蘇教七年級(jí)下冊(cè)期末解答題壓軸數(shù)學(xué)質(zhì)量測(cè)試題目經(jīng)典套題及解析_第1頁
蘇教七年級(jí)下冊(cè)期末解答題壓軸數(shù)學(xué)質(zhì)量測(cè)試題目經(jīng)典套題及解析_第2頁
蘇教七年級(jí)下冊(cè)期末解答題壓軸數(shù)學(xué)質(zhì)量測(cè)試題目經(jīng)典套題及解析_第3頁
蘇教七年級(jí)下冊(cè)期末解答題壓軸數(shù)學(xué)質(zhì)量測(cè)試題目經(jīng)典套題及解析_第4頁
蘇教七年級(jí)下冊(cè)期末解答題壓軸數(shù)學(xué)質(zhì)量測(cè)試題目經(jīng)典套題及解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

蘇教七年級(jí)下冊(cè)期末解答題壓軸數(shù)學(xué)質(zhì)量測(cè)試題目經(jīng)典套題及解析一、解答題1.小明在學(xué)習(xí)過程中,對(duì)教材中的一個(gè)有趣問題做如下探究:(習(xí)題回顧)已知:如圖1,在中,,是角平分線,是高,、相交于點(diǎn).求證:;(變式思考)如圖2,在中,,是邊上的高,若的外角的平分線交的延長線于點(diǎn),其反向延長線與邊的延長線交于點(diǎn),則與還相等嗎?說明理由;(探究延伸)如圖3,在中,上存在一點(diǎn),使得,的平分線交于點(diǎn).的外角的平分線所在直線與的延長線交于點(diǎn).直接寫出與的數(shù)量關(guān)系.2.問題情境:如圖1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度數(shù).小明的思路是:如圖2,過P作PE∥AB,通過平行線性質(zhì),可得∠APC=50°+60°=110°.問題遷移:(1)如圖3,AD∥BC,點(diǎn)P在射線OM上運(yùn)動(dòng),當(dāng)點(diǎn)P在A、B兩點(diǎn)之間運(yùn)動(dòng)時(shí),∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之間有何數(shù)量關(guān)系?請(qǐng)說明理由;(2)在(1)的條件下,如果點(diǎn)P在A、B兩點(diǎn)外側(cè)運(yùn)動(dòng)時(shí)(點(diǎn)P與點(diǎn)A、B、O三點(diǎn)不重合),請(qǐng)你直接寫出∠CPD、∠α、∠β間的數(shù)量關(guān)系.3.直線MN與直線PQ垂直相交于O,點(diǎn)A在射線OP上運(yùn)動(dòng),點(diǎn)B在射線OM上運(yùn)動(dòng),A、B不與點(diǎn)O重合,如圖1,已知AC、BC分別是∠BAP和∠ABM角的平分線,(1)點(diǎn)A、B在運(yùn)動(dòng)的過程中,∠ACB的大小是否發(fā)生變化?若發(fā)生變化,請(qǐng)說明理由;若不發(fā)生變化,試求出∠ACB的大小.(2)如圖2,將△ABC沿直線AB折疊,若點(diǎn)C落在直線PQ上,則∠ABO=________,如圖3,將△ABC沿直線AB折疊,若點(diǎn)C落在直線MN上,則∠ABO=________(3)如圖4,延長BA至G,已知∠BAO、∠OAG的角平分線與∠BOQ的角平分線及其反向延長線交于E、F,則∠EAF=;在△AEF中,如果有一個(gè)角是另一個(gè)角的倍,求∠ABO的度數(shù).4.互動(dòng)學(xué)習(xí)課堂上某小組同學(xué)對(duì)一個(gè)課題展開了探究.小亮:已知,如圖三角形,點(diǎn)是三角形內(nèi)一點(diǎn),連接,,試探究與,,之間的關(guān)系.小明:可以用三角形內(nèi)角和定理去解決.小麗:用外角的相關(guān)結(jié)論也能解決.(1)請(qǐng)你在橫線上補(bǔ)全小明的探究過程:∵,(______)∴,(等式性質(zhì))∵,∴,∴.(______)(2)請(qǐng)你按照小麗的思路完成探究過程;(3)利用探究的結(jié)果,解決下列問題:①如圖①,在凹四邊形中,,,求______;②如圖②,在凹四邊形中,與的角平分線交于點(diǎn),,,則______;③如圖③,,的十等分線相交于點(diǎn)、、、…、,若,,則的度數(shù)為______;④如圖④,,的角平分線交于點(diǎn),則,與之間的數(shù)量關(guān)系是______;⑤如圖⑤,,的角平分線交于點(diǎn),,,求的度數(shù).5.已知,如圖1,直線l2⊥l1,垂足為A,點(diǎn)B在A點(diǎn)下方,點(diǎn)C在射線AM上,點(diǎn)B、C不與點(diǎn)A重合,點(diǎn)D在直線11上,點(diǎn)A的右側(cè),過D作l3⊥l1,點(diǎn)E在直線l3上,點(diǎn)D的下方.(1)l2與l3的位置關(guān)系是;(2)如圖1,若CE平分∠BCD,且∠BCD=70°,則∠CED=°,∠ADC=°;(3)如圖2,若CD⊥BD于D,作∠BCD的角平分線,交BD于F,交AD于G.試說明:∠DGF=∠DFG;(4)如圖3,若∠DBE=∠DEB,點(diǎn)C在射線AM上運(yùn)動(dòng),∠BDC的角平分線交EB的延長線于點(diǎn)N,在點(diǎn)C的運(yùn)動(dòng)過程中,探索∠N:∠BCD的值是否變化,若變化,請(qǐng)說明理由;若不變化,請(qǐng)直接寫出比值.6.如圖1,在△ABC中,∠B=90°,分別作其內(nèi)角∠ACB與外角∠DAC的平分線,且兩條角平分線所在的直線交于點(diǎn)E.(1)∠E=°;(2)分別作∠EAB與∠ECB的平分線,且兩條角平分線交于點(diǎn)F.①依題意在圖1中補(bǔ)全圖形;②求∠AFC的度數(shù);(3)在(2)的條件下,射線FM在∠AFC的內(nèi)部且∠AFM=∠AFC,設(shè)EC與AB的交點(diǎn)為H,射線HN在∠AHC的內(nèi)部且∠AHN=∠AHC,射線HN與FM交于點(diǎn)P,若∠FAH,∠FPH和∠FCH滿足的數(shù)量關(guān)系為∠FCH=m∠FAH+n∠FPH,請(qǐng)直接寫出m,n的值.7.已知,如圖1,射線PE分別與直線AB、CD相交于E、F兩點(diǎn),∠PFD的平分線與直線AB相交于點(diǎn)M,射線PM交CD于點(diǎn)N,設(shè)∠PFM=,∠EMF=,且.(1)=____°,=______°;直線AB與CD的位置關(guān)系是_______;(2)如圖2,若點(diǎn)G是射線MA上任意一點(diǎn),且∠MGH=∠PNF,試找出∠FMN與∠GHF之間存在的數(shù)量關(guān)系,并證明你的結(jié)論:(3)若將圖中的射線PM繞著端點(diǎn)P逆時(shí)針方向旋轉(zhuǎn)(如圖3),分別與AB、CD相交于點(diǎn)M和點(diǎn)N,時(shí),作∠PMB的角平分線MQ與射線FM相交于點(diǎn)Q,問在旋轉(zhuǎn)的過程中的值變不變?若不變,請(qǐng)求出其值;若變化,請(qǐng)說明理由.8.在中,,是的角平分線,是射線上任意一點(diǎn)(不與、、三點(diǎn)重合),過點(diǎn)作,垂足為,交直線于.(1)如圖①,當(dāng)點(diǎn)在線段上時(shí),(i)說明.(ii)作的角平分線交直線于點(diǎn),則與有怎樣的位置關(guān)系?畫出圖形并說明理由.(2)當(dāng)點(diǎn)在的延長線上時(shí),作的角平分線交直線于點(diǎn),此時(shí)與的位置關(guān)系為___________.9.如圖1,直線m與直線n相交于O,點(diǎn)A在直線m上運(yùn)動(dòng),點(diǎn)B在直線n上運(yùn)動(dòng),AC、BC分別是∠BAO和∠ABO的角平分線.(1)若∠BAO=50o,∠ABO=40o,求∠ACB的度數(shù);(2)如圖2,若∠AOB=α,BD是△AOB的外角∠OBE的角平分線,BD與AC相交于點(diǎn)D,點(diǎn)A、B在運(yùn)動(dòng)的過程中,∠ADB的大小是否會(huì)發(fā)生變化?若發(fā)生變化,請(qǐng)說明理由;若不發(fā)生變化,試求出其度數(shù)(用含α的代數(shù)式表示);(3)如圖3,若直線m與直線n相互垂直,延長AB至E,已知∠ABO、∠OBE的角平分線與∠BOQ的角平分線及延長線分別相交于D、F,在△BDF中,如果有一個(gè)角是另一個(gè)角的3倍,請(qǐng)直接寫出∠BAO的度數(shù).10.如圖,在△ABC中,∠B=30°,∠C>∠B,AE平分∠BAC,交BC邊于點(diǎn)E.(1)如圖1,過點(diǎn)A作AD⊥BC于D,若已知∠C=50°,則∠EAD的度數(shù)為;(2)如圖2,過點(diǎn)A作AD⊥BC于D,若AD恰好又平分∠EAC,求∠C的度數(shù);(3)如圖3,CF平分△ABC的外角∠BCG,交AE的延長線于點(diǎn)F,作FD⊥BC于D,設(shè)∠ACB=n°,試求∠DFE﹣∠AFC的值;(用含有n的代數(shù)式表示)(4)如圖4,在圖3的基礎(chǔ)上分別作∠BAE和∠BCF的角平分線,交于點(diǎn)F1,作F1D1⊥BC于D1,設(shè)∠ACB=n°,試直接寫出∠D1F1A﹣∠AF1C的值.(用含有n的代數(shù)式表示)【參考答案】一、解答題1.[習(xí)題回顧]證明見解析;[變式思考]相等,證明見解析;[探究延伸]∠M+∠CFE=90°,證明見解析.【分析】[習(xí)題回顧]根據(jù)同角的余角相等可證明∠B=∠ACD,再根據(jù)三角形的外角的性質(zhì)即可解析:[習(xí)題回顧]證明見解析;[變式思考]相等,證明見解析;[探究延伸]∠M+∠CFE=90°,證明見解析.【分析】[習(xí)題回顧]根據(jù)同角的余角相等可證明∠B=∠ACD,再根據(jù)三角形的外角的性質(zhì)即可證明;[變式思考]根據(jù)角平分線的定義和對(duì)頂角相等可得∠CAE=∠DAF、再根據(jù)直角三角形的性質(zhì)和等角的余角相等即可得出=;[探究延伸]根據(jù)角平分線的定義可得∠EAN=90°,根據(jù)直角三角形兩銳角互余可得∠M+∠CEF=90°,再根據(jù)三角形外角的性質(zhì)可得∠CEF=∠CFE,由此可證∠M+∠CFE=90°.【詳解】[習(xí)題回顧]證明:∵∠ACB=90°,CD是高,∴∠B+∠CAB=90°,∠ACD+∠CAB=90°,∴∠B=∠ACD,∵AE是角平分線,∴∠CAF=∠DAF,∵∠CFE=∠CAF+∠ACD,∠CEF=∠DAF+∠B,∴∠CEF=∠CFE;[變式思考]相等,理由如下:證明:∵AF為∠BAG的角平分線,∴∠GAF=∠DAF,∵∠CAE=∠GAF,∴∠CAE=∠DAF,∵CD為AB邊上的高,∠ACB=90°,∴∠ADC=90°,∴∠ADF=∠ACE=90°,∴∠DAF+∠F=90°,∠E+∠CAE=90°,∴∠CEF=∠CFE;[探究延伸]∠M+∠CFE=90°,證明:∵C、A、G三點(diǎn)共線

AE、AN為角平分線,∴∠EAN=90°,又∵∠GAN=∠CAM,∴∠M+∠CEF=90°,∵∠CEF=∠EAB+∠B,∠CFE=∠EAC+∠ACD,∠ACD=∠B,∴∠CEF=∠CFE,∴∠M+∠CFE=90°.【點(diǎn)睛】本題考查三角形的外角的性質(zhì),直角三角形兩銳角互余,角平分線的有關(guān)證明,等角或同角的余角相等.在本題中用的比較多的是利用等角或同角的余角相等證明角相等和三角形一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角之和,理解并掌握是解決此題的關(guān)鍵.2.(1),理由見解析;(2)當(dāng)點(diǎn)P在B、O兩點(diǎn)之間時(shí),;當(dāng)點(diǎn)P在射線AM上時(shí),.【分析】(1)過P作PE∥AD交CD于E,推出AD∥PE∥BC,根據(jù)平行線的性質(zhì)得出∠α=∠DPE,∠β=∠C解析:(1),理由見解析;(2)當(dāng)點(diǎn)P在B、O兩點(diǎn)之間時(shí),;當(dāng)點(diǎn)P在射線AM上時(shí),.【分析】(1)過P作PE∥AD交CD于E,推出AD∥PE∥BC,根據(jù)平行線的性質(zhì)得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(2)分兩種情況:①點(diǎn)P在A、M兩點(diǎn)之間,②點(diǎn)P在B、O兩點(diǎn)之間,分別畫出圖形,根據(jù)平行線的性質(zhì)得出∠α=∠DPE,∠β=∠CPE,即可得出結(jié)論.【詳解】解:(1)∠CPD=∠α+∠β,理由如下:如圖,過P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE+∠CPE=∠α+∠β.(2)當(dāng)點(diǎn)P在A、M兩點(diǎn)之間時(shí),∠CPD=∠β-∠α.理由:如圖,過P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠CPE-∠DPE=∠β-∠α;當(dāng)點(diǎn)P在B、O兩點(diǎn)之間時(shí),∠CPD=∠α-∠β.理由:如圖,過P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE-∠CPE=∠α-∠β.【點(diǎn)睛】本題考查了平行線的性質(zhì)的運(yùn)用,主要考核了學(xué)生的推理能力,解決問題的關(guān)鍵是作平行線構(gòu)造內(nèi)錯(cuò)角,利用平行線的性質(zhì)進(jìn)行推導(dǎo).解題時(shí)注意:?jiǎn)栴}(2)也可以運(yùn)用三角形外角性質(zhì)來解決.3.(1)∠AEB的大小不會(huì)發(fā)生變化,∠ACB=45°;(2)30°,60°;(3)60°或72°.【分析】(1)由直線MN與直線PQ垂直相交于O,得到∠AOB=90°,根據(jù)三角形的外角的性質(zhì)得到∠解析:(1)∠AEB的大小不會(huì)發(fā)生變化,∠ACB=45°;(2)30°,60°;(3)60°或72°.【分析】(1)由直線MN與直線PQ垂直相交于O,得到∠AOB=90°,根據(jù)三角形的外角的性質(zhì)得到∠PAB+∠ABM=270°,根據(jù)角平分線的定義得到∠BAC=∠PAB,∠ABC=∠ABM,于是得到結(jié)論;(2)由于將△ABC沿直線AB折疊,若點(diǎn)C落在直線PQ上,得到∠CAB=∠BAQ,由角平分線的定義得到∠PAC=∠CAB,即可得到結(jié)論;根據(jù)將△ABC沿直線AB折疊,若點(diǎn)C落在直線MN上,得到∠ABC=∠ABN,由于BC平分∠ABM,得到∠ABC=∠MBC,于是得到結(jié)論;(3)由∠BAO與∠BOQ的角平分線相交于E可得出∠E與∠ABO的關(guān)系,由AE、AF分別是∠BAO和∠OAG的角平分線可知∠EAF=90°,在△AEF中,由一個(gè)角是另一個(gè)角的倍分情況進(jìn)行分類討論即可.【詳解】解:(1)∠ACB的大小不變,∵直線MN與直線PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∴∠PAB+∠ABM=270°,∵AC、BC分別是∠BAP和∠ABM角的平分線,∴∠BAC=∠PAB,∠ABC=∠ABM,∴∠BAC+∠ABC=(∠PAB+∠ABM)=135°,∴∠ACB=45°;(2)∵將△ABC沿直線AB折疊,若點(diǎn)C落在直線PQ上,∴∠CAB=∠BAQ,∵AC平分∠PAB,∴∠PAC=∠CAB,∴∠PAC=∠CAB=∠BAO=60°,∵∠AOB=90°,∴∠ABO=30°,∵將△ABC沿直線AB折疊,若點(diǎn)C落在直線MN上,∴∠ABC=∠ABN,∵BC平分∠ABM,∴∠ABC=∠MBC,∴∠MBC=∠ABC=∠ABN,∴∠ABO=60°,故答案為:30°,60°;(3)∵AE、AF分別是∠BAO與∠GAO的平分線,∴∠EAO=∠BAO,∠FAO=∠GAO,∴∠E=∠EOQ﹣∠EAO=(∠BOQ﹣∠BAO)=∠ABO,∵AE、AF分別是∠BAO和∠OAG的角平分線,∴∠EAF=∠EAO+∠FAO=(∠BAO+∠GAO)=90°.在△AEF中,∵∠BAO與∠BOQ的角平分線相交于E,∴∠EAO=∠BAO,∠EOQ=∠BOQ,∴∠E=∠EOQ-∠EAO=(∠BOQ-∠BAO)=∠ABO,∵有一個(gè)角是另一個(gè)角的倍,故有:①∠EAF=∠F,∠E=30°,∠ABO=60°;②∠F=∠E,∠E=36°,∠ABO=72°;③∠EAF=∠E,∠E=60°,∠ABO=120°(舍去);④∠E=∠F,∠E=54°,∠ABO=108°(舍去);∴∠ABO為60°或72°.【點(diǎn)睛】本題主要考查的是角平分線的性質(zhì)以及三角形內(nèi)角和定理的應(yīng)用.解決這個(gè)問題的關(guān)鍵就是要能根據(jù)角平分線的性質(zhì)將外角的度數(shù)與三角形的內(nèi)角聯(lián)系起來,然后再根據(jù)內(nèi)角和定理進(jìn)行求解.另外需要分類討論的時(shí)候一定要注意分類討論的思想.4.(1)三角形內(nèi)角和180°;等量代換;(2)見解析;(3)①;②;③;④;⑤【分析】(1)根據(jù)三角形的內(nèi)角和定理即可判斷,根據(jù)等量代換的概念即可判斷;(2)想要利用外角的性質(zhì)求解,就需要構(gòu)造外解析:(1)三角形內(nèi)角和180°;等量代換;(2)見解析;(3)①;②;③;④;⑤【分析】(1)根據(jù)三角形的內(nèi)角和定理即可判斷,根據(jù)等量代換的概念即可判斷;(2)想要利用外角的性質(zhì)求解,就需要構(gòu)造外角,因此延長交于,然后根據(jù)外角的性質(zhì)確定,,即可判斷與,,之間的關(guān)系;(3)①連接BC,然后根據(jù)(1)中結(jié)論,代入已知條件即可求解;②連接BC,然后根據(jù)(1)中結(jié)論,求得的和,進(jìn)而得到的和,然后根據(jù)角平分線求得的和,進(jìn)而求得,然后利用三角形內(nèi)角和定理,即可求解;③連接BC,首先求得,然后根據(jù)十等分線和三角形內(nèi)角和的性質(zhì)得到,然后得到的和,最后根據(jù)(1)中結(jié)論即可求解;④設(shè)與的交點(diǎn)為點(diǎn),首先利用根據(jù)外角的性質(zhì)將用兩種形式表示出來,然后得到,然后根據(jù)角平分線的性質(zhì),移項(xiàng)整理即可判斷;⑤根據(jù)(1)問結(jié)論,得到的和,然后根據(jù)角平分線的性質(zhì)得到的和,然后利用三角形內(nèi)角和性質(zhì)即可求解.【詳解】(1)∵,(三角形內(nèi)角和180°)∴,(等式性質(zhì))∵,∴,∴.(等量代換)故答案為:三角形內(nèi)角和180°;等量代換.(2)如圖,延長交于,由三角形外角性質(zhì)可知,,,∴.(3)①如圖①所示,連接BC,,根據(jù)(1)中結(jié)論,得,∴,∴;②如圖②所示,連接BC,,根據(jù)(1)中結(jié)論,得,∴,∵與的角平分線交于點(diǎn),∴,,∴,∵,,∴,∴,∵,∴;③如圖③所示,連接BC,,根據(jù)(1)中結(jié)論,得,∵,,∴,∵與的十等分線交于點(diǎn),∴,,∴,∴,∵,∴,∴,∴,∴;④如圖④所示,設(shè)與的交點(diǎn)為點(diǎn),∵平分,平分,∴,,∵,,∴,∴,∴,即;⑤∵,的角平分線交于點(diǎn),∴,∴.【點(diǎn)睛】本題考查了三角形內(nèi)角和定量,外角的性質(zhì),以及輔助線的做法,重點(diǎn)是觀察題干中的解題思路,然后注意角平分線的性質(zhì),逐漸推到即可求解.5.(1)互相平行;(2)35,20;(3)見解析;(4)不變,【分析】(1)根據(jù)平行線的判定定理即可得到結(jié)論;(2)根據(jù)角平分線的定義和平行線的性質(zhì)即可得到結(jié)論;(3)根據(jù)角平分線的定義和平行解析:(1)互相平行;(2)35,20;(3)見解析;(4)不變,【分析】(1)根據(jù)平行線的判定定理即可得到結(jié)論;(2)根據(jù)角平分線的定義和平行線的性質(zhì)即可得到結(jié)論;(3)根據(jù)角平分線的定義和平行線的性質(zhì)即可得到結(jié)論;(4)根據(jù)角平分線的定義,平行線的性質(zhì),三角形外角的性質(zhì)即可得到結(jié)論.【詳解】解:(1)直線l2⊥l1,l3⊥l1,∴l(xiāng)2∥l3,即l2與l3的位置關(guān)系是互相平行,故答案為:互相平行;(2)∵CE平分∠BCD,∴∠BCE=∠DCE=BCD,∵∠BCD=70°,∴∠DCE=35°,∵l2∥l3,∴∠CED=∠DCE=35°,∵l2⊥l1,∴∠CAD=90°,∴∠ADC=90°﹣70°=20°;故答案為:35,20;(3)∵CF平分∠BCD,∴∠BCF=∠DCF,∵l2⊥l1,∴∠CAD=90°,∴∠BCF+∠AGC=90°,∵CD⊥BD,∴∠DCF+∠CFD=90°,∴∠AGC=∠CFD,∵∠AGC=∠DGF,∴∠DGF=∠DFG;(4)∠N:∠BCD的值不會(huì)變化,等于;理由如下:∵l2∥l3,∴∠BED=∠EBH,∵∠DBE=∠DEB,∴∠DBE=∠EBH,∴∠DBH=2∠DBE,∵∠BCD+∠BDC=∠DBH,∴∠BCD+∠BDC=2∠DBE,∵∠N+∠BDN=∠DBE,∴∠BCD+∠BDC=2∠N+2∠BDN,∵DN平分∠BDC,∴∠BDC=2∠BDN,∴∠BCD=2∠N,∴∠N:∠BCD=.【點(diǎn)睛】本題考查了三角形的綜合題,三角形的內(nèi)角和定理,三角形外角的性質(zhì),平行線的判定和性質(zhì),角平分線的定義,正確的識(shí)別圖形進(jìn)行推理是解題的關(guān)鍵.6.(1)45;(2)67.5°;(3)m=2,n=﹣3.【分析】(1)根據(jù)角平分線的定義可得∠CAF=∠DAC,∠ACE=∠ACB,設(shè)∠CAF=x,∠ACE=y,根據(jù)已知可推導(dǎo)得出x﹣y=45,再解析:(1)45;(2)67.5°;(3)m=2,n=﹣3.【分析】(1)根據(jù)角平分線的定義可得∠CAF=∠DAC,∠ACE=∠ACB,設(shè)∠CAF=x,∠ACE=y,根據(jù)已知可推導(dǎo)得出x﹣y=45,再根據(jù)三角形外角的性質(zhì)即可求得答案;(2)①根據(jù)角平分線的尺規(guī)作圖的方法作出圖形即可;②如圖2,由CF平分∠ECB可得∠ECF=y,再根據(jù)∠E+∠EAF=∠F+∠ECF以及∠E+∠EAB=∠B+∠ECB,可推導(dǎo)得出45°+=∠F+y,由此即可求得答案;(3)如圖3,設(shè)∠FAH=α,根據(jù)AF平分∠EAB可得∠FAH=∠EAF=α,根據(jù)已知可推導(dǎo)得出∠FCH=α﹣22.5①,α+22.5=30+∠FCH+∠FPH②,由此可得∠FPH=,再根據(jù)∠FCH=m∠FAH+n∠FPH,即可求得答案.【詳解】(1)如圖1,∵EA平分∠DAC,EC平分∠ACB,∴∠CAF=∠DAC,∠ACE=∠ACB,設(shè)∠CAF=x,∠ACE=y,∵∠B=90°,∴∠ACB+∠BAC=90°,∴2y+180﹣2x=90,x﹣y=45,∵∠CAF=∠E+∠ACE,∴∠E=∠CAF﹣∠ACE=x﹣y=45°,故答案為45;(2)①如圖2所示,②如圖2,∵CF平分∠ECB,∴∠ECF=y,∵∠E+∠EAF=∠F+∠ECF,∴45°+∠EAF=∠F+y①,同理可得:∠E+∠EAB=∠B+∠ECB,∴45°+2∠EAF=90°+y,∴∠EAF=②,把②代入①得:45°+=∠F+y,∴∠F=67.5°,即∠AFC=67.5°;(3)如圖3,設(shè)∠FAH=α,∵AF平分∠EAB,∴∠FAH=∠EAF=α,∵∠AFM=∠AFC=×67.5°=22.5°,∵∠E+∠EAF=∠AFC+∠FCH,∴45+α=67.5+∠FCH,∴∠FCH=α﹣22.5①,∵∠AHN=∠AHC=(∠B+∠BCH)=(90+2∠FCH)=30+∠FCH,∵∠FAH+∠AFM=∠AHN+∠FPH,∴α+22.5=30+∠FCH+∠FPH,②把①代入②得:∠FPH=,∵∠FCH=m∠FAH+n∠FPH,α﹣22.5=mα+n,解得:m=2,n=﹣3.【點(diǎn)睛】本題考查了三角形內(nèi)角和定理、三角形外角的性質(zhì)、基本作圖——角平分線等,熟練掌握三角形內(nèi)角和定理以及三角形外角的性質(zhì)、結(jié)合圖形進(jìn)行求解是關(guān)鍵.7.(1)35;35;AB∥CD;(2)∠FMN+∠GHF=180°.證明見解析;(3)的值不變,=2.【分析】(1)利用非負(fù)數(shù)的性質(zhì)可知:==35,推出即可解決問題;(2)結(jié)論,只要證明即可解決解析:(1)35;35;AB∥CD;(2)∠FMN+∠GHF=180°.證明見解析;(3)的值不變,=2.【分析】(1)利用非負(fù)數(shù)的性質(zhì)可知:==35,推出即可解決問題;(2)結(jié)論,只要證明即可解決問題;(3)結(jié)論:的值不變,=2.如圖3中,作∠PEM1的平分線交M1Q的延長線于R,只要證明∠R=∠,∠=2∠R即可;【詳解】(1)證明:∵,∴==35,∴∠PFM=∠MFN=35°,∠EMF=35°,∴∠EMF=∠MFN,∴AB∥CD;故答案為:35;35;AB∥CD;(2)解:∠FMN+∠GHF=180°.理由:∵AB∥CD,∴∠MNF=∠PME,∵∠MGH=∠MNF,∴∠PME=∠MGH,∴GH∥PN,∴∠GHM=∠FMN,∵∠GHF+∠GHM=180°,∴∠FMN+∠GHF=180°.(3)解:的值不變,=2.理由:如圖3中,作∠PEM1的平分線交M1Q的延長線于R.∵AB∥CD,∴∠PEM1=∠PFN,∵∠PER=∠PEM1,∠PFQ=∠PFN,∴∠PER=∠PFQ,∴ER∥FQ,∴∠=∠R,設(shè)∠PER=∠REB=,,則有:,可得∠=2∠R,∴∠=2∠∴=2.【點(diǎn)睛】本題考查幾何變換綜合題、平行線的判定和性質(zhì)、角平分線的定義、非負(fù)數(shù)的性質(zhì)等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問題,學(xué)會(huì)添加常用輔助線,構(gòu)造平行線解決問題,屬于中考?jí)狠S題.8.(1)(i)見解析;(ii),理由見解析;(2)【分析】(1)(i)根據(jù)平分可以得到,再根據(jù),,即可得到答案;(ii)設(shè),根據(jù),,即可求解;(2)根據(jù)∠PDO=∠A+∠DBA,∠A+∠ABC解析:(1)(i)見解析;(ii),理由見解析;(2)【分析】(1)(i)根據(jù)平分可以得到,再根據(jù),,即可得到答案;(ii)設(shè),根據(jù),,即可求解;(2)根據(jù)∠PDO=∠A+∠DBA,∠A+∠ABC=90°,∠ABC=∠CPG,利用角平分線的性質(zhì),即可得到.【詳解】解:(1)(i)∵平分,∴,∵,∴,∵,∴,∴,∴,∵,∴.(ii).設(shè),∴.∵,∴,又∵∴∴,∴.(2),理由如下:∵∠ACB=90°∴∠PCB=90°,∠A+∠ABC=90°∵PQ⊥AB∴∠PQB=∠PCB=90°又∵∠CGP=∠BGQ∴∠ABC=∠CPG∵∠PDO=∠A+∠DBA,BD是∠ABC的角平分線∴∵PF是∠APQ的角平分線∴∴∴∠POD=90°∴PF⊥BD.【點(diǎn)睛】本題主要考查了三角形內(nèi)角和定理,三角形外角的性質(zhì),對(duì)頂角的性質(zhì),平行線的判定,解題的關(guān)鍵在于能夠熟練掌握相關(guān)知識(shí)進(jìn)行求解.9.(1)135°;(2)不變,;(3)或【分析】(1)由角平分線的性質(zhì)分別求解∠CAB與∠CBA的大小,再通過三角形內(nèi)角和定理求值.(2)由三角形的外角定理及角平分線的性質(zhì)求出∠3+∠4=∠1+解析:(1)135°;(2)不變,;(3)或【分析】(1)由角平分線的性質(zhì)分別求解∠CAB與∠CBA的大小,再通過三角形內(nèi)角和定理求值.(2)由三角形的外角定理及角平分線的性質(zhì)求出∠3+∠4=∠1+∠2+α,∠4=∠2+∠D,再通過加減消元求出α與∠D的等量關(guān)系.(3)先通過角平分線的性質(zhì)求出∠FBD為90°,再分類討論有一個(gè)角是另一個(gè)角的3倍的情況求解.【詳解】解:(1)、分別是和的角平分線,,,.(2)的大小不發(fā)生變化,理由如下:如圖,平分,平分,平分,,,,是的外角,,即①,是的外角,,即②,由①②得,解得.(3)如圖,平分,平分,平分,,,,,是的外角,,.①當(dāng)時(shí),,,,.②當(dāng)時(shí),,.,不符合題意.③當(dāng)時(shí),,解得,,.④當(dāng)時(shí),,,解得,,,不符合題意.綜上所述,或.【點(diǎn)睛】本題考查三角形的內(nèi)角和定理與外角定理以及角平分線的性質(zhì),解題關(guān)鍵是熟練掌握三角形內(nèi)角和與外角定理,通過分類討論求解.10.(1)10°;(2)∠C的度數(shù)為70°;(3)∠DFE﹣∠AFC的值為;(4)∠D1F1A﹣∠AF1C的值為.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論