




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
鞍山市中考數(shù)學(xué)易錯(cuò)易錯(cuò)壓軸選擇題精選:勾股定理選擇題(及答案)(1)一、易錯(cuò)易錯(cuò)壓軸選擇題精選:勾股定理選擇題1.“勾股圖”有著悠久的歷史,它曾引起很多人的興趣.1955年希臘發(fā)行了以“勾股圖”為背景的郵票(如圖1),歐幾里得在《幾何原本》中曾對該圖做了深入研究.如圖2,在中,,分別以的三條邊為邊向外作正方形,連結(jié),,,分別與,相交于點(diǎn),.若,則的值為()A. B. C. D.2.在平面直角坐標(biāo)系內(nèi)的機(jī)器人接受指令“[α,A]”(α≥0,0°<A<180°)后的行動(dòng)結(jié)果為:在原地順時(shí)針旋轉(zhuǎn)A后,再向正前方沿直線行走α.若機(jī)器人的位置在原點(diǎn),正前方為y軸的負(fù)半軸,則它完成一次指令[4,30°]后位置的坐標(biāo)為()A.(-2,2) B.(-2,-2) C.(-2,-2) D.(-2,2)3.我國古代偉大的數(shù)學(xué)家劉徽將勾股形(古人稱直角三角形為勾股形)分割成一個(gè)正方形和兩對全等的直角三角形,得到一個(gè)恒等式.后人借助這種分割方法所得的圖形證明了勾股定理,如圖所示的矩形由兩個(gè)這樣的圖形拼成,若a=3,b=4,則該矩形的面積為(
)A.20 B.24 C. D.4.一艘漁船從港口A沿北偏東60°方向航行至C處時(shí)突然發(fā)生故障,在C處等待救援.有一救援艇位于港口A正東方向20(﹣1)海里的B處,接到求救信號后,立即沿北偏東45°方向以30海里/小時(shí)的速度前往C處救援.則救援艇到達(dá)C處所用的時(shí)間為()A.小時(shí) B.小時(shí) C.小時(shí) D.小時(shí)5.已知:如圖在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點(diǎn)C,D,E三點(diǎn)在同一條直線上,連接BD,BE,以下四個(gè)結(jié)論:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2),其中結(jié)論正確的個(gè)數(shù)是()A.1 B.2 C.3 D.46.如圖,小紅想用一條彩帶纏繞易拉罐,正好從A點(diǎn)繞到正上方B點(diǎn)共四圈,已知易拉罐底面周長是12cm,高是20cm,那么所需彩帶最短的是()A.13cm B.4cm C.4cm D.52cm7.如圖,正方形ABCD的邊長為8,M在DC上,且DM=2,N是AC上的一動(dòng)點(diǎn),則DN+MN的最小值是()A.8 B.9 C.10 D.128.如圖,□ABCD中,對角線AC與BD相交于點(diǎn)E,∠AEB=45°,BD=2,將△ABC沿AC所在直線翻折180°到其原來所在的同一平面內(nèi),若點(diǎn)B的落點(diǎn)記為B′,則DB′的長為()A.1 B. C. D.9.如圖,已知圓柱的底面直徑,高,小蟲在圓柱側(cè)面爬行,從點(diǎn)爬到點(diǎn),然后再沿另一面爬回點(diǎn),則小蟲爬行的最短路程的平方為()A.18 B.48 C.120 D.7210.如圖,在等邊△ABC中,AB=15,BD=6,BE=3,點(diǎn)P從點(diǎn)E出發(fā)沿EA方向運(yùn)動(dòng),連結(jié)PD,以PD為邊,在PD右側(cè)按如圖方式作等邊△DPF,當(dāng)點(diǎn)P從點(diǎn)E運(yùn)動(dòng)到點(diǎn)A時(shí),點(diǎn)F運(yùn)動(dòng)的路徑長是()A.8 B.10 C. D.1211.如圖,將一個(gè)等腰直角三角形按圖示方式依次翻折,若,則下列說法正確的是()①平分;②長為;③是等腰三角形;④的周長等于的長.A.①②③ B.②④ C.②③④ D.③④12.如圖,A、B兩點(diǎn)在直線l的兩側(cè),點(diǎn)A到直線l的距離AC=4,點(diǎn)B到直線l的距離BD=2,且CD=6,P為直線CD上的動(dòng)點(diǎn),則的最大值是()A. B. C. D.613.如圖,在△ABC中,AC=BC,∠ACB=90°,點(diǎn)D在BC上,BD=6,DC=2,點(diǎn)P是AB上的動(dòng)點(diǎn),則PC+PD的最小值為()A.8 B.10 C.12 D.1414.在中,的對邊分別是,下列條件中,不能說明是直角三角形的是()A. B.C. D.15.小明學(xué)了在數(shù)軸上畫出表示無理數(shù)的點(diǎn)的方法后,進(jìn)行練習(xí):首先畫數(shù)軸,原點(diǎn)為O,在數(shù)軸上找到表示數(shù)2的點(diǎn)A,然后過點(diǎn)A作AB⊥OA,使AB=3(如圖).以O(shè)為圓心,OB的長為半徑作弧,交數(shù)軸正半軸于點(diǎn)P,則點(diǎn)P所表示的數(shù)介于()A.1和2之間 B.2和3之間 C.3和4之間 D.4和5之間16.如圖,有一塊直角三角形紙片,兩直角邊,.現(xiàn)將直角邊沿直線折疊,使它落在斜邊上,且與重合,則等于()A. B. C. D.17.已知是的三邊,且滿足,則是()A.直角三角形 B.等邊三角形C.等腰直角三角形 D.等腰三角形或直角三角形18.“趙爽弦圖”巧妙地利用面積關(guān)系證明了勾股定理,是我國古代數(shù)學(xué)的驕傲,如圖所示的“趙爽弦圖”是由四個(gè)全等的直角三角形和一個(gè)小正方形拼成的一個(gè)大正方形,設(shè)直角三角形較長直角邊長為a,較短直角邊長為b,若,大正方形的面積為13,則小正方形的面積為()A.3 B.4 C.5 D.619.如圖,2002年8月在北京召開的國際數(shù)學(xué)家大會(huì)會(huì)徽取材于我國古代數(shù)學(xué)家趙爽的《勾股圓方圖》(也稱《趙爽弦圖》),它是由四個(gè)全等的直角三角形與中間的一個(gè)小正方形拼成的一個(gè)大正方形,如圖所示,如果大正方形的面積是13,小正方形的面積是1,直角三角形的短直角邊為a,較長直角邊為b,那么的值為()A.13 B.19 C.25 D.16920.如圖,已知中,的垂直平分線分別交于連接,則的長為()A. B. C. D.21.在Rt△ABC中,∠C=90°,AC=3,BC=4,則點(diǎn)C到AB的距離是()A. B. C. D.22.已知:△ABC中,BD、CE分別是AC、AB邊上的高,BQ=AC,點(diǎn)F在CE的延長線上,CF=AB,下列結(jié)論錯(cuò)誤的是().A.AF⊥AQ B.AF=AQ C.AF=AD D.23.下列四組線段中,可以構(gòu)成直角三角形的是()A.1、、 B.2、3、4 C.1、2、3 D.4、5、624.我國南宋著名數(shù)學(xué)家秦九韶的著作《數(shù)書九章》里記載有這樣一道題:“問有沙田一塊,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知為田幾何?”這道題講的是:有一塊三角形沙田,三條邊長分別為5里,12里,13里,問這塊沙田面積有多大?題中“里”是我國市制長度單位,1里=500米,則該沙田的面積為()A.7.5平方千米 B.15平方千米 C.75平方千米 D.750平方千米25.《九章算術(shù)》是我國古代第一部數(shù)學(xué)專著,它的出現(xiàn)標(biāo)志中國古代數(shù)學(xué)形成了完整的體系.“折竹抵地”問題源自《九章算術(shù)》中:“今有竹高一丈,末折抵地,去本四尺,問折者高幾何?”翻譯成數(shù)學(xué)問題是:如圖所示,中,,尺,尺,求的長.的長為()A.3尺 B.4.2尺 C.5尺 D.4尺26.如圖,是一張直角三角形的紙片,兩直角邊,現(xiàn)將折疊,使點(diǎn)B點(diǎn)A重合,折痕為DE,則BD的長為()A.7 B. C.6 D.27.已知直角三角形的兩條邊長分別是3和5,那么這個(gè)三角形的第三條邊的長()A.4 B.16 C. D.4或28.如圖,在等腰中,,F(xiàn)是AB邊上的中點(diǎn),點(diǎn)D、E分別在AC、BC邊上運(yùn)動(dòng),且保持.連接DE、DF、EF.在此運(yùn)動(dòng)變化的過程中,下列結(jié)論:①是等腰直角三角形;②四邊形CDFE不可能為正方形;③DE長度的最小值為4;④四邊形CDFE的面積保持不變;⑤△CDE面積的最大值為8.其中正確的結(jié)論是()A.①④⑤ B.③④⑤ C.①③④ D.①②③29.棱長分別為的兩個(gè)正方體如圖放置,點(diǎn)A,B,E在同一直線上,頂點(diǎn)G在棱BC上,點(diǎn)P是棱的中點(diǎn).一只螞蟻要沿著正方體的表面從點(diǎn)A爬到點(diǎn)P,它爬行的最短距離是()A. B. C. D.30.一個(gè)直角三角形的兩條邊的長度分別為3和4,則它的斜邊長為()A.5 B.4 C. D.4或5【參考答案】***試卷處理標(biāo)記,請不要?jiǎng)h除一、易錯(cuò)易錯(cuò)壓軸選擇題精選:勾股定理選擇題1.D解析:D【分析】先用已知條件利用SAS的三角形全等的判定定理證出△EAB≌△CAM,之后利用全等三角形的性質(zhì)定理分別可得,,,然后設(shè),繼而可分別求出,,所以;易證Rt△ACB≌Rt△DCG(HL),從而得,然后代入所求數(shù)據(jù)即可得的值.【詳解】解:∵在△EAB和△CAM中,,∴△EAB≌△CAM(SAS),∴,∴,∴,,設(shè),則,,,,∴;∵在Rt△ACB和Rt△DCG中,,Rt△ACB≌Rt△DCG(HL),∴;∴.故選D.【點(diǎn)睛】本題主要考查了勾股定理,三角形全等的判定定理和性質(zhì)定理等知識.2.B解析:B【解析】根據(jù)題意,如圖,∠AOB=30°,OA=4,則AB=2,OB=2,所以A(-2,-2),故選B.3.B解析:B【分析】設(shè)小正方形的邊長為x,則矩形的一邊長為(a+x),另一邊為(b+x),根據(jù)矩形的面積的即等于兩個(gè)三角形的面積之和,也等于長乘以寬,列出方程,化簡再代入a,b的值,得出x2+7x=12,再根據(jù)矩形的面積公式,整體代入即可.【詳解】設(shè)小正方形的邊長為x,則矩形的一邊長為(a+x),另一邊為(b+x),根據(jù)題意得:2(ax+x2+bx)=(a+x)(b+x),化簡得:ax+x2+bx-ab=0,又∵a=3,b=4,∴x2+7x=12;∴該矩形的面積為=(a+x)(b+x)=(3+x)(4+x)=x2+7x+12=24.故答案為B.【點(diǎn)睛】本題考查了勾股定理的證明以及運(yùn)用和一元二次方程的運(yùn)用,求出小正方形的邊長是解題的關(guān)鍵.4.C解析:C【解析】【分析】過點(diǎn)C作CD垂直AB延長線于D,根據(jù)題意得∠CDB=45°,∠CAD=30°,設(shè)BD=x則CD=BD=x,BC=x,由∠CAD=30°可知tan∠CAD=即,解方程求出BD的長,從而可知BC的長,進(jìn)而求出救援艇到達(dá)C處所用的時(shí)間即可.【詳解】如圖:過點(diǎn)C作CD垂直AB延長線于D,則∠CDB=45°,∠CAD=30°,∵∠CDB=45°,CD⊥BD,∴BD=CD,設(shè)BD=x,救援艇到達(dá)C處所用的時(shí)間為t,∵tan∠CAD=,AD=AB+BD,∴,得x=20(海里),∴BC=BD=20(海里),∴t==(小時(shí)),故選C.【點(diǎn)睛】本題考查特殊角三角函數(shù),正確添加輔助線、熟練掌握特殊角的三角函數(shù)值是解題關(guān)鍵.5.C解析:C【解析】試題分析:①∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE.∵在△BAD和△CAE中,AB=AC,∠BAD=∠CAE,AD=AE,∴△BAD≌△CAE(SAS).∴BD=CE.本結(jié)論正確.②∵△BAD≌△CAE,∴∠ABD=∠ACE.∵∠ABD+∠DBC=45°,∴∠ACE+∠DBC=45°.∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°.∴BD⊥CE.本結(jié)論正確.③∵△ABC為等腰直角三角形,∴∠ABC=∠ACB=45°.∴∠ABD+∠DBC=45°.∵∠ABD=∠ACE,∴∠ACE+∠DBC=45°.本結(jié)論正確.④∵BD⊥CE,∴在Rt△BDE中,利用勾股定理得:BE2=BD2+DE2.∵△ADE為等腰直角三角形,∴DE=AD,即DE2=2AD2.∴BE2=BD2+DE2=BD2+2AD2.而BD2≠2AB2,本結(jié)論錯(cuò)誤.綜上所述,正確的個(gè)數(shù)為3個(gè).故選C.6.D解析:D【解析】【分析】本題就是把圓柱的側(cè)面展開成矩形,“化曲面為平面”,用勾股定理解決..要求彩帶的長,需將圓柱的側(cè)面展開,進(jìn)而根據(jù)“兩點(diǎn)之間線段最短”得出結(jié)果,在求線段長時(shí),借助于勾股定理.【詳解】如圖,由圖可知,彩帶從易拉罐底端的A處繞易拉罐4圈后到達(dá)頂端的B處,將易拉罐表面切開展開呈長方形,則螺旋線長為四個(gè)長方形并排后的長方形的對角線長,設(shè)彩帶最短長度為xcm,∵∵易拉罐底面周長是12cm,高是20cm,∴x2=(12×4)2+202∴x2=(12×4)2+202,所以彩帶最短是52cm.故選D.【點(diǎn)睛】本題考查了平面展開??最短路徑問題,圓柱的側(cè)面展開圖是一個(gè)矩形,此矩形的長等于圓柱底面周長,高等于圓柱的高,7.C解析:C【解析】【分析】要求DN+MN的最小值,DN,MN不能直接求,可考慮通過作輔助線轉(zhuǎn)化DN,MN的值,從而找出其最小值求解.【詳解】解:∵正方形是軸對稱圖形,點(diǎn)B與點(diǎn)D是關(guān)于直線AC為對稱軸的對稱點(diǎn),∴連接BN,BD,則直線AC即為BD的垂直平分線,∴BN=ND∴DN+MN=BN+MN連接BM交AC于點(diǎn)P,∵點(diǎn)N為AC上的動(dòng)點(diǎn),由三角形兩邊和大于第三邊,知當(dāng)點(diǎn)N運(yùn)動(dòng)到點(diǎn)P時(shí),BN+MN=BP+PM=BM,BN+MN的最小值為BM的長度,∵四邊形ABCD為正方形,∴BC=CD=8,CM=8?2=6,BCM=90°,∴BM==10,∴DN+MN的最小值是10.故選:C.【點(diǎn)睛】此題考查正方形的性質(zhì)和軸對稱及勾股定理等知識的綜合應(yīng)用,解題的難點(diǎn)在于確定滿足條件的點(diǎn)N的位置:利用軸對稱的方法.然后熟練運(yùn)用勾股定理.8.B解析:B【解析】【分析】如圖,連接BB′.根據(jù)折疊的性質(zhì)知△BB′E是等腰直角三角形,則BB′=BE.又B′E是BD的中垂線,則DB′=BB′.【詳解】∵四邊形ABCD是平行四邊形,BD=2,∴BE=BD=1.如圖2,連接BB′.根據(jù)折疊的性質(zhì)知,∠AEB=∠AEB′=45°,BE=B′E.∴∠BEB′=90°,∴△BB′E是等腰直角三角形,則BB′=BE=,又∵BE=DE,B′E⊥BD,∴DB′=BB′=.故選B.【點(diǎn)睛】考查了平行四邊形的性質(zhì)以及等腰直角三角形性質(zhì).此題難度適中,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想的應(yīng)用.9.D解析:D【分析】要求最短路徑,首先要把圓柱的側(cè)面展開,利用兩點(diǎn)之間線段最短,然后利用勾股定理即可求解.【詳解】解:把圓柱側(cè)面展開,展開圖如圖所示,點(diǎn),的最短距離為線段的長.∵已知圓柱的底面直徑,∴,在中,,,∴,∴從點(diǎn)爬到點(diǎn),然后再沿另一面爬回點(diǎn),則小蟲爬行的最短路程的平方為.故選D.【點(diǎn)睛】本題考查了平面展開-最短路徑問題,解題的關(guān)鍵是會(huì)將圓柱的側(cè)面展開,并利用勾股定理解答.10.D解析:D【分析】首先利用等邊三角形的性質(zhì)和含30°直角三角形的運(yùn)用,判定△DPE≌△FDH,△DF2Q≌△ADE,然后利用全等三角形的性質(zhì),得出點(diǎn)F運(yùn)動(dòng)的路徑長.【詳解】∵△ABC為等邊三角形,∴∠B=60°,過D點(diǎn)作DE′⊥AB,過點(diǎn)F作FH⊥BC于H,如圖所示:則BE′=BD=3,∴點(diǎn)E′與點(diǎn)E重合,∴∠BDE=30°,DE=BE=3,∵△DPF為等邊三角形,∴∠PDF=60°,DP=DF,∴∠EDP+∠HDF=90°∵∠HDF+∠DFH=90°,∴∠EDP=∠DFH,在△DPE和△FDH中,,∴△DPE≌△FDH(AAS),∴FH=DE=3,∴點(diǎn)P從點(diǎn)E運(yùn)動(dòng)到點(diǎn)A時(shí),點(diǎn)F運(yùn)動(dòng)的路徑為一條線段,此線段到BC的距離為3,當(dāng)點(diǎn)P在E點(diǎn)時(shí),作等邊三角形DEF1,∠BDF1=30°+60°=90°,則DF1⊥BC,當(dāng)點(diǎn)P在A點(diǎn)時(shí),作等邊三角形DAF2,作F2Q⊥BC于Q,則四邊形DF1F2Q是矩形,∵∠BDE=30°,∠ADF2=60°,∴∠ADE+∠F2DQ=180°﹣30°﹣60°=90°,∵∠ADE+∠DAE=90°,∴∠F2DQ=∠DAE,在△DF2Q和△ADE中,,∴△DF2Q≌△ADE(AAS),∴DQ=AE=AB﹣BE=15﹣3=12,∴F1F2=DQ=12,∴當(dāng)點(diǎn)P從點(diǎn)E運(yùn)動(dòng)到點(diǎn)A時(shí),點(diǎn)F運(yùn)動(dòng)的路徑長為12,故選:D.【點(diǎn)睛】此題主要考查等邊三角形的性質(zhì)以及全等三角形的判定與性質(zhì),解題關(guān)鍵是作好輔助線.11.B解析:B【分析】根據(jù)折疊前后得到對應(yīng)線段相等,對應(yīng)角相等判斷①③④式正誤即可,根據(jù)等腰直角三角形性質(zhì)求BC和DE的關(guān)系.【詳解】解:根據(jù)折疊的性質(zhì)知,△,且都是等腰直角三角形,∴,,∴不能平分①錯(cuò)誤;,,,,,②正確;,,,,不是等腰三角形,故③錯(cuò)誤;的周長,故④正確.故選:.【點(diǎn)睛】本題利用了:①折疊的性質(zhì):折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質(zhì),折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等;②等腰直角三角形,三角形外角與內(nèi)角的關(guān)系,等角對等邊等知識點(diǎn).12.C解析:C【解析】試題解析:作點(diǎn)關(guān)于直線的對稱點(diǎn),連接并延長,與直線的交點(diǎn)即為使得取最大值時(shí)對應(yīng)的點(diǎn)此時(shí)過點(diǎn)作于點(diǎn)如圖,四邊形為矩形,的最大值為:故答案為:13.B解析:B【分析】過點(diǎn)C作CO⊥AB于O,延長CO到C′,使OC′=OC,連接DC′,交AB于P,連接CP,此時(shí)DP+CP=DP+PC′=DC′的值最?。蒁C=2,BD=6,得到BC=8,連接BC′,由對稱性可知∠C′BA=∠CBA=45°,于是得到∠CBC′=90°,然后根據(jù)勾股定理即可得到結(jié)論.【詳解】解:過點(diǎn)C作CO⊥AB于O,延長CO到C′,使OC′=OC,連接DC′,交AB于P,連接CP.此時(shí)DP+CP=DP+PC′=DC′的值最?。逥C=2,BD=6,∴BC=8,連接BC′,由對稱性可知∠C′BA=∠CBA=45°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=45°,∴BC=BC′=8,根據(jù)勾股定理可得DC′=.故選:B.【點(diǎn)睛】此題考查了軸對稱﹣線路最短的問題,確定動(dòng)點(diǎn)P為何位置時(shí)PC+PD的值最小是解題的關(guān)鍵.14.C解析:C【分析】此題考查的是直角三角形的判定方法,大約有以下幾種:①勾股定理的逆定理,即三角形三邊符合勾股定理;②三個(gè)內(nèi)角中有一個(gè)是直角,或兩個(gè)內(nèi)角的度數(shù)和等于第三個(gè)內(nèi)角的度數(shù);根據(jù)上面兩種情況進(jìn)行判斷即可.【詳解】解:A、由得a2=b2+c2,符合勾股定理的逆定理,能夠判定△ABC為直角三角形,不符合題意;B、由得∠C+∠B=∠A,此時(shí)∠A是直角,能夠判定△ABC是直角三角形,不符合題意;C、∠A:∠B:∠C=3:4:5,那么∠A=45°、∠B=60°、∠C=75°,△ABC不是直角三角形,故此選項(xiàng)符合題意;D、a:b:c=5:12:13,此時(shí)c2=b2+a2,符合勾股定理的逆定理,△ABC是直角三角形,不符合題意;故選:C.【點(diǎn)睛】此題主要考查了直角三角形的判定方法,只有三角形的三邊長構(gòu)成勾股數(shù)或三內(nèi)角中有一個(gè)是直角的情況下,才能判定三角形是直角三角形.15.C解析:C【分析】利用勾股定理求出AB的長,再根據(jù)無理數(shù)的估算即可求得答案.【詳解】由作法過程可知,OA=2,AB=3,∵∠OAB=90°,∴OB=,∴P點(diǎn)所表示的數(shù)就是,∵,∴,即點(diǎn)P所表示的數(shù)介于3和4之間,故選C.【點(diǎn)睛】本題考查了勾股定理和無理數(shù)的估算,熟練掌握勾股定理的內(nèi)容以及無理數(shù)估算的方法是解題的關(guān)鍵.16.B解析:B【分析】根據(jù)翻折的性質(zhì)可知:AC=AE=6,CD=DE,設(shè)CD=DE=x,在Rt△DEB中利用勾股定理解決.【詳解】解:在Rt△ABC中,∵AC=6,BC=8,∴AB===10,△ADE是由△ACD翻折,∴AC=AE=6,EB=AB?AE=10?6=4,設(shè)CD=DE=x,在Rt△DEB中,∵,∴,∴x=3,∴CD=3.故答案為:B.【點(diǎn)睛】本題考查翻折的性質(zhì)、勾股定理,利用翻折不變性是解決問題的關(guān)鍵,學(xué)會(huì)轉(zhuǎn)化的思想去思考問題.17.D解析:D【分析】由(a-b)(a2-b2-c2)=0,可得:a-b=0,或a2-b2-c2=0,進(jìn)而可得a=b或a2=b2+c2,進(jìn)而判斷△ABC的形狀為等腰三角形或直角三角形.【詳解】解:∵(a-b)(a2-b2-c2)=0,∴a-b=0,或a2-b2-c2=0,即a=b或a2=b2+c2,∴△ABC的形狀為等腰三角形或直角三角形.故選:D.【點(diǎn)睛】本題考查了勾股定理的逆定理以及等腰三角形的判定,解題時(shí)注意:有兩邊相等的三角形是等腰三角形,滿足a2+b2=c2的三角形是直角三角形.18.C解析:C【詳解】如圖所示,∵(a+b)2=21∴a2+2ab+b2=21,∵大正方形的面積為13,2ab=21﹣13=8,∴小正方形的面積為13﹣8=5.故選C.考點(diǎn):勾股定理的證明.19.C解析:C【解析】試題分析:根據(jù)題意得:=13,4×ab=13﹣1=12,即2ab=12,則==13+12=25,故選C.考點(diǎn):勾股定理的證明;數(shù)學(xué)建模思想;構(gòu)造法;等腰三角形與直角三角形.20.C解析:C【分析】先根據(jù)勾股定理的逆定理證明△ABC是直角三角形,根據(jù)垂直平分線的性質(zhì)證得AD=BD,由此根據(jù)勾股定理求出CD.【詳解】∵AB=10,AC=8,BC=6,∴,∴△ABC是直角三角形,且∠C=90°,∵DE垂直平分AB,∴AD=BD,在Rt△BCD中,,∴,解得CD=,故選:C.【點(diǎn)睛】此題考查勾股定理及其逆定理,線段垂直平分線的性質(zhì),題中證得△ABC是直角三角形,且∠C=90°是解題的關(guān)鍵,再利用勾股定理求解.21.D解析:D【解析】在Rt△ABC中∠C=90°,AC=3,BC=4,根據(jù)勾股定理求得AB=5,設(shè)點(diǎn)C到AB的距離為h,即可得h×AB=AC×BC,即h×5=×3×4,解得h=,故選D.22.C解析:C【分析】根據(jù)BD、CE分別是AC、AB邊上的高,推導(dǎo)出;再結(jié)合題意,可證明,由此可得,;再經(jīng)得,從而證明AF⊥AQ;最后由勾股定理得,從而得到,即可得到答案.【詳解】如圖,CE和BD相較于H∵BD、CE分別是AC、AB邊上的高∴,∴∴∵∴又∵BQ=AC且CF=AB∴∴,,故B、D結(jié)論正確;∵∴∴∴AF⊥AQ故A結(jié)論正確;∵∴∵∴∴故選:C.【點(diǎn)睛】本題考查了全等三角形、直角三角形、勾股定理、三角形的高等知識;解題的關(guān)鍵是熟練掌握全等三角形、直角三角形、勾股定理、三角形的高的性質(zhì),從而完成求解.23.A解析:A【分析】求出兩小邊的平方和、最長邊的平方,看看是否相等即可.【詳解】A、12+()2=()2∴以1、、為邊組成的三角形是直角三角形,故本選項(xiàng)正確;
B、22+3242∴以2、3、4為邊組成的三角形不是直角三角形,故本選項(xiàng)錯(cuò)誤;
C、
12+2232∴以1、2、3為邊組成的三角形不是直角三角形,故本選項(xiàng)錯(cuò)誤;
D、
42+5262∴以4、5、6為邊組成的三角形不是直角三角形,故本選項(xiàng)錯(cuò)誤;
故選A..【點(diǎn)睛】本題考查了勾股定理的逆定理應(yīng)用,掌握勾股定理逆定理的內(nèi)容就解答本題的關(guān)鍵.24.A解析:A【解析】分析:直接利用勾股定理的逆定理進(jìn)而結(jié)合直角三角形面積求法得出答案.詳解:∵52+122=132,∴三條邊長分別為5里,12里,13里,構(gòu)成了直角三角形,∴這塊沙田面積為:×5×500×12×500=7500000(平方米)=7.5(平方千米).故選A.點(diǎn)睛:此題主要考查了勾股定理的應(yīng)用,正確得出三角形的形狀是解題關(guān)鍵.25.B解析:B【分析】竹子折斷后剛好構(gòu)成一直角三角形,設(shè)竹子折斷處離地面尺,則斜邊為尺,利用勾股定理解題即可.【詳解】解:設(shè)竹子折斷處離地面尺,則斜邊為尺,根據(jù)勾股定理得:.解得:,折斷處離地面的高度為4.2尺,故選:.【點(diǎn)睛】此題考查了勾股定理的應(yīng)用,解題的關(guān)鍵是利用題目信息構(gòu)造直角三角形,從而運(yùn)用勾股定理解題.26.B解析:B【分析】由折疊的性質(zhì)得出AD=BD,設(shè)BD=x,則CD=8-x,在Rt△ACD中根據(jù)勾股定理列方程即可得出答案.【詳解】解:∵將△ABC折疊,使點(diǎn)B與點(diǎn)A重合,折痕為DE,∴AD=BD,設(shè)BD=x,則CD=8-x,在Rt△ACD中,∵AC2+CD2=AD2,∴62+(8-x)2=x2,解得x=∴BD=.故選:B.【點(diǎn)睛】本題考查了翻折變換的性質(zhì)、勾股定理等知識,熟練掌握方程的思想
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年河北邯鄲經(jīng)濟(jì)技術(shù)開發(fā)區(qū)事業(yè)單位公開選聘初中教師60名考試備考題庫及答案解析
- (2025年標(biāo)準(zhǔn))租農(nóng)田合同協(xié)議書
- 家政協(xié)議合同(標(biāo)準(zhǔn)版)
- 企業(yè)環(huán)境管理體系認(rèn)證協(xié)議
- 【正版授權(quán)】 ISO/PAS 21779-1:2025 EN Road vehicles - Test method to evaluate the performance of acceleration control pedal error (ACPE) - Part 1: Car-to-car from standstill
- 【正版授權(quán)】 ISO/IEC TS 33060:2025 EN Information technology - Process assessment - Process assessment model for system life cycle processes
- 【正版授權(quán)】 ISO 23505:2025 EN Petroleum and liquid petroleum products - Calibration of spherical tanks - External electro-optical distance-ranging method
- 【正版授權(quán)】 IEC 63380-2:2025 EN-FR Standard interface for connecting charging stations to local energy management systems - Part 2: Specific data model mapping
- 【正版授權(quán)】 ISO 16293-2:2025 EN Glass in building - Basic soda lime silicate glass products - Part 2: Float glass
- 【正版授權(quán)】 IEC 61293:1994 FR-D Marking of electrical equipment with ratings related to electrical supply - Safety requirements
- 2025至2030聚乙烯醇縮丁醛(PVB)樹脂行業(yè)發(fā)展趨勢分析與未來投資戰(zhàn)略咨詢研究報(bào)告
- 2025年小學(xué)語文教師考試題庫含答案
- 船舶安全教育培訓(xùn)內(nèi)容
- 人工動(dòng)靜脈瘺閉塞查房
- 2025年貴州省中考數(shù)學(xué)試卷及答案
- 學(xué)堂在線 積極心理學(xué)(上)厚德載物篇 章節(jié)測試答案
- 胖東來運(yùn)營經(jīng)理培訓(xùn)課件
- 供電公司信訪管理制度
- 木工入場安全教育試卷(含答案)
- 工廠廠規(guī)廠紀(jì)管理制度
- 2025全球翻譯行業(yè)發(fā)展報(bào)告
評論
0/150
提交評論