




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
山東省臨清市中考數(shù)學(xué)真題分類(平行線的證明)匯編專題練習(xí)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計(jì)16分)1、如圖,在△ABC中,D為BC上一點(diǎn),∠1=∠2,∠3=∠4,∠BAC=105°,則∠DAC的度數(shù)為(
)A.80° B.82° C.84° D.86°2、如圖,和是分別沿著、邊翻折形成的,若,則的度數(shù)為(
)A.100° B.90° C.85° D.80°3、如圖,EF與的邊BC,AC相交,則與的大小關(guān)系為(
).A. B.C. D.大小關(guān)系取決于的度數(shù)4、中,它的三條角平分線的交點(diǎn)為O,若∠B=80°,則∠AOC的度數(shù)為()A.100° B.130° C.110° D.150°5、將一副三角尺按如圖所示的方式擺放,則的大小為(
)A. B. C. D.6、如圖,在ABC中,∠ACB=90°,∠B-∠A=10°,D是AB上一點(diǎn),將ACD沿CD翻折后得到CED,邊CE交AB于點(diǎn)F.若DEF中有兩個(gè)角相等,則∠ACD的度數(shù)為(
)A.15°或20° B.20°或30° C.15°或30° D.15°或25°7、如圖,已知△ABC≌△DCB,∠A=75°,∠DBC=40°,則∠DCB的度數(shù)為(
)A.75° B.65°C.40° D.30°8、如圖,在△ABC中,∠A=90°,BE,CD分別平分∠ABC和∠ACB,且相交于F,,于點(diǎn)G,則下列結(jié)論①∠CEG=2∠DCA;②CA平分∠BCG;③∠ADC=∠GCD;④∠DFB=∠A;⑤∠DFE=135°,其中正確的結(jié)論是(
)A.①②③ B.①③④ C.①③④⑤ D.①②③④第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計(jì)14分)1、兩條直線平行的條件(除平行線定義和平行公理推論外):兩條直線被第三條直線所截,如果___________,那么這兩條直線平行.這個(gè)判定方法可簡(jiǎn)述為:_________,兩直線平行.2、如圖,將一副三角尺按圖中所示位置擺放,點(diǎn)F在AC上,其中∠ACB=∠EFD=90°,∠ABC=60°,∠DEF=45°,AB∥DE,則∠AFD的大小為_(kāi)__________度.3、如圖折疊一張矩形紙片,已知∠1=70°,則∠2的度數(shù)是__.4、如圖,在△ABC中,∠ACB=60°,∠BAC=75°,AD⊥BC于D,BE⊥AC于E,AD與BE交于H,則∠CHD=_____.5、如圖是利用直尺和三角板過(guò)已知直線l外一點(diǎn)P作直線l的平行線的方法,其理由是__________.6、請(qǐng)把以下說(shuō)理過(guò)程補(bǔ)充完整:如圖,AB∥CD,∠C=∠D,如果∠1=∠2,那么∠E與∠C互為補(bǔ)角嗎?說(shuō)說(shuō)你的理由.解:因?yàn)椤?=∠2,根據(jù)___________,所以EF∥________.又因?yàn)锳B∥CD,根據(jù)___________,所以EF∥________.根據(jù)____________,所以∠E+________=_________°.又因?yàn)椤螩=∠D,所以∠E+________=_________°,所以∠E與∠C互為補(bǔ)角.7、下列說(shuō)法:(1)兩點(diǎn)之間的所有連線中,線段最短;(2)相等的角是對(duì)頂角;(3)過(guò)一點(diǎn)有且僅有一條直線與已知直線平行;(4)長(zhǎng)方體是四棱柱.其中正確的有______(填正確說(shuō)法的序號(hào)).三、解答題(7小題,每小題10分,共計(jì)70分)1、(1)如圖(a),BD平分,CD平分.試確定和的數(shù)量關(guān)系.(2)如圖(b),BE平分,CE平分外角.試確定和的數(shù)量關(guān)系.(3)如圖(c),BF平分外角,CF平分外角.試確定和的數(shù)量關(guān)系.2、如圖,已知∠1+∠2=180°,∠DEF=∠A,求證:∠ACB=∠DEB.3、如圖,在△ABC中,∠ABC的平分線BD交∠ACB的平分線CE于點(diǎn)O.(1)求證:.(2)如圖1,若∠A=60°,請(qǐng)直接寫(xiě)出BE,CD,BC的數(shù)量關(guān)系.(3)如圖2,∠A=90°,F(xiàn)是ED的中點(diǎn),連接FO.①求證:BC?BE?CD=2OF.②延長(zhǎng)FO交BC于點(diǎn)G,若OF=2,△DEO的面積為10,直接寫(xiě)出OG的長(zhǎng).4、點(diǎn)E在射線DA上,點(diǎn)F、G為射線BC.上兩個(gè)動(dòng)點(diǎn),滿足∠DBF=∠DEF,∠BDG=∠BGD,DG平分∠BDE.(1)如圖,當(dāng)點(diǎn)G在F右側(cè)時(shí),求證:;(2)如圖,當(dāng)點(diǎn)G在BF左側(cè)時(shí),求證:;(3)如圖,在(2)的條件下,P為BD延長(zhǎng)線上一點(diǎn),DM平分∠BDG,交BC于點(diǎn)M,DN平分∠PDM,交EF于點(diǎn)N,連接NG,若DG⊥NG,,求∠B的度數(shù).5、已知:如圖,點(diǎn)B、C在線段AD的異側(cè),點(diǎn)E、F分別是線段AB、CD上的點(diǎn),∠AEG=∠AGE,∠C=∠DGC.(1)求證:AB//CD;(2)若∠AGE+∠AHF=180°,求證:∠B=∠C;(3)在(2)的條件下,若∠BFC=4∠C,求∠D的度數(shù).6、如圖所示,已知BO、CO分別是∠ABC與∠ACB的平分線,DE過(guò)O點(diǎn)且與BC平行.(1)若∠ABC=52°,∠ACB=60°,求∠BOC的大小;(2)若∠A=60°,求∠BOC的大??;(3)直接寫(xiě)出∠A與∠BOC的關(guān)系是∠BOC=.(用∠A表示出來(lái))7、已知:如圖1,,BD平分,,過(guò)點(diǎn)A作直線,延長(zhǎng)CD交MN于點(diǎn)E(1)當(dāng)時(shí),的度數(shù)為_(kāi)_____.(2)如圖2,當(dāng)時(shí),求的度數(shù);(3)設(shè),用含x的代數(shù)式表示的度數(shù).-參考答案-一、單選題1、A【解析】【分析】根據(jù)三角形的內(nèi)角和定理和三角形的外角性質(zhì)即可解決.【詳解】解:∵∠BAC=105°,∴∠2+∠3=75°①∵∠1=∠2,∴∠4=∠3=∠1+∠2=2∠2②把②代入①得:3∠2=75°,∴∠2=25°.∴∠DAC=105°?25°=80°.故選A.【考點(diǎn)】此題主要考查了三角形的外角性質(zhì)以及三角形內(nèi)角和定理,熟記三角形的內(nèi)角和定理,三角形的外角性質(zhì)是解題的關(guān)鍵.2、A【解析】【分析】先根據(jù)三角形的內(nèi)角和定理易計(jì)算出∠1=130°,∠2=35°,∠3=15°,根據(jù)折疊的性質(zhì)得到∠1=∠BAE=130°,∠E=∠3=15°,∠ACD=∠E=15°,可計(jì)算出∠EAC,然后根據(jù)∠α+∠E=∠EAC+∠ACD,即可得到∠α=∠EAC.【詳解】解:設(shè)∠3=3x,則∠1=26x,∠2=7x,∵∠1+∠2+∠3=180°,∴26x+7x+3x=180°,解得x=5°.∴∠1=130°,∠2=35°,∠3=15°.∵△ABE是△ABC沿著AB邊翻折180°形成的,∴∠1=∠BAE=130°,∠E=∠3=15°.∴∠EAC=360°-∠BAE-∠BAC=360°-130°-130°=100°.又∵△ADC是△ABC沿著AC邊翻折180°形成的,∴∠ACD=∠E=15°.∵∠α+∠E=∠EAC+∠ACD,∴∠α=∠EAC=100°.故選:A.【考點(diǎn)】本題考查了折疊的性質(zhì):折疊前后兩圖形全等,即對(duì)應(yīng)角相等,對(duì)應(yīng)線段相等.也考查了三角形的內(nèi)角和定理以及周角的定義.3、C【解析】【分析】根據(jù)對(duì)頂角相等和三角形的內(nèi)角和定理即可得結(jié)論.【詳解】解:∵∠3=∠CEF,∠4=∠CFE∴∠CEF+∠CFE+∠C=∠3+∠4+∠C=180°又∵∠1+∠2+∠C=180°∴故選:C【考點(diǎn)】本題主要考查對(duì)頂角的性質(zhì)和三角形的內(nèi)角和定理,掌握對(duì)頂角的性質(zhì)和三角形的內(nèi)角和定理是解題的關(guān)鍵.4、B【解析】【分析】先根據(jù)角平分線的定義可得,,再根據(jù)三角形的內(nèi)角和定理可得,然后根據(jù)三角形的內(nèi)角和定理可得,由此即可得出答案.【詳解】如圖,∵AO,CO分別是,的角平分線∴,∴又∵∴∴故選:B.【考點(diǎn)】本題考查了角平分線的定義、三角形的內(nèi)角和定理等知識(shí)點(diǎn),掌握三角形的內(nèi)角和定理是解題關(guān)鍵.5、B【解析】【分析】先根據(jù)直角三角板的性質(zhì)得出∠ACD的度數(shù),再由三角形內(nèi)角和定理即可得出結(jié)論.【詳解】解:如圖所示,由一副三角板的性質(zhì)可知:∠ECD=60°,∠BCA=45°,∠D=90°,∴∠ACD=∠ECD-∠BCA=60°-45°=15°,∴∠α=180°-∠D-∠ACD=180°-90°-15°=75°,故選:B.【考點(diǎn)】本題考查的是三角形內(nèi)角和定理,熟知三角形內(nèi)角和是180°是解答此題的關(guān)鍵.6、C【解析】【分析】由三角形的內(nèi)角和定理可求解∠A=40°,設(shè)∠ACD=x°,則∠CDF=40°+x,∠ADC=180°-40°-x=140°-x,由折疊可知:∠ADC=∠CDE,∠E=∠A=40°,可分三種情況:當(dāng)∠DFE=∠E=40°時(shí);當(dāng)∠FDE=∠E=40°時(shí);當(dāng)∠DFE=∠FDE時(shí),根據(jù)∠ADC=∠CDE列方程,解方程可求解x值,即可求解.【詳解】解:在△ABC中,∠ACB=90°,∴∠B+∠A=90°,∵∠B-∠A=10°,∴∠A=40°,∠B=50°,設(shè)∠ACD=x°,則∠CDF=40°+x,∠ADC=180°-40°-x=140°-x,由折疊可知:∠ADC=∠CDE,∠E=∠A=40°,當(dāng)∠DFE=∠E=40°時(shí),∵∠FDE+∠DFE+∠E=180°,∴∠FDE=180°-40°-40°=100°,∴140°-x=100°+40°+x,解得x=0(不存在);當(dāng)∠FDE=∠E=40°時(shí),∴140°-x=40°+40°+x,解得x=30°,即∠ACD=30°;當(dāng)∠DFE=∠FDE時(shí),∵∠FDE+∠DFE+∠E=180°,∴∠FDE==70°,∴140°-x=70°+40°+x,解得x=15,即∠ACD=15°,綜上,∠ACD=15°或30°,故選:C.【考點(diǎn)】本題主要考查直角三角形的性質(zhì),等腰三角形的性質(zhì),三角形的內(nèi)角和定理,根據(jù)∠ADC=∠CDE分三種情況列方程是解題的關(guān)鍵.7、B【解析】【分析】直接利用全等三角形的性質(zhì)得出對(duì)應(yīng)角相等進(jìn)而求出答案.【詳解】解:∵△ABC≌△DCB,∴∠D=∠A=75°,∠ACB=∠DBC=40°,∴∠DCB=180°-75°-40°=65°,故選:B.【考點(diǎn)】此題主要考查了全等三角形的性質(zhì),正確得出對(duì)應(yīng)角的度數(shù)是解題關(guān)鍵.8、C【解析】【分析】根據(jù)平行線的性質(zhì)與角平分線的定義即可判斷①;只需要證明∠ADC+∠ACD=90°,∠GCD+∠BCD=90°,即可判斷③;根據(jù)角平分線的定義和三角形內(nèi)角和定理先推出,即可判斷④⑤;根據(jù)現(xiàn)有條件無(wú)法推出②.【詳解】解:∵CD平分∠ACB,∴∠ACB=2∠DCA,∠ACD=∠BCD∵,∴∠CEG=∠ACB=2∠DCA,故①正確;∵∠A=90°,CG⊥EG,,∴∠ADC+∠ACD=90°,CG⊥BC,即∠BCG=90°,∴∠GCD+∠BCD=90°,又∵∠BCD=∠ACD,∴∠ADC=∠GDC,故③正確;∵∠A=90°,∴∠ABC+∠ACB=90°,∵BE,CD分別平分∠ABC,∠ACB,∴,∴,∴∠DFB=180°-∠BFC=45°,∴,故④正確;∵∠BFC=135°,∴∠DFE=∠BFC=135°,故⑤正確;根據(jù)現(xiàn)有條件,無(wú)法推出CA平分∠BCG,故②錯(cuò)誤;故選C.【考點(diǎn)】本題主要考查了平行線的性質(zhì),角平分線的定義,三角形內(nèi)角和定理,熟知平行線的性質(zhì),角平分線的定義是解題的關(guān)鍵.二、填空題1、
同位角相等(答案不唯一)
同位角相等(答案不唯一)【解析】【分析】根據(jù)平行線的判定定理解答即可.【詳解】?jī)蓷l直線平行的條件(除平行線定義和平行公理推論外):兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行.這個(gè)判定方法可簡(jiǎn)述為:同位角相等,兩直線平行.故答案為:同位角相等,同位角相等.【考點(diǎn)】本題主要考查平行線的判定定理,屬于基礎(chǔ)題,熟練掌握平行線的判定定理是解題關(guān)鍵.2、15【解析】【分析】根據(jù)直角三角板的特點(diǎn),結(jié)合題意,通過(guò)角的轉(zhuǎn)換即可得結(jié)果;【詳解】解:如圖,∵∠ACB=∠EFD=90°,∠ABC=60°,∴∠A=30°,∵∠DEF=45°,AB∥DE,∴∠BGF=45°,∵∠A+∠AFD=∠BGF=45°,∴∠AFD=∠BGF-∠A=45°-30°=15°.故答案為:15.【考點(diǎn)】本題主要考查角的轉(zhuǎn)換、三角形的內(nèi)角和定理、平行線的性質(zhì),掌握三角形的內(nèi)角和定理、平行線的性質(zhì)是解題的關(guān)鍵.3、55°【解析】【詳解】,,.4、45°##45°【解析】【分析】延長(zhǎng)CH交AB于點(diǎn)F,銳角三角形三條高交于一點(diǎn),所以CF⊥AB,再根據(jù)三角形內(nèi)角和定理得出答案.【詳解】解:延長(zhǎng)CH交AB于點(diǎn)F,在△ABC中,三邊的高交于一點(diǎn),所以CF⊥AB,∵∠BAC=75°,且CF⊥AB,∴∠ACF=15°,∵∠ACB=60°,∴∠BCF=45°在△CDH中,三內(nèi)角之和為180°,∴∠CHD=45°,故答案為:45°.【考點(diǎn)】本題考查三角形中,三條邊的高交于一點(diǎn),且內(nèi)角和為180°.5、同位角相等,兩直線平行.【解析】【詳解】利用三角板中兩個(gè)60°相等,可判定平行,故答案為:同位角相等,兩直線平行考點(diǎn):平行線的判定6、內(nèi)錯(cuò)角相等,兩直線平行;AB;平行于同一條直線的兩條直線平行;CD;兩直線平行,同旁內(nèi)角互補(bǔ);∠D;180;∠C;180【解析】【分析】由已知角相等,利用內(nèi)錯(cuò)角相等兩直線平行得到AB與EF平行,再由AB與CD平行,利用平行于同一條直線的兩直線平行即可得EF與CD平行,然后由兩直線平行,同旁內(nèi)角互補(bǔ)可得∠E+∠D=180°,最后等量代換得到∠E+∠C=180°.【詳解】解:因?yàn)椤?=∠2,根據(jù)_內(nèi)錯(cuò)角相等,兩直線平行,所以EF∥__AB_.又因?yàn)锳B∥CD,根據(jù)_平行于同一條直線的兩條直線平行,所以EF∥__CD___.根據(jù)兩直線平行,同旁內(nèi)角互補(bǔ),所以∠E+_∠D=__180°.又因?yàn)椤螩=∠D,所以∠E+_∠C_=_180°,所以∠E與∠C互為補(bǔ)角.【考點(diǎn)】此題考查了平行線的判定與性質(zhì),熟練掌握平行線的判定與性質(zhì)是解本題的關(guān)鍵.7、(1)、(4).【解析】【分析】根據(jù)所學(xué)公理和性質(zhì)解答即可.【詳解】解:(1)兩點(diǎn)之間的所有連線中,線段最短,故本說(shuō)法正確;(2)相等的角不一定是對(duì)頂角,但對(duì)頂角相等,故本說(shuō)法錯(cuò)誤;(3)應(yīng)為過(guò)直線外一點(diǎn)有且僅有一條直線與已知直線平行,故本說(shuō)法錯(cuò)誤;(4)長(zhǎng)方體是四棱柱,正確.故答案為(1)、(4).【考點(diǎn)】本題是對(duì)數(shù)學(xué)語(yǔ)言的嚴(yán)謹(jǐn)性的考查,記憶數(shù)學(xué)公理、性質(zhì)概念等一定要做的嚴(yán)謹(jǐn).三、解答題1、(1);(2);(3)【解析】【分析】(1)根據(jù)三角形的內(nèi)角和定理以及角平分線的定義即可確定和的數(shù)量關(guān)系;(2)根據(jù)三角形的外角性質(zhì)以及角平分線的定義可得,進(jìn)而可得和的數(shù)量關(guān)系;(3)根據(jù)三角形的內(nèi)角和定理可得,,結(jié)合角平分線的定義,根據(jù)即可確定和的數(shù)量關(guān)系.【詳解】(1)在中,.在中,.∵,,∴;(2)在中,.在中,.∵,,∴.(3)在中,.在中,.∵,.,,∴.【考點(diǎn)】本題考查了三角形的內(nèi)角和定理,三角形的外角性質(zhì),角平分線的定義,熟練掌握以上知識(shí)是解題的關(guān)鍵.2、見(jiàn)解析【解析】【分析】利用鄰補(bǔ)角定義得到∠2與∠BDC互補(bǔ),再由∠1與∠2互補(bǔ),利用同角的補(bǔ)角相等得到一對(duì)同位角相等,利用同位角相等兩直線平行得到EF與AB平行,利用兩直線平行內(nèi)錯(cuò)角相等得到∠DEF=∠A,等量代換得到一對(duì)同位角相等,利用同位角相等兩直線平行得到DE與AC平行,利用兩直線平行同位角相等即可得證.【詳解】證明:∵∠2+∠BDC=180°,∠1+∠2=180°,∴∠1=∠BDC,∴EF∥AB,∴∠DEF=∠BDE,∵∠DEF=∠A,∴∠BDE=∠A,∴DE∥AC,∴∠ACB=∠DEB.【考點(diǎn)】此題考查了平行線的判定與性質(zhì),熟練掌握平行線的判定與性質(zhì)是解本題的關(guān)鍵.3、(1)見(jiàn)解析(2)BE+CD=BC,(3)①見(jiàn)解析;②【解析】【分析】(1)先根據(jù)三角形內(nèi)角和得:∠BOC=180°?(∠OBC+∠OCB),由角平分線定義得:∠OBC=∠ABC,∠OCB=∠ACB,最后由三角形內(nèi)角和可得結(jié)論;(2)在BC上截取BM=BE,證明△BOE≌△BOM,推出∠BOE=∠BOM=60°,再證明△DCO≌△MCO可得結(jié)論;(3)①延長(zhǎng)OF到點(diǎn)M,使MF=OF,證明△ODF≌△MEF(SAS),推出OD=EM.過(guò)點(diǎn)O作CE,BD的垂線,證明△OBE≌△OBK(AAS)和△ODC≌△OHC,推出EO=OK,OD=OH=EM,BE=BK,CD=CH.據(jù)此即可證明結(jié)論;②利用①的結(jié)論以及三角形面積公式即可求解.(1)證明:∵BD平分∠ABC,CE平分∠ACB,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠BOC=180°?(∠OBC+∠OCB)=180°?(∠ABC+∠ACB)=180°?(180°?∠A)=∠A+90°;(2)解:BE+CD=BC.在BC上截取BM=BE,連接OM,如圖:∵∠BOC=∠A+90°=120°,∴∠BOE=60°,∵BD平分∠ABC,∴∠EBO=∠MBO,∴△BOE≌△BOM,∴∠BOE=∠BOM=60°,∴∠MOC=∠DOC=60°,∵OC為∠DCM的角平分線,∴∠DCO=∠MCO,在△DCO與△MCO中,,∴△DCO≌△MCO(ASA),∴CM=CD,∴BC=BM+CM=BE+CD;(3)①證明:如圖,延長(zhǎng)OF到點(diǎn)M,使MF=OF,連接EM,∴OM=2OF.∵F是ED的中點(diǎn),∴EF=DF,∵∠DFO=∠EFM,∴△ODF≌△MEF(SAS),∴OD=EM.過(guò)點(diǎn)O作CE,BD的垂線,分別交BC于點(diǎn)K,H,∴∠OCK+∠OKC=90°.∵∠A=90°,∴∠ACE+∠AEC=90°∵∠ACE=∠OCK,∴∠AEO=∠OKC,∴∠BEO=∠BKO,∴△OBE≌△OBK(AAS),同理可得△ODC≌△OHC,∴EO=OK,OD=OH=EM,BE=BK,CD=CH.由(1)可知∠DOE=∠BOC=×90°+90°=135°,∴∠BOE=∠COD=45°,∴∠OEM=∠KOH=45°,∴△OME≌△KHO,∴KH=OM,∴KH=2OF.∵BC?BK?CH=KH=2OE,∴BC?BE?CD=KH=2OF;②解:∵△OME≌△KHO,∴∠EOM=∠OKH,∴FG⊥BC.由①可知KH=2OF=4,△ODF≌△MEF,∴S△DEO=S△OME=S△KHO=10,∴KH×OG×=10,∴OG=5.【考點(diǎn)】本題考查了角平分線的定義、三角形內(nèi)角和定理、三角形全等的性質(zhì)和判定.解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題.4、(1)見(jiàn)解析;(2)見(jiàn)解析;(3)60°【解析】【分析】(1)根據(jù)角平分線的定義即可得到∠BDG=∠ADG,從而可得∠ADG=∠DGB,則,可得∠DEF=∠EFG,即可得到∠DBF=∠EFG,從而證明;(2)過(guò)點(diǎn)G作交AD于K,則,可得∠BDG=∠DGK,∠GEF=∠KGE,即可得到∠DGE=∠BDG+∠FEG;(3)設(shè),則,,由角平分線的定義可得,然后分別求出,,進(jìn)行求解即可.【詳解】解:(1)∵DG平分∠BDE,∴∠BDG=∠ADG,又∵∠BDG=∠BGD,∴∠ADG=∠DGB,∴,∴∠DEF=∠EFG,∵∠DBF=∠DEF,∴∠DBF=∠EFG,∴;(2)過(guò)點(diǎn)G作交AD于K,同理可證,∴,∴∠BDG=∠DGK,∠GEF=∠KGE,∴∠DGE=∠DGK+∠KGE,∴∠DGE=∠BDG+∠FEG;(3)設(shè),則,,,∵DN平分∠PDM,∴,∴,,∵DG⊥NG,∴,∴,∵,∴,∵,∴,∴,∴.【考點(diǎn)】本題主要考查了平行線的性質(zhì)與判定,角平分線的定義,垂直的定義,余角的計(jì)算,解題的關(guān)鍵在于能夠熟知平行線的性質(zhì)與判定條件.5、(1)見(jiàn)解析;(2)見(jiàn)解析;(3)108°【解析】【分析】(1)根據(jù)對(duì)頂角相等結(jié)合已知條件得出∠AEG=∠C,根據(jù)內(nèi)錯(cuò)角相等兩直線平行即可證得結(jié)論;(2)由∠AGE+∠AHF=180°等量代換得∠DGC+∠AHF=180°可判斷EC//BF,兩直線平行同位角相等得出∠B=∠AEG,結(jié)合(1)得出結(jié)論;(3)由(2)證得EC//BF,得∠BFC+∠C=180°,求得∠C的度數(shù),由三角形內(nèi)角和定理求得∠D的度數(shù).【詳解】證明:(1)∵∠AEG=∠AGE,∠C=∠DGC,∠AGE=∠DGC∴∠AEG=∠C
∴AB//CD(2)∵∠AGE=∠DGC,∠AGE+∠AHF=180°∴∠DGC+∠AHF=180°∴EC//BF
∴∠B=∠AEG由(1)得∠AEG=∠C
∴∠B=∠C(3)由(2)得EC//BF∴∠BFC+∠C=180°∵∠BFC=4∠C
∴∠C=36°
∴
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025公務(wù)員聯(lián)考面試題及答案
- 2025公務(wù)員接親面試題及答案
- 2025公務(wù)員會(huì)計(jì)試題及答案
- 中國(guó)證券市場(chǎng)價(jià)值投資適用性:理論、實(shí)踐與展望
- 2024年武漢市江岸區(qū)招聘聘用教師筆試真題
- 5-氧代四氫苯并b吡喃衍生物:合成路徑探索與結(jié)構(gòu)表征分析
- 2025第三屆農(nóng)作物植保員技能大賽理論考試試題庫(kù)(含答案)
- 2024年度河北省“安全生產(chǎn)月”知識(shí)競(jìng)賽試題含參考答案
- 提高創(chuàng)新效能減少資源消耗
- 2025年小升初品德測(cè)試題及答案
- 2025年新版《食品安全法》知識(shí)競(jìng)賽試題(附答案)
- 2025至2030中國(guó)保護(hù)器行業(yè)發(fā)展趨勢(shì)分析與未來(lái)投資戰(zhàn)略咨詢研究報(bào)告
- 學(xué)堂在線 高職實(shí)綜合英語(yǔ) 章節(jié)測(cè)試答案
- 勞動(dòng)教育主題活動(dòng)課說(shuō)課稿
- 2025年電商行業(yè)直播帶貨研究報(bào)告:直播電商產(chǎn)業(yè)鏈分析
- TSG-T7001-2023電梯監(jiān)督檢驗(yàn)和定期檢驗(yàn)規(guī)則宣貫解讀
- JB T 6527-2006組合冷庫(kù)用隔熱夾芯板
- GB-T 1040.2-2022 塑料 拉伸性能的測(cè)定 第2部分:模塑和擠塑塑料的試驗(yàn)條件
- 城鎮(zhèn)燃?xì)獍踩芾韺I(yè)知識(shí)
- 一頁(yè)紙的勞動(dòng)合同范本(5篇)
- 免疫缺陷病PPT精品課件
評(píng)論
0/150
提交評(píng)論