,∴,∴故答案為:1;(2)設(shè),則,,在中,,∴當(dāng)時(shí),EF有最小值,故答案為:.【考點(diǎn)】本題考查正方形的性質(zhì),全等三角形的判定與性質(zhì),二次函數(shù)的性質(zhì),熟練掌握二次函數(shù)求最值的方法是解題的關(guān)鍵.6、【解析】【分析】根據(jù)題意和題目中的數(shù)據(jù),可以計(jì)算出AC和BC的長(zhǎng),然后即可得到AB的長(zhǎng),從而可以解答本題.【詳解】解:∵PC⊥AC,在點(diǎn)A處測(cè)得點(diǎn)P在北偏東60°方向上,∴∠PCA=90°,∠PAC=30°,∵AP=12千米,∴PC=6千米,AC=6千米,∵在點(diǎn)B處測(cè)得點(diǎn)P在北偏東30°方向上,∠PCB=90°,PC=6千米,∴∠PBC=60°,∴千米,∴(千米),故答案為:.【考點(diǎn)】本題考查解直角三角形的應(yīng)用-方向角問(wèn)題,解答本題的關(guān)鍵是明確題意,利用數(shù)形結(jié)合的思想解答.7、6【解析】【分析】解直角三角形求出AB、BC,再求出CD,連接CG,根據(jù)直角三角形斜邊上的中線等于斜邊的一半求出CG,然后根據(jù)三角形的任意兩邊之和大于第三邊判斷出D、C、G三點(diǎn)共線時(shí)DG有最大值,再代入數(shù)據(jù)進(jìn)行計(jì)算即可得解.【詳解】連接CG,∵BC的中點(diǎn)為D∵△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)任意一個(gè)角度得到△FEC,EF的中點(diǎn)為G由三角形的三邊關(guān)系得∴D、C、G三點(diǎn)共線時(shí),DG有最大值故答案為:6.【考點(diǎn)】本題考查了旋轉(zhuǎn)三角形的問(wèn)題,掌握旋轉(zhuǎn)的性質(zhì)、解直角三角形、三角形的三邊關(guān)系是解題的關(guān)鍵.四、解答題1、(1);(2);(3)【解析】【分析】(1)把代入拋物線的解析式,解方程求解即可;(2)聯(lián)立兩個(gè)函數(shù)的解析式,消去得:再利用根與系數(shù)的關(guān)系與可得關(guān)于的方程,解方程可得答案;(3)先求解拋物線的對(duì)稱軸方程,分三種情況討論,當(dāng)<<結(jié)合函數(shù)圖象,利用函數(shù)的最大值列方程,再解方程即可得到答案.【詳解】解:(1)把代入中,拋物線的解析式為:(2)聯(lián)立一次函數(shù)與拋物線的解析式得:整理得:∵x1+x2=4-3k,x1?x2=-3,∴x12+x22=(4-3k)2+6=10,解得:∴(3)∵函數(shù)的對(duì)稱軸為直線x=2,當(dāng)m<2時(shí),當(dāng)x=m時(shí),y有最大值,=-(m-2)2+3,解得m=±,∴m=-,當(dāng)m≥2時(shí),當(dāng)x=2時(shí),y有最大值,∴=3,∴m=,綜上所述,m的值為-或.【考點(diǎn)】本題考查的是利用待定系數(shù)法求解拋物線的解析式,拋物線與軸的交點(diǎn)坐標(biāo),一元二次方程根與系數(shù)的關(guān)系,二次函數(shù)的增減性,掌握數(shù)形結(jié)合的方法與分類討論是解題的關(guān)鍵.2、(1)y=;(2)D(6,8).【解析】【分析】(1)作CM⊥y軸于M,如圖,利用直線解析式確定A(0,2),B(﹣2,0),再根據(jù)平行線分線段成比例定理求出MC=4,AM=4,則C(4,6),然后把C點(diǎn)坐標(biāo)代入y=中求出k得到反比例函數(shù)解析式;(2)MC交直線DE于N,如圖,證明△CND為等腰直角三角形得到CN=DN,再利用CD=CE得到CN=NE=DN,設(shè)CN=t,則N(4+t,6),D(4+t,6+t),E(4+t,6﹣t),然后把E(4+t,6﹣t)代入y=得(4+t)(6﹣t)=24,最后解方程求出t得到D點(diǎn)坐標(biāo).【詳解】解:(1)作CM⊥y軸于M,如圖,當(dāng)x=0時(shí),y=x+2=2,則A(0,2),當(dāng)y=0時(shí),x+2=0,解得x=﹣2,則B(﹣2,0),∵M(jìn)C∥OB,∴===2,∴MC=2OB=4,AM=2OA=4,∴C(4,6),把C(4,6)代入y=得k=4×6=24,∴反比例函數(shù)解析式為y=;(2)MC交直線DE于N,如圖,∵M(jìn)C=MA,∴△MAC為等腰直角三角形,∴∠ACM=45°,∴∠DCN=45°,∴△CND為等腰直角三角形,∴CN=DN,∵CD=CE,∴CN=NE=DN,設(shè)CN=t,則N(4+t,6),D(4+t,6+t),E(4+t,6﹣t),把E(4+t,6﹣t)代入y=得(4+t)(6﹣t)=24,解得t1=0(舍去),t2=2,∴D(6,8).【考點(diǎn)】本題是反比例函數(shù)與一次函數(shù)的綜合題,涉及到待定系數(shù)法求函數(shù)解析式、平行線分線段成比例定理、等腰三角形的性質(zhì),有一定的難度3、(1)直線x=1;(2);;(3)或【解析】【分析】(1)利用對(duì)稱軸公式計(jì)算即可;(2)構(gòu)建方程求出a的值即可解決問(wèn)題;(3)先求出直線MN的解析式,然后設(shè)點(diǎn)的坐標(biāo)為,過(guò)點(diǎn)作軸的垂線交直線于點(diǎn),得到PQ的長(zhǎng)度,根據(jù)三角形的面積公式,即可求出答案.【詳解】解:(1)∵二次函數(shù)(),∴該二次函數(shù)圖象的對(duì)稱軸是直線:;(2)∵該二次函數(shù)的圖象開(kāi)口向上,對(duì)稱軸為直線,,∴當(dāng)時(shí),取得最大值,即,∴,得:,∴該二次函數(shù)的表達(dá)式為:,即點(diǎn)的坐標(biāo)為.(3)設(shè)直線的解析式為,則,解得:,∴設(shè)直線的解析式為:,設(shè)點(diǎn)的坐標(biāo)為,過(guò)點(diǎn)作軸的垂線交直線于點(diǎn),如圖則點(diǎn)的坐標(biāo)是,∴,∴,解得:,,∴點(diǎn)的坐標(biāo)是或.【考點(diǎn)】本題考查二次函數(shù)的性質(zhì),一次函數(shù)的性質(zhì),函數(shù)的最值問(wèn)題等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題,屬于中考??碱}型.4、(1)見(jiàn)解析;(2)見(jiàn)解析【解析】【分析】(1)想辦法證明AG=PF,AG∥PF,推出四邊形AGFP是平行四邊形,再證明PA=PF即可解決問(wèn)題.(2)證明△AEP∽△DEC,可得,由此即可解決問(wèn)題.【詳解】解:(1)∵平分,,,∴,,又∵在中,,在中,∴,又∵,∴,∴,∴,∵,,∴AG∥PF,∴四邊形是平行四邊形,∴四邊形AGFP是菱形;(2)∵,,∴,,∴,又∵,,∴,∴,∴,∴,又∵,∴.【考點(diǎn)】本題主要考查了角平分線的性質(zhì),菱形的判定,相似三角形的性質(zhì)與判定,矩形的性質(zhì),解題的關(guān)鍵在于能夠熟練掌握相關(guān)知識(shí)進(jìn)行求解.5、(1)見(jiàn)解析;(2)見(jiàn)解析;(3)【解析】【分析】(1)如圖,連接,由和分別是弧所對(duì)的圓心角和圓周角,利用圓周角定理可得,由,可得,OC平分,由,利用三線合一可證即可.
(2)如圖,過(guò)點(diǎn)作于,由平分,,,可得,,,由勾股定理得,,可求即可.(3)由,可得,由,可得,由,,可得,由平分,可得,由,可得,可證,可得,即,可求,由勾股定理,可求即可得到答案.【詳解】證明(1)如圖,連接,∵和分別是弧所對(duì)的圓心角和圓周角,∴,∵,∴,∴,∵,∴.
(2)如圖,過(guò)點(diǎn)作于,∵平分,,,∴,,,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 視力篩查合同范本
- 關(guān)于合同范本的app
- 物業(yè)與租客合同范本
- 套房房屋租賃合同范本
- 生豬養(yǎng)殖培訓(xùn)合同范本
- 工地運(yùn)輸土方合同范本
- 木材廠入股合同范本
- 皮革訂購(gòu)中間合同范本
- 蔬菜種植合同范本
- 公司保潔勞務(wù)合同范本
- 拆除重建工程施工方案
- 油田突發(fā)污染事件應(yīng)急預(yù)案
- Codesys培訓(xùn)課件教學(xué)課件
- 甲方業(yè)主項(xiàng)目管理手冊(cè)
- 句法 課件-初升高銜接英語(yǔ)課程
- 安裝聚氨酯冷庫(kù)板施工方案
- 醫(yī)院培訓(xùn)課件:《黃帝內(nèi)針臨床運(yùn)用》
- 崢嶸歲月 課件-2024-2025學(xué)年高中音樂(lè)人音版(2019) 必修 音樂(lè)鑒賞
- 《醫(yī)院醫(yī)療技術(shù)臨床應(yīng)用管理制度》
- 建筑裝飾工程涂料施工技術(shù)考核試卷
- 2024年人社法律法規(guī)知識(shí)競(jìng)賽考試題庫(kù)及答案
評(píng)論
0/150
提交評(píng)論