2024年媒體測量中的人工智能(AI)機遇研究報告_第1頁
2024年媒體測量中的人工智能(AI)機遇研究報告_第2頁
2024年媒體測量中的人工智能(AI)機遇研究報告_第3頁
2024年媒體測量中的人工智能(AI)機遇研究報告_第4頁
2024年媒體測量中的人工智能(AI)機遇研究報告_第5頁
已閱讀5頁,還剩58頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

THINKPIECE

Opportunitiesfor

ArtificialIntelligence

InMediaMeasurement

November2024

CONTENTS

Introduction3

AboutCIMM

4

AbouttheAuthor5

TheBuildingBlocksofAI

6

BestFitApplicationsforAIandML

10

UsingAIforMediaMeasurement1

7

PuttingAItoWork2

4

ChallengestoAdoption2

7

Conclusions3

0

Introduction

TherehasbeenmuchexcitementabouttheapplicationofAItomanyfields

overthelast18months,andmedia

measurementisnoexception.Inthispaper,Ihaveconsultedacrosstheindustryand

beyondtounderstandthecurrentuseofAItechnologies,bothplannedandinproductiontoday.

Ihavefoundmanyexcitingandinnovativeapplicationsthatarelikelytocontinuetodrivetheevolutionofmediameasurement.Thispaperwillprovideapractical,

in-depthintroductiontothearrayofAI

technologiesformediaresearchersandanappraisalofthecurrentstateofthe

art,likelyfutureinnovations,andriskstoconsiderwhendeployingAIinyourmediameasurementsolutions.

–TomWeiss,author

3

AboutCIMM

TheCoalitionforInnovativeMediaMeasurementisanon-partisan,

pan-industrysubsidiaryoftheAdvertisingResearchFoundation,focusedon

cultivatingandsupportingimprovements,bestpracticesandinnovationsin

measurementandcurrency,data

collaborationandenablement,andthe

useofnewmetricsandapproachesto

understandingthevalueofmedia.CIMMembracestheentiremediaandadvertisingecosystemandprioritizeseffective

collaborationtodelivermeaningfulchange.Tofindoutmore,visit

4

orcontact

infro@

.

AbouttheAuthor

TomWeissisatechnologist,datascientist,andserial

entrepreneurwithover30yearsofexperienceacross

mediaandtechnology.CurrentlyservingasChief

TechnologyOfficeratRun3TVandBoardMemberatMX8Inc.,TomhasbeenattheforefrontofAI-drivenconsumerresearchandsmartbroadcastinginnovations.Hehas

foundedandledmultipleglobaltechnologyventures,

developedindustry-leadingdatascienceteams,and

holdsseveralpatentsinmediaandadvertising.WithanMAinPhysicsfromOxfordUniversity,Tomblendsdeeptechnicalexpertisewithapassionforhelpingbrands

betterunderstandandengagewiththeiraudiences.Youcanfollowhimonsubstackat

Tomwouldliketothankthefollowingwhohaveall

providedinputandinspirationforthispaper:

?AndyBrownfromtheAttentionCouncil

?AndyPrincepfromMarketCast

?AshwinNavinfromSamba

?BrianWestfromNBCU

?ChrisWilsonofHyphametrics

?EmilyMcReynoldsofAdobe

?JimBisbeefromVanderbiltUniversity

?JohnBrauerfromComcast

?JonWattsofCIMM

?JustinEvansfromSamsungAds

?KeithSmithfromMSI

?KenWilburfromUCSanDiegoRadySchoolofManagement

?KevinKohnfromKinetiq

?MatthewMcGranaghanfromtheUniversityofDelaware

?MichaelVinsonofComscore

?NickNorthfromtheBBC

?PaulDonatofromtheARF

?YanLiufromTVision

Theviewsandopinionsexpressedinthisreportare

solelythoseoftheauthor,TomWeiss,anddonot

necessarilyreflecttheviewsorpositionsofanyother

individualorentity.Thisreportisintendedsolely

forinformationalpurposes.NeitherCIMMnorthe

authorsmakeanyrepresentationsastotheaccuracy

orcompletenessofanyinformationcontainedinthis

reportorinanyreportorwebsitelinkedtointhisreport.NeitherCIMMnortheauthorswillbeliableforany

errorsoromissionsinthisinformationorforanylosses,injuries,ordamagesincurredfromthedisplayoruseofthisinformation.

5

6

TheBuildingBlocksofAI

ThehistoryofAIdatestothemid-20th

century.Theconceptof“artificialintelligence”wasfirstcoinedin1956byJohnMcCarthy

attheDartmouthConference,markingthebirthofAIasanacademicdiscipline.

Keymilestonesincludethedevelopment

ofearlyprogramminglanguages,creating

thefirstneuralnetworkinthe1940s,and

machinelearninginthe1980s.The1990s

and2000ssawsignificantadvancements,

withthedevelopmentofmoresophisticatedalgorithmsandincreasedcomputational

power.NoteworthynewstoriesthatcapturedthepopularimaginationincludeIBM’s

DeepBluedefeatingchesschampionGarryKasparovin1997,theintroductionofdeeplearninginthe2000s,andthevictoryofAIsystemsincomplexgameslikeJeopardy!

andGo.Morerecently,AIfromGoogle’s

DeepMindhasmadebreakthroughsinseveralcomputationallyexpensiveareasofscience

earningitscreatoraNobelPrizeinChemistry,andOpenAI’sChatGPThaswowedmillionswithitshuman-likeresponses.

Asoftheendof2024,wenowhaveAIswithnaturallanguageprocessingabilitiesthat

canpassthebarexamintheUSAandsolveMathsandPhysicsproblemsatacomparableleveltoundergraduatestudents.Wecan

createrealisticvideosbasedonasingle

imageoratextdescriptionofthevideoandeditphotosandvideossimplybyaskingtheAIwhattodo.

Noneoftheseseemedfeasibleatthe

beginningof2021.Theirdevelopmenthas

driventhecreationof“Transformer”-basedmodels,whichwerefirstpostulatedin2017.Theyhavemassivelyincreasedthevolumeofdatawecanfeedintoaneuralnetwork-stylemodel.Witharoundaquarterofamillion

academicpapersbeingpublishedeachyear,novelapproacheswilllikelybedevelopedinthecomingyearstoincreasethesemodels’efficacyfurther.

BeforeweconsiderhowtoapplythesenewtechnologiestoAI,let’sreview

theirfundamentals.

TheBuildingBlocksofAI

WhatdowemeanbyAI?

ThereareseveralschoolsofthoughtwhenitcomestoAI.Initially,AIreliedonlogicandrulestomakedecisions.Inrecentyears,approachessuchasneuralnetworksand

geneticalgorithmsthatsimulatehowthehumanbrain

workshaveemerged.Machinelearning,asubsetofAI,

focusesondevelopingalgorithmstolearnfromandmakepredictionsondata.Deeplearning,asubsetofmachine

learning,useslayeredneuralnetworkstoanalyze

variousfactorsinlargeamountsofdata.ReinforcementlearningisanotherapproachwhereAIsystemslearn

tomakedecisionsbytrialanderror.Together,these

approachesformthefoundationofmodernAIresearchandapplication.

Forthispaper,wearetakingthebroadestpossibleviewofartificialintelligenceandconsideringittoincludeallareasofmachinelearningandstatisticalinference:

Figure1:ThedifferenttechnologiesinvolvedinAI

AIisfundamentallyaboutteachingcomputersto

learnfromdata,allowingthemtomakepredictionsor

decisionsautonomouslywithoutbeingprogrammedforeveryspecifictask.Thesemodelsimproveandadaptastheyarefedmoreinformation.Theabilitytoevolveandenhanceitsperformancewitheachnewpieceofdata

makesmachinelearningsoeffective.

Thefieldisbroadlycategorizedintoseveralareas,eachwithitsstrengthsandweaknesses.

SupervisedLearning

Supervisedlearningislikeateacherguidingastudentthroughalesson,wheretheanswersarealreadyknown,

andthetaskistolearnhowtoanswerthequestions

correctly.Insupervisedlearning,algorithmsaretrainedondatasetsthatincludeboththequestions(inputs)andthecorrectanswers(outputs).Theaimistoteachthe

algorithmtomakeaccuratepredictionsonnew,unseendata.It’slikelearningtorecognizewhetheramanorawomanissittinginfrontoftheTVbystudyinglabeledphotosandthentryingtoidentifythepersoninanewimage.Thisapproachpowerstechnologieslikevoice

recognitionandemailspamfilters.

7

TheBuildingBlocksofAI

UnsupervisedLearning

Unsupervisedlearningisclosertostudying

acomplextopicindependently,withouta

teacherorguidebook.Unsupervisedlearningdealswithunlabeleddata,strivingtouncoverhiddenpatternsorstructures.It’sakinto

observingagardenfullofplantsandgroupingthemintocategoriesbasedontheirfeatures,eventhoughyou’veneverbeentoldwhich

featuresaremostdistinctive.Thismethodisusedtodiscovercustomersegments

inmarketingordetectunusualpatternsindicatingfraud.

ReinforcementLearning

Reinforcementlearningislearningbydoing,wheretheconsequencesofyouractions

teachyouhowtobehaveinthefuture.Themodelknowstomakedecisionsbytryingdifferentactionsandseeingwhathappens,aimingtomaximizecumulativereward.It’sliketeachingachildtoplaychess;thechildlearnsthemovesthatbringthemclosertocheckmateovertime.Applications

includeautonomousdrivingandstrategicgame-playing.

Semi-Supervisedand

Self-SupervisedLearning

Theseapproachesblendsupervisedand

unsupervisedlearningelements.Theyare

helpfulwhenthere’sonlyasmallamountoflabeleddataandalargequantityofunlabeleddata.It’slikelearningtopaintwithsome

instructionsforafewtechniquesbutthen

exploringandexperimentingonyourown

tocreateamasterpiece.Thesemethods

helpimprovelearningefficiencyandare

particularlybeneficialinfieldswherelabeleddataisrareorexpensivetogather.

semi-supervisedlearningpredictscustomerbehaviorbyleveragingasmalldatasetof

labeleduserinteractions(e.g.,clicks,views,orpurchases)alongsidealargerpoolof

unlabeledwebtrafficdata.Similarly,

self-supervisedlearningtechniquescanbeemployedtoanalyzevideocontentoraudiostreams,identifyingpatternslikerecurring

themesorcommonviewerreactionswithoutneedingextensivemanualtagging.

Forinstance,indigitaladvertising,

8

NeuralNetworks

Neuralnetworksareinspiredbythestructureand

functionofthehumanbrain.Theyconsistoflayers

ofinterconnectednodesor‘neurons,’eachlayer

transformingitsinputdataintoamoreabstractand

compositerepresentation.The“deep”indeeplearningreferstothenumberoflayersthroughwhichthedataistransformed.Morelayersallowformorecomplex

learningandunderstanding,enablingthesenetworkstoidentifyandlearnpatternsindataatmultiplelevelsofabstraction.

Asimpleneuralnetworkislikeamachinewithaninput(likeaphoto),severalprocessesitgoesthrough(the

hiddenlayers),andanoutput(identifyingiftheimageisofacarorabicycle).Thesenetworksadjusttheir

innerworkingsbasedonthedatathey’refed,learningtoimprovetheiraccuracyovertime.It’slikelearningtorecognizedifferenttypesofcarsbylookingatmanypicturesandgettingbetterwitheachone.

Whenweaddmorelayers,we’vemadedeepneural

networks.Thesecanpickapartandunderstanddatainincrediblydetailedways.Forexample,inrecognizingaface,onelayermightfocusondetectingedges,anotheronshapes,andyetanotheronspecificfeatureslikeeyesorasmile.

TypesofneuralnetworksincludeConvolutionalNeural

Networks(CNNs)andRecurrentNeuralNetworks(RNNs).CNNsareexpertsinhandlingimages,breakingdown

visualdataintopiecesitcananalyzeandunderstand,layerbylayer.RNNsareallaboutsequences,like

sentencesortime-seriesdata,wheretheorderof

thingsmatters.Theyhaveamemory,allowingthemtouseinformationfromearlierinthesequencetomakedecisionslater.

Largelanguagemodels(LLMs)likeChatGPT,together

withmostofthelatestinnovationsinAI,havebeendrivenbytransformermodels,introducedina2017papercalledAttentionisallyouneed1.Theyarenotablebecause,

althoughtheyaresequentialmodels,theycanbetrainedinparallel,allowingmuchmoreextensivetrainingsets

thanwerepossiblewithpreviousneuralnetworksthatrequiredsequentialtraining.

Thestrengthofdeeplearninganditsneuralnetworks

aretheincrediblycomplexfiltersthroughwhichwepushdatatoextractinsightsandanswers.Thedownsideis

thattheinnerworkingsaresoopaquethat,muchlikethebrain,wecannotalwaysexplainwhytheygivetheresultstheyprovide.Inanindustrylikeaudiencemeasurement,wheretransparencyhasbeenkeyforsomanyyears,thisisasignificantbarriertotheuseofAI.

Inlargelanguagemodels,thisalsoleadsisthe

phenomenonof“hallucinations.”AhallucinationreferstoAIgeneratingincorrectorfabricatedinformationbyamodel,evenwhensuchresponsesseemplausibleorconfident.Thisissueisparticularlyprevalentinnaturallanguageprocessing(NLP)modelslikeChatGPT.Forexample,anLLMmightgenerateareferencetoastudythatdoesn’texistorfabricatedetailsaboutahistoricalevent.Hallucinationsoccurbecausethemodeldoesn’ttruly“understand”thedata;itpredictsthemostlikelynextwordoroutputbasedonitstraining.

Thesemisstepscanpresentsignificantchallengesin

applicationslikemediameasurement,whereaccuracyandreliabilityareparamount.Addressingthisrequires

refiningtrainingprocesses,incorporatingbetter

constraints,andusingtechniqueslikehuman-in-the-

loopvalidationtoensurethemodelremainsgroundedinfactualdata.

Overfitting

ThemainpitfallintraininganyAImodelsisoverfitting.It’shardbecauseanoverfittedmodelhaspositivemetrics

supportingitsaccuracybutdoesn’tperforminthewild,andallbutthemostexperienceddatascientistswill

struggletoidentifywhenit’soccurring.

Thefundamentalproblemisthatthemodelistrained

sotightlyonitstrainingdatathatitcannotmakeany

predictionsoutsidethetrainingset.Ifyou’retryingto

teachamodeltoidentifydogphotos,you’dshowit

hundredsofimages,somewithdogsandsomewithout,andtellitwhichoneshavedogs.Ifthemodellearnstoidentifydogsbasedonstandardfeaturesofdogs(likehavingfur,fourlegs,andatail),itwilldowellwhenit

seesnewphotos.

Overfittingiswhenthemodelpaystoomuchattention

tounimportantdetails.Forexample,ifmanyofthedog

photosyoushowedweretakeninyourbackyard,itmightstartthinkingthat“beinginyourbackyard”isintegraltoidentifyingadog.Thismeansitwouldperformwellwithphotostakeninyourbackyard(eventhenon-dogones)becauseitmemorizedthisdetail.Itwould,however,

performpoorlywithphotostakenelsewherebecauseitfocusedtoomuchonthespecificsofthetrainingexamplesratherthanlearningthegeneralfeaturesofwhatmakesadogadog.

1

Vaswanietal.AttentionIsAllYouNeed,

/abs/1706.03762

9

BestFitApplicationsforAIandML

EachoftheAItechnologiescanbeappliedtodifferentapplications.Wecancategorizetheapplicationsinaverysimilarwaytohowwethinkaboutthetechnologies.Thissectionprovidesanoverviewoftheseapplications,

illustratingthediversewaysAIcanbeappliedtosolvereal-worldchallenges.

Figure2:ThedifferentAIusecases

Clustering

Clusteringisthetaskofgroupingasetofobjectssothatobjectsinthesamegrouparemorelikeeachotherthanthoseinothergroups.It’sdifferentfromclassificationinthatwedon’tknowwhatlabelswewantforeachgroup.

IfIwalkedintoagatheringataUnitedNations

delegation,Imightstartnoticinggroupsbasedonwherethey’refromwithoutaskingthemdirectly.Istartseeingpatterns-thelanguagespeoplespeak,thestylesof

clothing,perhapseventhefoodstheyprefer.Thistaskofsorting,basedonsimilaritiesyouobserve,isakintowhatwecallclusteringindatascience.It’saboutgrouping

objectssothatthosewithineachgrouparemorelikeeachotherthantheyaretoobjectsindifferentgroups.

Onewaytotackleourhypotheticalproblemwouldbe

theK-meansmethod.Inthiscase,wedecideupfront

thatwewanttoformacertainnumberofgroups(let’s

sayfive)andthenmovepeoplearounduntilwehavefivedistinctgroupswhereeveryoneisascloseaspossibleto

othersfromtheirregion.K-meansdoessomethingsimilarwithdatapoints,partitioningthemintokclustersbasedontheirfeatures,aimingforhighsimilaritywithinclustersanddifferencesbetweenthem.

Ifwedon’tknowupfronthowmanygroupswewant,

wecouldusehierarchicalclustering,whichisabit

likedrawingafamilytreeoftherelationshipsbetween

differentgroups.Insteadoflumpingpeopleintoseparategroups,youstartbyfindingthetwopeoplemostlike

eachotherandgroupthem.Then,youseethenext

closestpersonorgroup,andsoon,untileveryoneisincludedinabig,branchingfamilytreethatshowsnotjustthegroupsbuthowthey’rerelatedtoeachother.

Thismethodunderstandsnotjustthegroupingsbutthehierarchyorlevelsofsimilaritybetweenthem.

Density-basedclustering,suchasDBSCAN,istoday’smosteffectiveapproach.It’slikenoticingwherepeoplenaturallygatherinclustersatourparty.Somegroups

mightbetightlypacked,chattingindensecircles,whileothersmightbemorelooselygathered.

10

BestFitApplicationsforAIandML

Thismethodidentifiesclustersbasedondenselypackeddatapoints,allowingforgroupsofvariousshapesand

sizesandidentifyingdatapointsthatdon’tbelongtoanygroup(likesomeonesittingalone,perhaps).

Lastly,imagineifyoucouldguesswherepeoplewere

frombasedonspecificcharacteristics,likeassuming

someonemightbefromacoldercountryifthey’re

wearingheavywinterclothing.Model-basedclusteringoperatesunderasimilarprincipleifdatacomesfrom

differentsources(likecountries)andtriestofigureoutthesesourcesandtheircharacteristics.It’slikehavingasetofassumptions(models)aboutwherepeople

mightbefromandseeinghowwelleachpersonfitsthoseassumptions.

Inessence,clusteringhelpsusmakesenseofcomplexdatabyfindingnaturalgroupsorpatterns,muchlike

organizingadiversegatheringintogroupsbytheir

similarities.Whetherthroughsimplepartitioning,

drawingfamilytrees,spottinggenuinegatherings,ormakingeducatedguessesaboutorigins,eachmethodoffersawaytounderstandandsimplifytheworldof

dataaroundus.

FeatureExtraction

Featureextractiontransformsrawdataintoamoreusefulformatbyemphasizingthemostrelevantfeaturesor

patterns.Ratherthanfocusingonrawdetails,feature

extractionhelpsusdistillcomplexinformationintoits

essentialelements,makingiteasiertoanalyzeand

interpret.Thinkofitascreatingasummaryorfindingthekeypointsinalongbookratherthantryingtoremembereveryword.

Forinstance,dimensionalityreductionislikefocusingonlyonthemostimportantpagesofthatbook.When

workingwithlargedatasetswithmanyvariables,not

everypieceofdataisalwaysusefulforanalysis.Imagineyou’reobservingseveralpeopleandtrackingevery

minutedetail-fromtheirshoesizetotheirfavoritecolor

tothenumberoffrecklestheyhave.However,perhaps

onlyafewcharacteristics,likeheightandlanguage

spoken,arerelevantforgroupingthemorunderstandingtheirbehavior.Dimensionalityreductiontechniques,likePrincipalComponentAnalysis(PCA),helpuszeroinonthesefeatures,discardinglessvaluabledetailswithout

losingmuchinformation.It’saboutsimplifyingwithoutsacrificingtheessenceofthedata.

Associationrulesuncoverhiddenpatternsindatathatpointtorelationshipsbetweendifferentitems.Thinkofitasfiguringoutthatwhensomeonebuysbread,theyoftenalsobuybutter.Theserules,frequentlyusedinmarket

basketanalysis,helpusdiscoverconnectionsthatmightnotbeimmediatelyobviousbuthaveahighprobabilityofoccurringtogether.It’slikenoticingthatwhentwopeopleatourgatheringareconversinginthesamelanguage,

they’realsolikelydiscussingsimilartopics.ThefamousApriorialgorithmisapopularmethodtodiscovertheseassociations,helpinguspredictthelikelihoodofeventsbasedonpastdata,asiscommonlyseenwhenaretailerrecommendsproductsyoumightliketopurchase.

AnomalydetectionislikespottingtheonepersonatourUnitedNationsgatheringwho’snotquitefitting

in-perhapsthey’redressedunexpectedlyorbehavingdifferentlyfromtherest.Indatascience,anomalies

11

representrareorunusualpatternsthatstandoutfromthenorm,whichcouldindicateanythingfromfraud

BestFitApplicationsforAIandML

detectioninbankingtounusualmachine

behaviorinindustrialmonitoring.Techniquesforanomalydetection,suchasautoencodersorclustering-basedmethods,focuson

identifyingtheseoutliers,flaggingthemas

differentfromthetypicaldatapoints,much

likepickingouttheonepersonatapartywhoisn’tminglingintheusualway.

Inessence,featureextractionallows

ustosiftthroughcomplexdatatofind

what’sessential-reducingunnecessary

details,findingrelationships,oridentifyingoutliers.Thesetechniqueshelpussimplify,analyze,andultimatelyunderstanddata

moremeaningfully.Likeunderstanding

thefundamentaldynamicsatagathering,

featureextractionhighlightsthemostcriticalpatterns,connections,andodditiesinthe

datawe’reworkingwith.

Predictivemodels

Predictivemodelspredictcontinuous

outcomesbasedononeormorevariables.

It’stheAIequivalentofbeingaweather

forecaster,tryingtopredicttomorrow’s

temperatureorafinancialanalystforecastingstockprices.Aparticulartoolsetforthese

kindsoftasksisregressionmodels.Based

onpastdata,thesemodelsareallabout

predictingnumbers-liketemperatures,prices,oranycontinuousoutcome.

Weareallfamiliarwithlinearregression,themoststraightforwardapproach.Wedidthis

inhighschoolwhenwedrewastraightline

throughascatterofdotsonagraphtofitthedatabest.Thislinehelpsusunderstandandpredicttherelationshipbetweenthings-for

example,howsalesmightincreasewithmoreadvertisingspend.It’sthego-tomethodwhentherelationshipbetweenourdatapointsis

directanduncomplicated.

Buttypically,thingsaren’tsostraightand

simple.Real-worldrelationshipsoftencurveandtwistunexpectedly,andweneedto

applynon-linearregressionmodels.Thesecanfitcurvesandcomplexshapestofitthepeculiarpatternsofourdata.Whetherit’sthepredictivecustomerlifetimevalueorcreatingacreditrating,non-linearmodelshelpus

graspandpredicttheseintricatepatterns.

12

Timeseriesforecastingistheapplicationofnon-linearanalysistopredictthefuture.Byexaminingpatterns

overtime-suchastheebbandflowofoceantidesortheseasonalupsanddownsinhotelbookings-thisapproachhelpspredictwhatwillhappennext.

Lastly,wehaveaseriesofmodelsthatareoptimized

nottopredicttheoutcomebuttopredicttheprobabilityoftheoutcomeoccurring.Thisisthefieldofrisk

assessmentandprediction.AIcanhelpinsurance

companies,healthcareproviders,andsafetyengineersmakeinformedpredictionsbyanalyzingpastaccidentsorhealthoutcomes.

Inessence,regressionmodelsinAIareaboutmakinginformedguessesaboutthefuturebasedonpast

patterns.Whetherdrawingstraightlines,sketchingcurves,peeringintothefuture,orcalculatingrisks,thesetoolshelpusconfidentlynavigateaworld

ofuncertainties.

ClassificationProblems

Classificationisafundamentaltaskinmachinelearning,separatingdataintopredefinedclasses.Theclosest

analogyissortingahugepileofphotographsintoalbumsbasedonwho’sinthem.Inmachinelearning,sorting-orclassifying-dataintopredefinedcategoriescanbedoneinseveralways.

First,there’sbinaryclassification.Thisisthesimple

problemofdecidingwhethersomethingisonethingoranother-likedeterminingwhetheraphotoisofacatoradog.Inthedigitalworld,thiscouldidentifywhether

anemailisspamorifamedicaltestindicatesadiseaseispresentorabsent.It’sastraightforward,either/

orsituation.

Thisbecomesharderinmulti-classclassification.

Insteadoftwocategories,wehaveawholespectrum-likesortingphotosintoalbumsforcats,dogs,birds,andfish.Eachimagegoesintojustonealbumbasedonwhat’sinit.Computersusethisapproachfortaskslikerecognizinghandwrittendigits(isthatsquigglea1,a2,ora9?)or

figuringoutthelanguageofatext.

Whenaphotocontainsacatandadog,multi-labelclassificationcomesintoplay,allowingeachpieceofdatatobelongtomultiplecategoriessimultaneously.

Forinstance,anewsarticlemightbetaggedas

simultaneouslyrelatingtopolitics,economics,andinternationalaffairs.

Finally,wehaveimbalancedclassification,wheresomecategoriesaremuchlesscommonthanothers.It’sa

significantchallengeinareaslikefrauddetection,wheretherareevent(afraudulenttransaction)isprecisely

whatneedstobeidentifiedamongaseaoflegitimate

transactions.Thechallengehereistoprovideenough

trainingdatafortherareeventstothemodelwithoutthemodellearningthattheseeventsaremorecommonthantheyare.

Inessence,classificationisaboutteachingamachinetorecognizepatternsandmakedecisions,whetherasimpleyes/no,pickingoneofmanyoptions,jugglingmultiple

labelsatonce,orspottingtherareneedleinahaystack.

DeepLearningApplications

Withitsabilitytoprocessandlearnfromvastamountsofdata,deeplearninghasmanyapplications.

Firstup,wehaveimageandvideorecognition.We’ve

alreadylookedatteachingacomputertorecognizeyourfaceorthedifferencebetweenacatandadog.Deep

learningmodels,particularlyConvolutionalNeural

Networks,havebecomeincrediblygoodatmaking

senseofpixelsandpatternstoidentifyobjectsand

actionsinimagesandvideos.Thistechnologypowers

everythingfromfacialrecognitiononyoursmartphonetoautomatedtaggingoffriendsinsocialmediaphotos.

NaturalLanguageProcessinginvolvesteaching

machinestounderstand,interpret,andrespondto

humanlanguagemeaningfullyandhelpfully.We’ve

seentremendousadvancesthankstodeeplearning,

particularlymodelslikeTransformers.Machinescannoweasilytranslatelanguages,gaugethesentimentbehindyoursocialmediaposts,orevensummarizelongarticles,makinginformationmoreaccessible.

Combiningthesemodels,deeplearninghas

revolutionizedspeechrecognitionandsynthesis.

Rememberwhenyouha

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論