




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
THINKPIECE
Opportunitiesfor
ArtificialIntelligence
InMediaMeasurement
November2024
CONTENTS
Introduction3
AboutCIMM
4
AbouttheAuthor5
TheBuildingBlocksofAI
6
BestFitApplicationsforAIandML
10
UsingAIforMediaMeasurement1
7
PuttingAItoWork2
4
ChallengestoAdoption2
7
Conclusions3
0
Introduction
TherehasbeenmuchexcitementabouttheapplicationofAItomanyfields
overthelast18months,andmedia
measurementisnoexception.Inthispaper,Ihaveconsultedacrosstheindustryand
beyondtounderstandthecurrentuseofAItechnologies,bothplannedandinproductiontoday.
Ihavefoundmanyexcitingandinnovativeapplicationsthatarelikelytocontinuetodrivetheevolutionofmediameasurement.Thispaperwillprovideapractical,
in-depthintroductiontothearrayofAI
technologiesformediaresearchersandanappraisalofthecurrentstateofthe
art,likelyfutureinnovations,andriskstoconsiderwhendeployingAIinyourmediameasurementsolutions.
–TomWeiss,author
●
3
AboutCIMM
TheCoalitionforInnovativeMediaMeasurementisanon-partisan,
pan-industrysubsidiaryoftheAdvertisingResearchFoundation,focusedon
cultivatingandsupportingimprovements,bestpracticesandinnovationsin
measurementandcurrency,data
collaborationandenablement,andthe
useofnewmetricsandapproachesto
understandingthevalueofmedia.CIMMembracestheentiremediaandadvertisingecosystemandprioritizeseffective
collaborationtodelivermeaningfulchange.Tofindoutmore,visit
●
4
orcontact
infro@
.
AbouttheAuthor
TomWeissisatechnologist,datascientist,andserial
entrepreneurwithover30yearsofexperienceacross
mediaandtechnology.CurrentlyservingasChief
TechnologyOfficeratRun3TVandBoardMemberatMX8Inc.,TomhasbeenattheforefrontofAI-drivenconsumerresearchandsmartbroadcastinginnovations.Hehas
foundedandledmultipleglobaltechnologyventures,
developedindustry-leadingdatascienceteams,and
holdsseveralpatentsinmediaandadvertising.WithanMAinPhysicsfromOxfordUniversity,Tomblendsdeeptechnicalexpertisewithapassionforhelpingbrands
betterunderstandandengagewiththeiraudiences.Youcanfollowhimonsubstackat
Tomwouldliketothankthefollowingwhohaveall
providedinputandinspirationforthispaper:
?AndyBrownfromtheAttentionCouncil
?AndyPrincepfromMarketCast
?AshwinNavinfromSamba
?BrianWestfromNBCU
?ChrisWilsonofHyphametrics
?EmilyMcReynoldsofAdobe
?JimBisbeefromVanderbiltUniversity
?JohnBrauerfromComcast
?JonWattsofCIMM
?JustinEvansfromSamsungAds
?KeithSmithfromMSI
?KenWilburfromUCSanDiegoRadySchoolofManagement
?KevinKohnfromKinetiq
?MatthewMcGranaghanfromtheUniversityofDelaware
?MichaelVinsonofComscore
?NickNorthfromtheBBC
?PaulDonatofromtheARF
?YanLiufromTVision
Theviewsandopinionsexpressedinthisreportare
solelythoseoftheauthor,TomWeiss,anddonot
necessarilyreflecttheviewsorpositionsofanyother
individualorentity.Thisreportisintendedsolely
forinformationalpurposes.NeitherCIMMnorthe
authorsmakeanyrepresentationsastotheaccuracy
orcompletenessofanyinformationcontainedinthis
reportorinanyreportorwebsitelinkedtointhisreport.NeitherCIMMnortheauthorswillbeliableforany
errorsoromissionsinthisinformationorforanylosses,injuries,ordamagesincurredfromthedisplayoruseofthisinformation.
5
6
TheBuildingBlocksofAI
ThehistoryofAIdatestothemid-20th
century.Theconceptof“artificialintelligence”wasfirstcoinedin1956byJohnMcCarthy
attheDartmouthConference,markingthebirthofAIasanacademicdiscipline.
Keymilestonesincludethedevelopment
ofearlyprogramminglanguages,creating
thefirstneuralnetworkinthe1940s,and
machinelearninginthe1980s.The1990s
and2000ssawsignificantadvancements,
withthedevelopmentofmoresophisticatedalgorithmsandincreasedcomputational
power.NoteworthynewstoriesthatcapturedthepopularimaginationincludeIBM’s
DeepBluedefeatingchesschampionGarryKasparovin1997,theintroductionofdeeplearninginthe2000s,andthevictoryofAIsystemsincomplexgameslikeJeopardy!
andGo.Morerecently,AIfromGoogle’s
DeepMindhasmadebreakthroughsinseveralcomputationallyexpensiveareasofscience
earningitscreatoraNobelPrizeinChemistry,andOpenAI’sChatGPThaswowedmillionswithitshuman-likeresponses.
Asoftheendof2024,wenowhaveAIswithnaturallanguageprocessingabilitiesthat
canpassthebarexamintheUSAandsolveMathsandPhysicsproblemsatacomparableleveltoundergraduatestudents.Wecan
createrealisticvideosbasedonasingle
imageoratextdescriptionofthevideoandeditphotosandvideossimplybyaskingtheAIwhattodo.
Noneoftheseseemedfeasibleatthe
beginningof2021.Theirdevelopmenthas
driventhecreationof“Transformer”-basedmodels,whichwerefirstpostulatedin2017.Theyhavemassivelyincreasedthevolumeofdatawecanfeedintoaneuralnetwork-stylemodel.Witharoundaquarterofamillion
academicpapersbeingpublishedeachyear,novelapproacheswilllikelybedevelopedinthecomingyearstoincreasethesemodels’efficacyfurther.
BeforeweconsiderhowtoapplythesenewtechnologiestoAI,let’sreview
theirfundamentals.
TheBuildingBlocksofAI
WhatdowemeanbyAI?
ThereareseveralschoolsofthoughtwhenitcomestoAI.Initially,AIreliedonlogicandrulestomakedecisions.Inrecentyears,approachessuchasneuralnetworksand
geneticalgorithmsthatsimulatehowthehumanbrain
workshaveemerged.Machinelearning,asubsetofAI,
focusesondevelopingalgorithmstolearnfromandmakepredictionsondata.Deeplearning,asubsetofmachine
learning,useslayeredneuralnetworkstoanalyze
variousfactorsinlargeamountsofdata.ReinforcementlearningisanotherapproachwhereAIsystemslearn
tomakedecisionsbytrialanderror.Together,these
approachesformthefoundationofmodernAIresearchandapplication.
Forthispaper,wearetakingthebroadestpossibleviewofartificialintelligenceandconsideringittoincludeallareasofmachinelearningandstatisticalinference:
Figure1:ThedifferenttechnologiesinvolvedinAI
AIisfundamentallyaboutteachingcomputersto
learnfromdata,allowingthemtomakepredictionsor
decisionsautonomouslywithoutbeingprogrammedforeveryspecifictask.Thesemodelsimproveandadaptastheyarefedmoreinformation.Theabilitytoevolveandenhanceitsperformancewitheachnewpieceofdata
makesmachinelearningsoeffective.
Thefieldisbroadlycategorizedintoseveralareas,eachwithitsstrengthsandweaknesses.
SupervisedLearning
Supervisedlearningislikeateacherguidingastudentthroughalesson,wheretheanswersarealreadyknown,
andthetaskistolearnhowtoanswerthequestions
correctly.Insupervisedlearning,algorithmsaretrainedondatasetsthatincludeboththequestions(inputs)andthecorrectanswers(outputs).Theaimistoteachthe
algorithmtomakeaccuratepredictionsonnew,unseendata.It’slikelearningtorecognizewhetheramanorawomanissittinginfrontoftheTVbystudyinglabeledphotosandthentryingtoidentifythepersoninanewimage.Thisapproachpowerstechnologieslikevoice
recognitionandemailspamfilters.
●
7
TheBuildingBlocksofAI
UnsupervisedLearning
Unsupervisedlearningisclosertostudying
acomplextopicindependently,withouta
teacherorguidebook.Unsupervisedlearningdealswithunlabeleddata,strivingtouncoverhiddenpatternsorstructures.It’sakinto
observingagardenfullofplantsandgroupingthemintocategoriesbasedontheirfeatures,eventhoughyou’veneverbeentoldwhich
featuresaremostdistinctive.Thismethodisusedtodiscovercustomersegments
inmarketingordetectunusualpatternsindicatingfraud.
ReinforcementLearning
Reinforcementlearningislearningbydoing,wheretheconsequencesofyouractions
teachyouhowtobehaveinthefuture.Themodelknowstomakedecisionsbytryingdifferentactionsandseeingwhathappens,aimingtomaximizecumulativereward.It’sliketeachingachildtoplaychess;thechildlearnsthemovesthatbringthemclosertocheckmateovertime.Applications
includeautonomousdrivingandstrategicgame-playing.
Semi-Supervisedand
Self-SupervisedLearning
Theseapproachesblendsupervisedand
unsupervisedlearningelements.Theyare
helpfulwhenthere’sonlyasmallamountoflabeleddataandalargequantityofunlabeleddata.It’slikelearningtopaintwithsome
instructionsforafewtechniquesbutthen
exploringandexperimentingonyourown
tocreateamasterpiece.Thesemethods
helpimprovelearningefficiencyandare
particularlybeneficialinfieldswherelabeleddataisrareorexpensivetogather.
semi-supervisedlearningpredictscustomerbehaviorbyleveragingasmalldatasetof
labeleduserinteractions(e.g.,clicks,views,orpurchases)alongsidealargerpoolof
unlabeledwebtrafficdata.Similarly,
self-supervisedlearningtechniquescanbeemployedtoanalyzevideocontentoraudiostreams,identifyingpatternslikerecurring
themesorcommonviewerreactionswithoutneedingextensivemanualtagging.
Forinstance,indigitaladvertising,
8
NeuralNetworks
Neuralnetworksareinspiredbythestructureand
functionofthehumanbrain.Theyconsistoflayers
ofinterconnectednodesor‘neurons,’eachlayer
transformingitsinputdataintoamoreabstractand
compositerepresentation.The“deep”indeeplearningreferstothenumberoflayersthroughwhichthedataistransformed.Morelayersallowformorecomplex
learningandunderstanding,enablingthesenetworkstoidentifyandlearnpatternsindataatmultiplelevelsofabstraction.
Asimpleneuralnetworkislikeamachinewithaninput(likeaphoto),severalprocessesitgoesthrough(the
hiddenlayers),andanoutput(identifyingiftheimageisofacarorabicycle).Thesenetworksadjusttheir
innerworkingsbasedonthedatathey’refed,learningtoimprovetheiraccuracyovertime.It’slikelearningtorecognizedifferenttypesofcarsbylookingatmanypicturesandgettingbetterwitheachone.
Whenweaddmorelayers,we’vemadedeepneural
networks.Thesecanpickapartandunderstanddatainincrediblydetailedways.Forexample,inrecognizingaface,onelayermightfocusondetectingedges,anotheronshapes,andyetanotheronspecificfeatureslikeeyesorasmile.
TypesofneuralnetworksincludeConvolutionalNeural
Networks(CNNs)andRecurrentNeuralNetworks(RNNs).CNNsareexpertsinhandlingimages,breakingdown
visualdataintopiecesitcananalyzeandunderstand,layerbylayer.RNNsareallaboutsequences,like
sentencesortime-seriesdata,wheretheorderof
thingsmatters.Theyhaveamemory,allowingthemtouseinformationfromearlierinthesequencetomakedecisionslater.
Largelanguagemodels(LLMs)likeChatGPT,together
withmostofthelatestinnovationsinAI,havebeendrivenbytransformermodels,introducedina2017papercalledAttentionisallyouneed1.Theyarenotablebecause,
althoughtheyaresequentialmodels,theycanbetrainedinparallel,allowingmuchmoreextensivetrainingsets
thanwerepossiblewithpreviousneuralnetworksthatrequiredsequentialtraining.
Thestrengthofdeeplearninganditsneuralnetworks
aretheincrediblycomplexfiltersthroughwhichwepushdatatoextractinsightsandanswers.Thedownsideis
thattheinnerworkingsaresoopaquethat,muchlikethebrain,wecannotalwaysexplainwhytheygivetheresultstheyprovide.Inanindustrylikeaudiencemeasurement,wheretransparencyhasbeenkeyforsomanyyears,thisisasignificantbarriertotheuseofAI.
Inlargelanguagemodels,thisalsoleadsisthe
phenomenonof“hallucinations.”AhallucinationreferstoAIgeneratingincorrectorfabricatedinformationbyamodel,evenwhensuchresponsesseemplausibleorconfident.Thisissueisparticularlyprevalentinnaturallanguageprocessing(NLP)modelslikeChatGPT.Forexample,anLLMmightgenerateareferencetoastudythatdoesn’texistorfabricatedetailsaboutahistoricalevent.Hallucinationsoccurbecausethemodeldoesn’ttruly“understand”thedata;itpredictsthemostlikelynextwordoroutputbasedonitstraining.
Thesemisstepscanpresentsignificantchallengesin
applicationslikemediameasurement,whereaccuracyandreliabilityareparamount.Addressingthisrequires
refiningtrainingprocesses,incorporatingbetter
constraints,andusingtechniqueslikehuman-in-the-
loopvalidationtoensurethemodelremainsgroundedinfactualdata.
Overfitting
ThemainpitfallintraininganyAImodelsisoverfitting.It’shardbecauseanoverfittedmodelhaspositivemetrics
supportingitsaccuracybutdoesn’tperforminthewild,andallbutthemostexperienceddatascientistswill
struggletoidentifywhenit’soccurring.
Thefundamentalproblemisthatthemodelistrained
sotightlyonitstrainingdatathatitcannotmakeany
predictionsoutsidethetrainingset.Ifyou’retryingto
teachamodeltoidentifydogphotos,you’dshowit
hundredsofimages,somewithdogsandsomewithout,andtellitwhichoneshavedogs.Ifthemodellearnstoidentifydogsbasedonstandardfeaturesofdogs(likehavingfur,fourlegs,andatail),itwilldowellwhenit
seesnewphotos.
Overfittingiswhenthemodelpaystoomuchattention
tounimportantdetails.Forexample,ifmanyofthedog
photosyoushowedweretakeninyourbackyard,itmightstartthinkingthat“beinginyourbackyard”isintegraltoidentifyingadog.Thismeansitwouldperformwellwithphotostakeninyourbackyard(eventhenon-dogones)becauseitmemorizedthisdetail.Itwould,however,
performpoorlywithphotostakenelsewherebecauseitfocusedtoomuchonthespecificsofthetrainingexamplesratherthanlearningthegeneralfeaturesofwhatmakesadogadog.
1
Vaswanietal.AttentionIsAllYouNeed,
/abs/1706.03762
●
9
BestFitApplicationsforAIandML
EachoftheAItechnologiescanbeappliedtodifferentapplications.Wecancategorizetheapplicationsinaverysimilarwaytohowwethinkaboutthetechnologies.Thissectionprovidesanoverviewoftheseapplications,
illustratingthediversewaysAIcanbeappliedtosolvereal-worldchallenges.
Figure2:ThedifferentAIusecases
Clustering
Clusteringisthetaskofgroupingasetofobjectssothatobjectsinthesamegrouparemorelikeeachotherthanthoseinothergroups.It’sdifferentfromclassificationinthatwedon’tknowwhatlabelswewantforeachgroup.
IfIwalkedintoagatheringataUnitedNations
delegation,Imightstartnoticinggroupsbasedonwherethey’refromwithoutaskingthemdirectly.Istartseeingpatterns-thelanguagespeoplespeak,thestylesof
clothing,perhapseventhefoodstheyprefer.Thistaskofsorting,basedonsimilaritiesyouobserve,isakintowhatwecallclusteringindatascience.It’saboutgrouping
objectssothatthosewithineachgrouparemorelikeeachotherthantheyaretoobjectsindifferentgroups.
Onewaytotackleourhypotheticalproblemwouldbe
theK-meansmethod.Inthiscase,wedecideupfront
thatwewanttoformacertainnumberofgroups(let’s
sayfive)andthenmovepeoplearounduntilwehavefivedistinctgroupswhereeveryoneisascloseaspossibleto
othersfromtheirregion.K-meansdoessomethingsimilarwithdatapoints,partitioningthemintokclustersbasedontheirfeatures,aimingforhighsimilaritywithinclustersanddifferencesbetweenthem.
Ifwedon’tknowupfronthowmanygroupswewant,
wecouldusehierarchicalclustering,whichisabit
likedrawingafamilytreeoftherelationshipsbetween
differentgroups.Insteadoflumpingpeopleintoseparategroups,youstartbyfindingthetwopeoplemostlike
eachotherandgroupthem.Then,youseethenext
closestpersonorgroup,andsoon,untileveryoneisincludedinabig,branchingfamilytreethatshowsnotjustthegroupsbuthowthey’rerelatedtoeachother.
Thismethodunderstandsnotjustthegroupingsbutthehierarchyorlevelsofsimilaritybetweenthem.
Density-basedclustering,suchasDBSCAN,istoday’smosteffectiveapproach.It’slikenoticingwherepeoplenaturallygatherinclustersatourparty.Somegroups
mightbetightlypacked,chattingindensecircles,whileothersmightbemorelooselygathered.
10
BestFitApplicationsforAIandML
Thismethodidentifiesclustersbasedondenselypackeddatapoints,allowingforgroupsofvariousshapesand
sizesandidentifyingdatapointsthatdon’tbelongtoanygroup(likesomeonesittingalone,perhaps).
Lastly,imagineifyoucouldguesswherepeoplewere
frombasedonspecificcharacteristics,likeassuming
someonemightbefromacoldercountryifthey’re
wearingheavywinterclothing.Model-basedclusteringoperatesunderasimilarprincipleifdatacomesfrom
differentsources(likecountries)andtriestofigureoutthesesourcesandtheircharacteristics.It’slikehavingasetofassumptions(models)aboutwherepeople
mightbefromandseeinghowwelleachpersonfitsthoseassumptions.
Inessence,clusteringhelpsusmakesenseofcomplexdatabyfindingnaturalgroupsorpatterns,muchlike
organizingadiversegatheringintogroupsbytheir
similarities.Whetherthroughsimplepartitioning,
drawingfamilytrees,spottinggenuinegatherings,ormakingeducatedguessesaboutorigins,eachmethodoffersawaytounderstandandsimplifytheworldof
dataaroundus.
FeatureExtraction
Featureextractiontransformsrawdataintoamoreusefulformatbyemphasizingthemostrelevantfeaturesor
patterns.Ratherthanfocusingonrawdetails,feature
extractionhelpsusdistillcomplexinformationintoits
essentialelements,makingiteasiertoanalyzeand
interpret.Thinkofitascreatingasummaryorfindingthekeypointsinalongbookratherthantryingtoremembereveryword.
Forinstance,dimensionalityreductionislikefocusingonlyonthemostimportantpagesofthatbook.When
workingwithlargedatasetswithmanyvariables,not
everypieceofdataisalwaysusefulforanalysis.Imagineyou’reobservingseveralpeopleandtrackingevery
minutedetail-fromtheirshoesizetotheirfavoritecolor
tothenumberoffrecklestheyhave.However,perhaps
onlyafewcharacteristics,likeheightandlanguage
spoken,arerelevantforgroupingthemorunderstandingtheirbehavior.Dimensionalityreductiontechniques,likePrincipalComponentAnalysis(PCA),helpuszeroinonthesefeatures,discardinglessvaluabledetailswithout
losingmuchinformation.It’saboutsimplifyingwithoutsacrificingtheessenceofthedata.
Associationrulesuncoverhiddenpatternsindatathatpointtorelationshipsbetweendifferentitems.Thinkofitasfiguringoutthatwhensomeonebuysbread,theyoftenalsobuybutter.Theserules,frequentlyusedinmarket
basketanalysis,helpusdiscoverconnectionsthatmightnotbeimmediatelyobviousbuthaveahighprobabilityofoccurringtogether.It’slikenoticingthatwhentwopeopleatourgatheringareconversinginthesamelanguage,
they’realsolikelydiscussingsimilartopics.ThefamousApriorialgorithmisapopularmethodtodiscovertheseassociations,helpinguspredictthelikelihoodofeventsbasedonpastdata,asiscommonlyseenwhenaretailerrecommendsproductsyoumightliketopurchase.
AnomalydetectionislikespottingtheonepersonatourUnitedNationsgatheringwho’snotquitefitting
in-perhapsthey’redressedunexpectedlyorbehavingdifferentlyfromtherest.Indatascience,anomalies
11
representrareorunusualpatternsthatstandoutfromthenorm,whichcouldindicateanythingfromfraud
BestFitApplicationsforAIandML
detectioninbankingtounusualmachine
behaviorinindustrialmonitoring.Techniquesforanomalydetection,suchasautoencodersorclustering-basedmethods,focuson
identifyingtheseoutliers,flaggingthemas
differentfromthetypicaldatapoints,much
likepickingouttheonepersonatapartywhoisn’tminglingintheusualway.
Inessence,featureextractionallows
ustosiftthroughcomplexdatatofind
what’sessential-reducingunnecessary
details,findingrelationships,oridentifyingoutliers.Thesetechniqueshelpussimplify,analyze,andultimatelyunderstanddata
moremeaningfully.Likeunderstanding
thefundamentaldynamicsatagathering,
featureextractionhighlightsthemostcriticalpatterns,connections,andodditiesinthe
datawe’reworkingwith.
Predictivemodels
Predictivemodelspredictcontinuous
outcomesbasedononeormorevariables.
It’stheAIequivalentofbeingaweather
forecaster,tryingtopredicttomorrow’s
temperatureorafinancialanalystforecastingstockprices.Aparticulartoolsetforthese
kindsoftasksisregressionmodels.Based
onpastdata,thesemodelsareallabout
predictingnumbers-liketemperatures,prices,oranycontinuousoutcome.
Weareallfamiliarwithlinearregression,themoststraightforwardapproach.Wedidthis
inhighschoolwhenwedrewastraightline
throughascatterofdotsonagraphtofitthedatabest.Thislinehelpsusunderstandandpredicttherelationshipbetweenthings-for
example,howsalesmightincreasewithmoreadvertisingspend.It’sthego-tomethodwhentherelationshipbetweenourdatapointsis
directanduncomplicated.
Buttypically,thingsaren’tsostraightand
simple.Real-worldrelationshipsoftencurveandtwistunexpectedly,andweneedto
applynon-linearregressionmodels.Thesecanfitcurvesandcomplexshapestofitthepeculiarpatternsofourdata.Whetherit’sthepredictivecustomerlifetimevalueorcreatingacreditrating,non-linearmodelshelpus
graspandpredicttheseintricatepatterns.
12
Timeseriesforecastingistheapplicationofnon-linearanalysistopredictthefuture.Byexaminingpatterns
overtime-suchastheebbandflowofoceantidesortheseasonalupsanddownsinhotelbookings-thisapproachhelpspredictwhatwillhappennext.
Lastly,wehaveaseriesofmodelsthatareoptimized
nottopredicttheoutcomebuttopredicttheprobabilityoftheoutcomeoccurring.Thisisthefieldofrisk
assessmentandprediction.AIcanhelpinsurance
companies,healthcareproviders,andsafetyengineersmakeinformedpredictionsbyanalyzingpastaccidentsorhealthoutcomes.
Inessence,regressionmodelsinAIareaboutmakinginformedguessesaboutthefuturebasedonpast
patterns.Whetherdrawingstraightlines,sketchingcurves,peeringintothefuture,orcalculatingrisks,thesetoolshelpusconfidentlynavigateaworld
ofuncertainties.
ClassificationProblems
Classificationisafundamentaltaskinmachinelearning,separatingdataintopredefinedclasses.Theclosest
analogyissortingahugepileofphotographsintoalbumsbasedonwho’sinthem.Inmachinelearning,sorting-orclassifying-dataintopredefinedcategoriescanbedoneinseveralways.
First,there’sbinaryclassification.Thisisthesimple
problemofdecidingwhethersomethingisonethingoranother-likedeterminingwhetheraphotoisofacatoradog.Inthedigitalworld,thiscouldidentifywhether
anemailisspamorifamedicaltestindicatesadiseaseispresentorabsent.It’sastraightforward,either/
orsituation.
Thisbecomesharderinmulti-classclassification.
Insteadoftwocategories,wehaveawholespectrum-likesortingphotosintoalbumsforcats,dogs,birds,andfish.Eachimagegoesintojustonealbumbasedonwhat’sinit.Computersusethisapproachfortaskslikerecognizinghandwrittendigits(isthatsquigglea1,a2,ora9?)or
figuringoutthelanguageofatext.
Whenaphotocontainsacatandadog,multi-labelclassificationcomesintoplay,allowingeachpieceofdatatobelongtomultiplecategoriessimultaneously.
Forinstance,anewsarticlemightbetaggedas
simultaneouslyrelatingtopolitics,economics,andinternationalaffairs.
Finally,wehaveimbalancedclassification,wheresomecategoriesaremuchlesscommonthanothers.It’sa
significantchallengeinareaslikefrauddetection,wheretherareevent(afraudulenttransaction)isprecisely
whatneedstobeidentifiedamongaseaoflegitimate
transactions.Thechallengehereistoprovideenough
trainingdatafortherareeventstothemodelwithoutthemodellearningthattheseeventsaremorecommonthantheyare.
Inessence,classificationisaboutteachingamachinetorecognizepatternsandmakedecisions,whetherasimpleyes/no,pickingoneofmanyoptions,jugglingmultiple
labelsatonce,orspottingtherareneedleinahaystack.
DeepLearningApplications
Withitsabilitytoprocessandlearnfromvastamountsofdata,deeplearninghasmanyapplications.
Firstup,wehaveimageandvideorecognition.We’ve
alreadylookedatteachingacomputertorecognizeyourfaceorthedifferencebetweenacatandadog.Deep
learningmodels,particularlyConvolutionalNeural
Networks,havebecomeincrediblygoodatmaking
senseofpixelsandpatternstoidentifyobjectsand
actionsinimagesandvideos.Thistechnologypowers
everythingfromfacialrecognitiononyoursmartphonetoautomatedtaggingoffriendsinsocialmediaphotos.
NaturalLanguageProcessinginvolvesteaching
machinestounderstand,interpret,andrespondto
humanlanguagemeaningfullyandhelpfully.We’ve
seentremendousadvancesthankstodeeplearning,
particularlymodelslikeTransformers.Machinescannoweasilytranslatelanguages,gaugethesentimentbehindyoursocialmediaposts,orevensummarizelongarticles,makinginformationmoreaccessible.
Combiningthesemodels,deeplearninghas
revolutionizedspeechrecognitionandsynthesis.
Rememberwhenyouha
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年通信接入設備項目提案報告
- 2025年血液制劑項目立項申請報告范文
- 2025貴州畢節(jié)醫(yī)學高等??茖W校第一批次“人才強市”暨高層次急需緊缺人才引進模擬試卷附答案詳解(典型題)
- 合作項目質(zhì)量與責任承諾書5篇
- 2025年嘉興海寧市中心醫(yī)院公開招聘高層次急需衛(wèi)技人員4人考前自測高頻考點模擬試題及參考答案詳解
- 行業(yè)信譽鑄就承諾書9篇
- 2025昆侖數(shù)智科技有限責任公司春季高校畢業(yè)生招聘15人考前自測高頻考點模擬試題及答案詳解(易錯題)
- 2025年紹興新昌縣衛(wèi)健系統(tǒng)第一次公開招聘編外人員6人模擬試卷及一套完整答案詳解
- 作業(yè)保護設計印刷合同7篇
- 經(jīng)濟項目合作協(xié)議承諾書(7篇)
- 樹葉之美樹葉知識科普
- 勞務合同通用模板電子下載
- 平頂山橋梁亮化施工方案
- 小學四年級秋季學期《數(shù)學》(人教版)課后練習(全冊匯總)含答案
- 萬家寨水利樞紐
- 肌肉牽伸技術概述
- 去極端化教育課件
- 研學安全主題班會課件
- 組織行為學 馬工程課件5 第五章 領導
- GB/T 32800.3-2016手持式非電類動力工具安全要求第3部分:鉆和攻絲機
- GB/T 17421.4-2016機床檢驗通則第4部分:數(shù)控機床的圓檢驗
評論
0/150
提交評論