




下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
裝訂線裝訂線PAGE2第1頁,共2頁河北工業(yè)職業(yè)技術(shù)大學(xué)《現(xiàn)代統(tǒng)計分析方法與應(yīng)用》2024-2025學(xué)年第一學(xué)期期末試卷院(系)_______班級_______學(xué)號_______姓名_______題號一二三四總分得分一、單選題(本大題共15個小題,每小題2分,共30分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、假設(shè)要分析不同產(chǎn)品類別的市場份額及其變化趨勢,以下關(guān)于市場份額分析的描述,正確的是:()A.只計算當(dāng)前的市場份額,不考慮歷史數(shù)據(jù)B.市場份額的變化趨勢可以通過簡單的差值計算得出C.考慮競爭對手的策略和市場動態(tài)對市場份額的影響,進(jìn)行綜合分析D.市場份額分析只適用于成熟的市場,對于新興市場沒有意義2、在處理大數(shù)據(jù)集時,分布式計算框架能夠提高計算效率。假設(shè)要分析海量的社交媒體數(shù)據(jù),以下關(guān)于分布式計算框架選擇的描述,正確的是:()A.Hadoop適合處理大規(guī)模的結(jié)構(gòu)化數(shù)據(jù),但對實時性要求高的任務(wù)不太適用B.Spark僅能處理批處理任務(wù),無法支持流處理C.Flink在處理流數(shù)據(jù)方面表現(xiàn)不佳,主要用于批處理D.這些分布式計算框架都差不多,隨便選擇一個都能滿足需求3、在進(jìn)行數(shù)據(jù)分析時,需要處理數(shù)據(jù)的不平衡問題。假設(shè)要分析信用卡欺詐檢測數(shù)據(jù),其中欺詐交易的樣本數(shù)量遠(yuǎn)遠(yuǎn)少于正常交易。以下哪種方法在處理這種數(shù)據(jù)不平衡問題時更能提高模型對少數(shù)類(欺詐交易)的識別能力?()A.過采樣B.欠采樣C.合成少數(shù)類過采樣技術(shù)(SMOTE)D.以上方法結(jié)合使用4、關(guān)于數(shù)據(jù)分析中的數(shù)據(jù)倉庫設(shè)計,假設(shè)要構(gòu)建一個企業(yè)級的數(shù)據(jù)倉庫來支持決策制定。以下哪個設(shè)計原則可能對于數(shù)據(jù)的存儲、管理和查詢性能至關(guān)重要?()A.規(guī)范化設(shè)計,減少數(shù)據(jù)冗余B.維度建模,便于分析和查詢C.分布式存儲,提高可擴(kuò)展性D.不設(shè)計數(shù)據(jù)倉庫,直接使用原始業(yè)務(wù)數(shù)據(jù)庫5、在數(shù)據(jù)分析中,探索性數(shù)據(jù)分析(EDA)用于初步了解數(shù)據(jù)的特征和分布。假設(shè)要對一個新收集的社交媒體數(shù)據(jù)進(jìn)行EDA,包括用戶的年齡、性別、地域和發(fā)布內(nèi)容等信息。以下哪種EDA方法在快速發(fā)現(xiàn)數(shù)據(jù)中的潛在模式和關(guān)系方面更有效?()A.數(shù)據(jù)可視化B.統(tǒng)計描述C.相關(guān)性分析D.以上方法結(jié)合使用6、在數(shù)據(jù)分析項目中,與利益相關(guān)者的溝通和理解需求至關(guān)重要。假設(shè)你正在為一家企業(yè)進(jìn)行數(shù)據(jù)分析,以下關(guān)于需求溝通的方法,哪一項是最有效的?()A.使用大量的技術(shù)術(shù)語和復(fù)雜的圖表來解釋分析過程B.以通俗易懂的語言,結(jié)合實際案例說明分析的目標(biāo)和結(jié)果C.只與技術(shù)人員溝通,忽略非技術(shù)背景的利益相關(guān)者D.不與利益相關(guān)者溝通,自行決定分析的方向和重點7、數(shù)據(jù)分析中的回歸分析用于建立自變量和因變量之間的關(guān)系模型。假設(shè)我們要研究房價與房屋面積、地理位置等因素的關(guān)系。以下關(guān)于回歸分析的描述,哪一項是不正確的?()A.多元線性回歸可以同時考慮多個自變量對因變量的影響B(tài).回歸模型的擬合優(yōu)度可以通過R平方值來評估C.存在共線性問題時,回歸模型的參數(shù)估計會不準(zhǔn)確,但不影響預(yù)測效果D.可以通過逐步回歸等方法選擇對因變量有顯著影響的自變量8、數(shù)據(jù)分析中,假設(shè)檢驗是常用的方法之一。以下關(guān)于假設(shè)檢驗的描述,錯誤的是:()A.原假設(shè)和備擇假設(shè)是相互對立的B.當(dāng)P值小于顯著性水平時,拒絕原假設(shè)C.第一類錯誤是指錯誤地拒絕了原假設(shè)D.樣本量越大,越容易犯第二類錯誤9、在進(jìn)行數(shù)據(jù)可視化時,選擇合適的圖表類型要根據(jù)數(shù)據(jù)的特點和分析目的。假設(shè)你要展示不同年齡段人群的收入分布情況,以下關(guān)于圖表選擇的建議,哪一項是最恰當(dāng)?shù)??()A.使用折線圖,體現(xiàn)收入隨年齡的變化趨勢B.運(yùn)用柱狀圖,比較不同年齡段的收入水平C.選擇餅圖,展示各年齡段收入在總體中的占比D.采用雷達(dá)圖,綜合展示多個相關(guān)變量10、某數(shù)據(jù)分析項目需要對大量文本數(shù)據(jù)進(jìn)行情感分析。以下哪種技術(shù)常用于文本情感分析?()A.決策樹B.樸素貝葉斯C.支持向量機(jī)D.詞袋模型11、在數(shù)據(jù)分析的風(fēng)險評估中,假設(shè)要評估一個投資項目的風(fēng)險水平。以下哪種方法可能更全面地考慮各種不確定性和潛在損失?()A.敏感性分析,研究參數(shù)變化的影響B(tài).蒙特卡羅模擬,隨機(jī)生成多種可能結(jié)果C.風(fēng)險矩陣,評估風(fēng)險的可能性和影響程度D.不進(jìn)行風(fēng)險評估,盲目投資12、數(shù)據(jù)倉庫是數(shù)據(jù)分析的重要基礎(chǔ)設(shè)施。假設(shè)一個企業(yè)要構(gòu)建數(shù)據(jù)倉庫來整合來自不同業(yè)務(wù)系統(tǒng)的數(shù)據(jù),以下哪個步驟是首先要進(jìn)行的?()A.確定數(shù)據(jù)倉庫的架構(gòu)B.進(jìn)行數(shù)據(jù)清洗和轉(zhuǎn)換C.定義數(shù)據(jù)模型D.選擇合適的數(shù)據(jù)庫管理系統(tǒng)13、數(shù)據(jù)分析中的模型選擇需要根據(jù)問題的特點和數(shù)據(jù)的性質(zhì)來決定。假設(shè)要預(yù)測股票價格的短期波動,數(shù)據(jù)具有高噪聲和非線性特征。以下哪種模型在處理這種復(fù)雜的金融數(shù)據(jù)時更有可能取得較好的預(yù)測效果?()A.線性回歸模型B.決策樹模型C.支持向量回歸模型D.深度學(xué)習(xí)模型14、對于數(shù)據(jù)分析中的優(yōu)化問題,假設(shè)要在一定的約束條件下最大化或最小化某個目標(biāo)函數(shù)。以下哪種優(yōu)化算法可能適用于解決這類復(fù)雜的優(yōu)化任務(wù)?()A.線性規(guī)劃,處理線性目標(biāo)和約束B.遺傳算法,通過模擬進(jìn)化過程搜索最優(yōu)解C.模擬退火算法,避免陷入局部最優(yōu)D.不進(jìn)行優(yōu)化,隨機(jī)選擇解決方案15、在對一個社交網(wǎng)絡(luò)的用戶關(guān)系數(shù)據(jù)進(jìn)行分析,例如好友關(guān)系、群組活動等,以發(fā)現(xiàn)社區(qū)結(jié)構(gòu)和關(guān)鍵節(jié)點。以下哪種算法可能在社區(qū)發(fā)現(xiàn)和關(guān)鍵人物識別中表現(xiàn)出色?()A.PageRank算法B.K-Means算法C.Apriori算法D.以上都不是二、簡答題(本大題共3個小題,共15分)1、(本題5分)簡述數(shù)據(jù)倉庫中的緩慢變化維處理方法,說明在不同業(yè)務(wù)場景下如何選擇合適的處理方式,并舉例說明。2、(本題5分)闡述數(shù)據(jù)挖掘中的關(guān)聯(lián)規(guī)則挖掘中的提升度和置信度的概念和作用,并舉例說明如何根據(jù)這兩個指標(biāo)篩選有價值的關(guān)聯(lián)規(guī)則。3、(本題5分)在進(jìn)行分類模型訓(xùn)練時,如何進(jìn)行超參數(shù)調(diào)優(yōu)?請介紹常見的超參數(shù)調(diào)優(yōu)方法,如網(wǎng)格搜索、隨機(jī)搜索等,并舉例說明。三、論述題(本大題共5個小題,共25分)1、(本題5分)在能源管理領(lǐng)域,企業(yè)的能源消耗數(shù)據(jù)、節(jié)能措施效果數(shù)據(jù)等逐漸完善。論述如何通過數(shù)據(jù)分析技術(shù),像能源效率評估、節(jié)能潛力挖掘等,實現(xiàn)企業(yè)的節(jié)能減排目標(biāo),同時思考在數(shù)據(jù)采集精度受限、行業(yè)標(biāo)準(zhǔn)差異和能源價格波動影響方面的挑戰(zhàn)及應(yīng)對措施。2、(本題5分)在金融衍生品交易中,如何運(yùn)用數(shù)據(jù)分析來評估風(fēng)險敞口、定價模型的合理性和交易策略的優(yōu)化?請論述數(shù)據(jù)分析在復(fù)雜金融工具交易中的應(yīng)用、模型風(fēng)險和市場波動的應(yīng)對。3、(本題5分)醫(yī)療行業(yè)的數(shù)據(jù)分析對于提高醫(yī)療質(zhì)量、優(yōu)化資源配置和疾病預(yù)防具有重要意義。請論述如何利用醫(yī)療數(shù)據(jù)進(jìn)行疾病預(yù)測、治療效果評估和醫(yī)療資源需求分析,包括數(shù)據(jù)來源、分析方法和面臨的技術(shù)難題,以及如何在保護(hù)患者隱私的前提下實現(xiàn)數(shù)據(jù)共享和合作。4、(本題5分)分析在電信運(yùn)營商的用戶通話和流量使用數(shù)據(jù)中,如何進(jìn)行用戶行為分析,推出個性化的套餐和增值服務(wù)。5、(本題5分)房地產(chǎn)市場的數(shù)據(jù)分析對于投資決策、價格預(yù)測和市場趨勢分析至關(guān)重要。請全面闡述如何運(yùn)用數(shù)據(jù)分析技術(shù),如時間序列分析和空間數(shù)據(jù)分析,來評估房地產(chǎn)價值、預(yù)測市場走勢和確定投資策略,分析數(shù)據(jù)的可靠性和市場不確定性對分析結(jié)果的影響。四、案例分析題(本大題共3個小題,共30分)1、(本題10分)某在線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025智能醫(yī)療數(shù)據(jù)安全共享與保密管理協(xié)議
- 2025年生態(tài)保護(hù)與修復(fù)爆破拆除綜合服務(wù)合同
- 2025年生態(tài)園區(qū)設(shè)施維護(hù)管理服務(wù)合同范本
- 2025年環(huán)保型不銹鋼水箱定制采購及售后服務(wù)合同
- 2025年安能快遞城市配送網(wǎng)絡(luò)優(yōu)化合作協(xié)議范本
- 2025年社區(qū)老年餐桌服務(wù)與健康管理合作協(xié)議
- 2025年新型金屬礦資源高效選礦技術(shù)合作開發(fā)協(xié)議
- 2025年度大型音樂劇主演演出權(quán)專屬合作協(xié)議
- 2025年綠色建筑節(jié)能改造項目廠房租賃居間代理服務(wù)合同
- 2025新型醫(yī)療器械研發(fā)與銷售聯(lián)合合同范本
- 內(nèi)審檢查表-行政部(42061、13485)
- 汽車制造質(zhì)量管理與控制課件:沖壓生產(chǎn)的質(zhì)量控制
- 工程交工技術(shù)文件說明
- 讀書分享讀書交流會《鄉(xiāng)土中國》課件
- 《電子商務(wù)概論》(第3版)白東蕊主編 第一章電子商務(wù)概述課件
- 全業(yè)務(wù)競爭挑戰(zhàn)浙江公司社會渠道管理經(jīng)驗匯報
- GB/T 42195-2022老年人能力評估規(guī)范
- GB/T 4909.4-2009裸電線試驗方法第4部分:扭轉(zhuǎn)試驗
- GB/T 15155-1994濾波器用壓電陶瓷材料通用技術(shù)條件
- 做一名優(yōu)秀教師課件
- 企業(yè)標(biāo)準(zhǔn)編寫模板
評論
0/150
提交評論