楚雄醫(yī)藥高等專(zhuān)科學(xué)?!度斯ぶ悄軕?yīng)用深度學(xué)習(xí)》2024-2025學(xué)年第一學(xué)期期末試卷_第1頁(yè)
楚雄醫(yī)藥高等專(zhuān)科學(xué)?!度斯ぶ悄軕?yīng)用深度學(xué)習(xí)》2024-2025學(xué)年第一學(xué)期期末試卷_第2頁(yè)
楚雄醫(yī)藥高等專(zhuān)科學(xué)?!度斯ぶ悄軕?yīng)用深度學(xué)習(xí)》2024-2025學(xué)年第一學(xué)期期末試卷_第3頁(yè)
楚雄醫(yī)藥高等專(zhuān)科學(xué)?!度斯ぶ悄軕?yīng)用深度學(xué)習(xí)》2024-2025學(xué)年第一學(xué)期期末試卷_第4頁(yè)
楚雄醫(yī)藥高等專(zhuān)科學(xué)校《人工智能應(yīng)用深度學(xué)習(xí)》2024-2025學(xué)年第一學(xué)期期末試卷_第5頁(yè)
已閱讀5頁(yè),還剩3頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

自覺(jué)遵守考場(chǎng)紀(jì)律如考試作弊此答卷無(wú)效密自覺(jué)遵守考場(chǎng)紀(jì)律如考試作弊此答卷無(wú)效密封線第1頁(yè),共2頁(yè)楚雄醫(yī)藥高等專(zhuān)科學(xué)?!度斯ぶ悄軕?yīng)用深度學(xué)習(xí)》2024-2025學(xué)年第一學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分批閱人一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在自然語(yǔ)言處理領(lǐng)域,情感分析是一項(xiàng)常見(jiàn)的任務(wù)。假設(shè)要分析大量的在線商品評(píng)論,以確定消費(fèi)者對(duì)產(chǎn)品的情感傾向是積極、消極還是中性。考慮到語(yǔ)言的復(fù)雜性和多義性,以及評(píng)論中可能存在的諷刺、反語(yǔ)等情況,以下哪種方法在進(jìn)行情感分析時(shí)更為有效?()A.基于詞典的方法,通過(guò)查找情感詞來(lái)判斷情感B.基于規(guī)則的方法,制定一系列的規(guī)則來(lái)判斷情感C.深度學(xué)習(xí)方法,如使用卷積神經(jīng)網(wǎng)絡(luò)對(duì)文本進(jìn)行建模D.人工閱讀和判斷,確保準(zhǔn)確性2、在人工智能的發(fā)展中,硬件的支持對(duì)于提高計(jì)算效率和性能至關(guān)重要。假設(shè)要訓(xùn)練一個(gè)大規(guī)模的深度學(xué)習(xí)模型,需要快速處理海量的數(shù)據(jù)。以下哪種硬件架構(gòu)或設(shè)備在加速模型訓(xùn)練方面具有顯著的優(yōu)勢(shì)?()A.CPUB.GPUC.TPUD.FPGA3、人工智能中的多模態(tài)學(xué)習(xí)旨在融合多種不同類(lèi)型的數(shù)據(jù),如圖像、文本、音頻等。假設(shè)要開(kāi)發(fā)一個(gè)能夠同時(shí)理解視頻中的圖像內(nèi)容和音頻解說(shuō)的系統(tǒng),以下哪種多模態(tài)學(xué)習(xí)方法在整合和理解這些異構(gòu)數(shù)據(jù)方面表現(xiàn)更為出色?()A.早期融合B.晚期融合C.注意力機(jī)制D.混合融合4、在人工智能的決策樹(shù)算法中,當(dāng)進(jìn)行特征選擇來(lái)構(gòu)建決策樹(shù)時(shí),以下哪種特征選擇標(biāo)準(zhǔn)通常能夠產(chǎn)生更優(yōu)的決策樹(shù)?()A.信息增益B.基尼系數(shù)C.隨機(jī)選擇特征D.選擇特征數(shù)量最多的特征5、在人工智能的語(yǔ)音識(shí)別任務(wù)中,需要克服許多挑戰(zhàn)。假設(shè)要開(kāi)發(fā)一個(gè)能夠在嘈雜環(huán)境中準(zhǔn)確識(shí)別語(yǔ)音的系統(tǒng),以下關(guān)于解決噪聲問(wèn)題的方法,哪一項(xiàng)是不正確的?()A.使用麥克風(fēng)陣列技術(shù),對(duì)多個(gè)麥克風(fēng)采集的信號(hào)進(jìn)行處理,增強(qiáng)有用信號(hào),抑制噪聲B.采用深度學(xué)習(xí)中的降噪自編碼器,對(duì)輸入的語(yǔ)音信號(hào)進(jìn)行預(yù)處理,去除噪聲C.完全忽略噪聲,只關(guān)注語(yǔ)音的關(guān)鍵特征D.利用語(yǔ)音增強(qiáng)算法,提高語(yǔ)音的信噪比6、人工智能在智能客服領(lǐng)域的應(yīng)用需要能夠理解用戶(hù)的復(fù)雜問(wèn)題并給出準(zhǔn)確的回答。假設(shè)要構(gòu)建一個(gè)智能客服系統(tǒng),能夠處理多種領(lǐng)域的問(wèn)題,以下哪種技術(shù)或方法在提高系統(tǒng)的泛化能力和回答準(zhǔn)確性方面最為重要?()A.大規(guī)模預(yù)訓(xùn)練語(yǔ)言模型B.基于模板的回答生成C.知識(shí)庫(kù)的構(gòu)建和維護(hù)D.以上方法同等重要7、人工智能在教育領(lǐng)域有著潛在的應(yīng)用價(jià)值。假設(shè)要開(kāi)發(fā)一個(gè)個(gè)性化的學(xué)習(xí)系統(tǒng)。以下關(guān)于人工智能在教育中的應(yīng)用描述,哪一項(xiàng)是不正確的?()A.可以根據(jù)學(xué)生的學(xué)習(xí)情況和特點(diǎn),提供個(gè)性化的學(xué)習(xí)路徑和資源推薦B.能夠?qū)崟r(shí)監(jiān)測(cè)學(xué)生的學(xué)習(xí)狀態(tài),及時(shí)給予反饋和指導(dǎo)C.人工智能教育系統(tǒng)可以完全取代教師的角色,實(shí)現(xiàn)自主學(xué)習(xí)D.有助于發(fā)現(xiàn)學(xué)生的學(xué)習(xí)問(wèn)題和知識(shí)漏洞,提高教學(xué)效果8、在人工智能的自然語(yǔ)言生成中,故事生成是一個(gè)富有創(chuàng)意的任務(wù)。假設(shè)我們要讓計(jì)算機(jī)生成一個(gè)富有想象力的童話故事,以下關(guān)于故事生成的挑戰(zhàn),哪一項(xiàng)是不正確的?()A.創(chuàng)造新穎和有趣的情節(jié)B.保持故事的邏輯連貫性C.符合特定的文化和社會(huì)背景D.故事生成不需要考慮讀者的喜好和期望9、人工智能中的深度學(xué)習(xí)模型通常需要大量的計(jì)算資源進(jìn)行訓(xùn)練。假設(shè)一個(gè)研究團(tuán)隊(duì)資源有限。以下關(guān)于在有限資源下訓(xùn)練模型的策略描述,哪一項(xiàng)是不正確的?()A.可以使用數(shù)據(jù)增強(qiáng)技術(shù),通過(guò)對(duì)原始數(shù)據(jù)進(jìn)行隨機(jī)變換來(lái)增加數(shù)據(jù)量B.選擇輕量級(jí)的模型架構(gòu),減少參數(shù)數(shù)量和計(jì)算量C.降低模型的訓(xùn)練精度,如使用低精度數(shù)值表示,以加快訓(xùn)練速度D.為了保證模型性能,無(wú)論資源如何有限,都不能對(duì)模型進(jìn)行任何簡(jiǎn)化和壓縮10、人工智能中的模型評(píng)估指標(biāo)對(duì)于衡量模型的性能至關(guān)重要。假設(shè)我們訓(xùn)練了一個(gè)分類(lèi)模型,以下哪個(gè)評(píng)估指標(biāo)在類(lèi)別不平衡的情況下可能不太適用?()A.準(zhǔn)確率B.召回率C.F1值D.混淆矩陣11、人工智能中的智能監(jiān)控系統(tǒng)在安防、交通等領(lǐng)域發(fā)揮著重要作用。假設(shè)我們要在一個(gè)大型商場(chǎng)部署智能監(jiān)控系統(tǒng),以下關(guān)于智能監(jiān)控的功能,哪一項(xiàng)是不準(zhǔn)確的?()A.實(shí)時(shí)檢測(cè)異常行為B.自動(dòng)識(shí)別人員身份C.預(yù)測(cè)潛在的安全威脅D.智能監(jiān)控系統(tǒng)不需要考慮隱私保護(hù)問(wèn)題12、在人工智能的自動(dòng)駕駛道德決策中,假設(shè)車(chē)輛面臨一個(gè)不可避免的碰撞場(chǎng)景,需要在保護(hù)車(chē)內(nèi)乘客和避免傷害行人之間做出選擇。以下哪種決策原則在倫理上更被接受?()A.優(yōu)先保護(hù)車(chē)內(nèi)乘客的生命安全B.隨機(jī)選擇保護(hù)對(duì)象C.基于最大多數(shù)人的利益進(jìn)行決策D.這是一個(gè)無(wú)法確定的道德困境,沒(méi)有明確的決策原則13、人工智能在農(nóng)業(yè)領(lǐng)域的應(yīng)用包括作物監(jiān)測(cè)、病蟲(chóng)害預(yù)測(cè)等。假設(shè)要利用人工智能技術(shù)預(yù)測(cè)農(nóng)作物的病蟲(chóng)害發(fā)生情況,以下關(guān)于農(nóng)業(yè)領(lǐng)域人工智能應(yīng)用的描述,正確的是:()A.僅依靠氣象數(shù)據(jù)就能準(zhǔn)確預(yù)測(cè)農(nóng)作物的病蟲(chóng)害發(fā)生B.人工智能在農(nóng)業(yè)中的應(yīng)用成本過(guò)高,不具有實(shí)際推廣價(jià)值C.綜合考慮農(nóng)作物的生長(zhǎng)環(huán)境、圖像數(shù)據(jù)和歷史病蟲(chóng)害信息等,可以提高病蟲(chóng)害預(yù)測(cè)的準(zhǔn)確性D.農(nóng)業(yè)領(lǐng)域的數(shù)據(jù)質(zhì)量和多樣性對(duì)人工智能應(yīng)用的效果沒(méi)有影響14、在人工智能的倫理和法律問(wèn)題中,算法偏見(jiàn)是一個(gè)需要關(guān)注的重點(diǎn)。假設(shè)一個(gè)招聘用的人工智能系統(tǒng)由于數(shù)據(jù)偏差導(dǎo)致對(duì)某些特定群體的不公平篩選。以下哪種方法在發(fā)現(xiàn)和糾正算法偏見(jiàn)方面最為重要?()A.算法審計(jì)B.數(shù)據(jù)清洗和預(yù)處理C.引入多樣化的數(shù)據(jù)集D.以上方法綜合運(yùn)用15、人工智能在教育領(lǐng)域有潛在的應(yīng)用價(jià)值。假設(shè)要開(kāi)發(fā)一個(gè)個(gè)性化學(xué)習(xí)系統(tǒng),能夠根據(jù)學(xué)生的學(xué)習(xí)情況提供定制的學(xué)習(xí)計(jì)劃。以下關(guān)于收集學(xué)生學(xué)習(xí)數(shù)據(jù)的方法,哪一項(xiàng)是需要謹(jǐn)慎處理的?()A.跟蹤學(xué)生在在線學(xué)習(xí)平臺(tái)上的學(xué)習(xí)時(shí)間、答題情況等B.收集學(xué)生的個(gè)人興趣愛(ài)好和家庭背景等信息C.分析學(xué)生的作業(yè)和考試成績(jī),了解其知識(shí)掌握程度D.通過(guò)問(wèn)卷調(diào)查了解學(xué)生的學(xué)習(xí)風(fēng)格和偏好16、在人工智能的推薦系統(tǒng)中,例如為用戶(hù)推薦電影、音樂(lè)或商品,需要考慮用戶(hù)的歷史行為、偏好和當(dāng)前的情境信息。假設(shè)一個(gè)用戶(hù)的興趣偏好經(jīng)常變化,以下哪種方法能夠更好地適應(yīng)這種動(dòng)態(tài)的用戶(hù)偏好?()A.基于協(xié)同過(guò)濾的推薦,依賴(lài)其他用戶(hù)的行為B.基于內(nèi)容的推薦,分析物品的特征C.混合推薦,結(jié)合多種推薦方法D.始終使用固定的推薦策略,不進(jìn)行調(diào)整17、人工智能中的強(qiáng)化學(xué)習(xí)算法可以用于優(yōu)化資源分配。假設(shè)一個(gè)數(shù)據(jù)中心要通過(guò)人工智能分配計(jì)算資源,以下關(guān)于其應(yīng)用的描述,哪一項(xiàng)是不正確的?()A.根據(jù)服務(wù)器負(fù)載和任務(wù)需求,動(dòng)態(tài)調(diào)整資源分配策略B.以最小化能耗和提高服務(wù)質(zhì)量為目標(biāo),優(yōu)化資源利用效率C.強(qiáng)化學(xué)習(xí)可以快速適應(yīng)數(shù)據(jù)中心的變化,無(wú)需人工重新配置D.強(qiáng)化學(xué)習(xí)算法在資源分配中總是能夠找到最優(yōu)解,不存在次優(yōu)情況18、人工智能中的生成對(duì)抗網(wǎng)絡(luò)(GAN)具有強(qiáng)大的生成能力。假設(shè)使用GAN生成逼真的圖像,以下關(guān)于GAN的描述,哪一項(xiàng)是不正確的?()A.GAN由生成器和判別器組成,兩者通過(guò)對(duì)抗訓(xùn)練不斷優(yōu)化B.GAN可以學(xué)習(xí)到數(shù)據(jù)的分布特征,從而生成新的、與真實(shí)數(shù)據(jù)相似的樣本C.GAN生成的圖像在質(zhì)量和真實(shí)性上可以與真實(shí)拍攝的圖像完全無(wú)法區(qū)分D.調(diào)整GAN的網(wǎng)絡(luò)結(jié)構(gòu)和訓(xùn)練參數(shù)可以影響生成圖像的效果19、人工智能在醫(yī)療領(lǐng)域的應(yīng)用不斷拓展。假設(shè)利用人工智能輔助醫(yī)生進(jìn)行疾病診斷,以下關(guān)于其應(yīng)用的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.人工智能可以分析醫(yī)學(xué)影像,幫助醫(yī)生發(fā)現(xiàn)潛在的病變B.基于大數(shù)據(jù)的人工智能模型能夠提供更準(zhǔn)確的診斷建議,但不能取代醫(yī)生的最終判斷C.人工智能在醫(yī)療中的應(yīng)用可以完全避免誤診和漏診的情況發(fā)生D.醫(yī)生和人工智能系統(tǒng)的合作可以提高醫(yī)療效率和質(zhì)量20、在人工智能的研究中,強(qiáng)化學(xué)習(xí)被廣泛應(yīng)用于智能體的決策和優(yōu)化問(wèn)題。假設(shè)一個(gè)智能機(jī)器人需要在復(fù)雜的環(huán)境中學(xué)習(xí)如何行走并避開(kāi)障礙物,以最快的速度到達(dá)目標(biāo)位置。在這種情況下,以下哪種強(qiáng)化學(xué)習(xí)算法能夠使機(jī)器人更快地學(xué)習(xí)到有效的策略,同時(shí)具有較好的泛化能力?()A.Q-learningB.SARSAC.策略梯度算法D.蒙特卡羅方法21、在人工智能的智能推薦系統(tǒng)中,冷啟動(dòng)問(wèn)題是指在新用戶(hù)或新物品加入時(shí)缺乏足夠的歷史數(shù)據(jù)進(jìn)行準(zhǔn)確推薦。假設(shè)要解決一個(gè)新上線電商平臺(tái)的冷啟動(dòng)問(wèn)題,以下哪種策略最為有效?()A.基于內(nèi)容的推薦B.基于熱門(mén)商品的推薦C.基于用戶(hù)社交關(guān)系的推薦D.以上策略結(jié)合使用22、假設(shè)在一個(gè)智能工廠的質(zhì)量檢測(cè)環(huán)節(jié),需要利用人工智能技術(shù)自動(dòng)檢測(cè)產(chǎn)品的缺陷,以下哪種圖像分析技術(shù)和模型可能會(huì)被采用?()A.傳統(tǒng)的圖像處理算法B.基于深度學(xué)習(xí)的目標(biāo)檢測(cè)C.基于特征工程的分類(lèi)模型D.以上都是23、知識(shí)圖譜是人工智能中用于表示知識(shí)和關(guān)系的一種技術(shù)。假設(shè)一個(gè)智能問(wèn)答系統(tǒng)基于知識(shí)圖譜來(lái)回答用戶(hù)的問(wèn)題。以下關(guān)于知識(shí)圖譜的描述,哪一項(xiàng)是錯(cuò)誤的?()A.知識(shí)圖譜將實(shí)體、關(guān)系和屬性以圖的形式組織起來(lái),便于知識(shí)的表示和查詢(xún)B.可以通過(guò)從大量文本中自動(dòng)抽取信息來(lái)構(gòu)建知識(shí)圖譜C.知識(shí)圖譜中的知識(shí)是固定不變的,一旦構(gòu)建完成就無(wú)需更新D.結(jié)合自然語(yǔ)言處理技術(shù),能夠?qū)崿F(xiàn)基于知識(shí)圖譜的智能問(wèn)答和推理24、人工智能在制造業(yè)中的應(yīng)用可以提高生產(chǎn)效率和質(zhì)量。以下關(guān)于人工智能在制造業(yè)應(yīng)用的說(shuō)法,不正確的是()A.可以實(shí)現(xiàn)生產(chǎn)過(guò)程的自動(dòng)化監(jiān)控和故障預(yù)測(cè),減少停機(jī)時(shí)間B.能夠優(yōu)化生產(chǎn)流程和資源配置,降低生產(chǎn)成本C.人工智能在制造業(yè)的應(yīng)用需要大量的前期投資,但長(zhǎng)期來(lái)看效益顯著D.制造業(yè)中的所有環(huán)節(jié)都已經(jīng)實(shí)現(xiàn)了人工智能的全面應(yīng)用,不存在尚未被覆蓋的領(lǐng)域25、在人工智能的優(yōu)化算法中,隨機(jī)梯度下降(SGD)是常用的方法之一。假設(shè)在訓(xùn)練一個(gè)深度學(xué)習(xí)模型時(shí),發(fā)現(xiàn)模型收斂速度較慢。以下哪種改進(jìn)的SGD變種或優(yōu)化策略能夠加快模型的收斂速度,同時(shí)避免陷入局部最優(yōu)解?()A.AdagradB.AdadeltaC.RMSPropD.以上策略結(jié)合使用26、在人工智能的圖像識(shí)別任務(wù)中,卷積神經(jīng)網(wǎng)絡(luò)(CNN)被廣泛應(yīng)用。假設(shè)要設(shè)計(jì)一個(gè)用于識(shí)別手寫(xiě)數(shù)字的卷積神經(jīng)網(wǎng)絡(luò),以下哪個(gè)因素對(duì)于提高識(shí)別準(zhǔn)確率至關(guān)重要?()A.增加卷積層的數(shù)量B.減少池化層的大小C.選擇合適的激活函數(shù)D.增加全連接層的神經(jīng)元數(shù)量27、在人工智能的文本分類(lèi)任務(wù)中,例如將新聞文章分類(lèi)為政治、經(jīng)濟(jì)、體育等類(lèi)別。假設(shè)數(shù)據(jù)集存在類(lèi)別不平衡的問(wèn)題,某些類(lèi)別的樣本數(shù)量遠(yuǎn)遠(yuǎn)多于其他類(lèi)別。為了提高分類(lèi)模型在這種情況下的性能,以下哪種方法是有效的?()A.對(duì)少數(shù)類(lèi)進(jìn)行過(guò)采樣,增加其數(shù)量B.對(duì)多數(shù)類(lèi)進(jìn)行欠采樣,減少其數(shù)量C.使用不平衡數(shù)據(jù)直接訓(xùn)練模型,不做處理D.只關(guān)注樣本數(shù)量多的類(lèi)別,忽略少數(shù)類(lèi)別28、生成對(duì)抗網(wǎng)絡(luò)(GAN)是一種新興的人工智能技術(shù)。假設(shè)要使用GAN生成逼真的圖像。以下關(guān)于生成對(duì)抗網(wǎng)絡(luò)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.GAN由生成器和判別器組成,兩者通過(guò)對(duì)抗訓(xùn)練不斷優(yōu)化B.生成器負(fù)責(zé)生成假樣本,判別器負(fù)責(zé)判斷樣本的真假C.GAN可以生成具有高度創(chuàng)造性和多樣性的新數(shù)據(jù)D.GAN的訓(xùn)練過(guò)程非常穩(wěn)定,不會(huì)出現(xiàn)模式崩潰等問(wèn)題29、人工智能在藝術(shù)創(chuàng)作領(lǐng)域的探索引起了廣泛關(guān)注。假設(shè)要利用人工智能生成音樂(lè)作品,以下關(guān)于其應(yīng)用的描述,哪一項(xiàng)是不正確的?()A.基于深度學(xué)習(xí)算法學(xué)習(xí)大量的音樂(lè)作品,生成新的旋律和節(jié)奏B.可以與人類(lèi)音樂(lè)家合作,共同創(chuàng)作出獨(dú)特的音樂(lè)作品C.人工智能生成的音樂(lè)作品在藝術(shù)價(jià)值和創(chuàng)造性上能夠超越人類(lèi)音樂(lè)家的作品D.為音樂(lè)創(chuàng)作提供新的靈感和可能性,但不能完全取代人類(lèi)的創(chuàng)造力30、人工智能中的知識(shí)圖譜是一種用于整合和表示知識(shí)的結(jié)構(gòu)。假設(shè)我們要構(gòu)建一個(gè)關(guān)于歷史事件的知識(shí)圖譜,以下關(guān)于知識(shí)圖譜的說(shuō)法,哪一項(xiàng)是正確的?()A.知識(shí)圖譜只能表示簡(jiǎn)單的事實(shí)關(guān)系B.構(gòu)建知識(shí)圖譜不需要領(lǐng)域?qū)<业膮⑴cC.可以通過(guò)知識(shí)圖譜進(jìn)行知識(shí)推理和查詢(xún)D.知識(shí)圖譜的更新和維護(hù)非常容易二、操作題(本大題共5個(gè)小題,共25分)1、(本題5分)基于Python的OpenCV庫(kù)和深度學(xué)習(xí)框架,實(shí)現(xiàn)一個(gè)車(chē)輛牌照識(shí)別系統(tǒng)。能夠從不同角度和光照條件下拍攝的車(chē)輛圖片中準(zhǔn)確識(shí)別出牌照號(hào)碼,并進(jìn)行字符分割和識(shí)別。2、(本題5分)運(yùn)用Python的OpenCV庫(kù),實(shí)現(xiàn)對(duì)視頻中的運(yùn)動(dòng)目標(biāo)進(jìn)行檢測(cè)和計(jì)數(shù)。使用背景減除算法或光流法,實(shí)時(shí)統(tǒng)計(jì)運(yùn)動(dòng)目標(biāo)的數(shù)量和運(yùn)動(dòng)軌跡。3、(本題5分)運(yùn)用遺傳算法解決一個(gè)優(yōu)化問(wèn)題,例如旅行商問(wèn)題,通過(guò)不斷進(jìn)化種群找到最短路徑。4、(本題5分)通過(guò)強(qiáng)化學(xué)習(xí)訓(xùn)練一個(gè)智能體在模擬的游戲環(huán)境中與其他玩家進(jìn)行對(duì)戰(zhàn),提升對(duì)戰(zhàn)策略。5、(本題5分)使用Python的Scikit-learn庫(kù),實(shí)現(xiàn)高斯樸素貝葉斯(GaussianNaiveBayes)算法對(duì)文本分類(lèi)任務(wù)進(jìn)行處理。通過(guò)特征選擇和特征

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論