難點(diǎn)解析-滬科版9年級下冊期末試卷附答案詳解(基礎(chǔ)題)_第1頁
難點(diǎn)解析-滬科版9年級下冊期末試卷附答案詳解(基礎(chǔ)題)_第2頁
難點(diǎn)解析-滬科版9年級下冊期末試卷附答案詳解(基礎(chǔ)題)_第3頁
難點(diǎn)解析-滬科版9年級下冊期末試卷附答案詳解(基礎(chǔ)題)_第4頁
難點(diǎn)解析-滬科版9年級下冊期末試卷附答案詳解(基礎(chǔ)題)_第5頁
已閱讀5頁,還剩38頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

滬科版9年級下冊期末試卷考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計(jì)16分)1、下表記錄了一名球員在罰球線上投籃的結(jié)果:投籃次數(shù)50100150200250400500800投中次數(shù)286387122148242301480投中頻率0.5600.6300.5800.6100.5920.6050.6020.600根據(jù)頻率的穩(wěn)定性,估計(jì)這名球員投籃一次投中的概率約是()A.0.560 B.0.580 C.0.600 D.0.6202、下列說法正確的是()A.?dāng)S一枚質(zhì)地均勻的骰子,擲得的點(diǎn)數(shù)為3的概率是.B.若AC、BD為菱形ABCD的對角線,則的概率為1.C.概率很小的事件不可能發(fā)生.D.通過少量重復(fù)試驗(yàn),可以用頻率估計(jì)概率.3、如圖,點(diǎn)P是等邊三角形ABC內(nèi)一點(diǎn),且PA=3,PB=4,PC=5,則∠APB的度數(shù)是().A.90° B.100° C.120° D.150°4、下列事件中,是必然事件的是()A.剛到車站,恰好有車進(jìn)站B.在一個(gè)僅裝著白乒乓球的盒子中,摸出黃乒乓球C.打開九年級上冊數(shù)學(xué)教材,恰好是概率初步的內(nèi)容D.任意畫一個(gè)三角形,其外角和是360°5、如圖,該幾何體的左視圖是()A. B. C. D.6、下列圖形中,既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.7、如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2.將△ABC繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)到點(diǎn)D落在AB邊上,此時(shí)得到△EDC,斜邊DE交AC邊于點(diǎn)F,則圖中陰影部分的面積為()A.3 B.1 C. D.8、如圖,在中,,,,將繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,則旋轉(zhuǎn)后點(diǎn)A的對應(yīng)點(diǎn)的坐標(biāo)是()A. B. C. D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計(jì)14分)1、如圖,、分別與相切于A、B兩點(diǎn),若,則的度數(shù)為________.2、一個(gè)五邊形共有__________條對角線.3、如圖,已知⊙O的半徑為2,弦AB的長度為2,點(diǎn)C是⊙O上一動(dòng)點(diǎn)若△ABC為等腰三角形,則BC2為_______.4、第24屆世界冬季奧林匹克運(yùn)動(dòng)會,于2022年2月4日在中國北京市和河北省張家口市聯(lián)合舉行,其會徽為“冬夢”,這是中國歷史上首次舉辦冬季奧運(yùn)會.如圖,是一幅印有北京冬奧會會徽且長為3m,寬為2m的長方形宣傳畫,為測量宣傳畫上會徽圖案的面積,現(xiàn)將宣傳畫平鋪,向長方形宣傳畫內(nèi)隨機(jī)投擲骰子(假設(shè)骰子落在長方形內(nèi)的每一點(diǎn)都是等可能的),經(jīng)過大量重復(fù)投擲試驗(yàn),發(fā)現(xiàn)骰子落在會徽圖案上的頻率穩(wěn)定在0.15左右,由此可估計(jì)宣傳畫上北京冬奧會會徽圖案的面積約為______.5、某射擊運(yùn)動(dòng)員在同一條件下的射擊成績記錄如下:射擊次數(shù)20401002004001000“射中9環(huán)以上”的次數(shù)153378158321801“射中9環(huán)以下”的頻率通過計(jì)算頻率,估計(jì)這名運(yùn)動(dòng)員射擊一次時(shí)“射中9環(huán)以上”的概率是______(結(jié)果保留小數(shù)點(diǎn)后一位).6、已知一個(gè)扇形的半徑是1,圓心角是120°,則這個(gè)扇形的面積是___________.7、平面直角坐標(biāo)系中,,,A為x軸上一動(dòng)點(diǎn),連接AC,將AC繞A點(diǎn)順時(shí)針旋轉(zhuǎn)90°得到AB,當(dāng)BK取最小值時(shí),點(diǎn)B的坐標(biāo)為_________.三、解答題(7小題,每小題0分,共計(jì)0分)1、在△ABC與△DEF中,∠BAC=∠EDF=90°,且AB=AC,DE=DF.(1)如圖1,若點(diǎn)D與A重合,AC與EF交于P,且∠CAE=30°,CE,求EP的長;(2)如圖2,若點(diǎn)D與C重合,EF與BC交于點(diǎn)M,且BM=CM,連接AE,且∠CAE=∠MCE,求證:AE+MF=CE;(3)如圖3,若點(diǎn)D與A重合,連接BE,且∠ABE∠ABC,連接BF,CE,當(dāng)BF+CE最小時(shí),直接出的值.2、如圖1,在平面直角坐標(biāo)系中,二次函數(shù)的圖象經(jīng)過點(diǎn),過點(diǎn)A作軸,做直線AC平行x軸,點(diǎn)D是二次函數(shù)的圖象與x軸的一個(gè)公共點(diǎn)(點(diǎn)D與點(diǎn)O不重合).(1)求點(diǎn)D的橫坐標(biāo)(用含b的代數(shù)式表示)(2)求的最大值及取得最大值時(shí)的二次函數(shù)表達(dá)式.(3)在(2)的條件下,如圖2,P為OC的中點(diǎn),在直線AC上取一點(diǎn)M,連接PM,做點(diǎn)C關(guān)于PM的對稱點(diǎn)N,①連接AN,求AN的最小值.②當(dāng)點(diǎn)N落在拋物線的對稱軸上,求直線MN的函數(shù)表達(dá)式.3、元元同學(xué)在數(shù)學(xué)課上遇到這樣一個(gè)問題:如圖1,在平面直角坐標(biāo)系xOy中,OA經(jīng)過坐標(biāo)原點(diǎn)O,并與兩坐標(biāo)軸分別交于B、C兩點(diǎn),點(diǎn)B的坐標(biāo)為,點(diǎn)D在上,且,求OA的半徑和圓心A的坐標(biāo).元元的做法如下,請你幫忙補(bǔ)全解題過程:解:如圖2,連接BC.作AELOB于E、AF⊥OC于F.∴、(依據(jù)是①)∵,∴(依據(jù)是②).∵,.∴BC是的直徑(依據(jù)是③).∴∵,∴A的坐標(biāo)為(④)的半徑為⑤4、在平面直角坐標(biāo)系xOy中,對于點(diǎn)P,O,Q給出如下定義:若OQ<PO<PQ且PO≤2,我們稱點(diǎn)P是線段OQ的“潛力點(diǎn)”已知點(diǎn)O(0,0),Q(1,0)(1)在P1(0,-1),P2(,),P3(-1,1)中是線段OQ的“潛力點(diǎn)”是_____________;(2)若點(diǎn)P在直線y=x上,且為線段OQ的“潛力點(diǎn)”,求點(diǎn)P橫坐標(biāo)的取值范圍;(3)直線y=2x+b與x軸交于點(diǎn)M,與y軸交于點(diǎn)N,當(dāng)線段MN上存在線段OQ的“潛力點(diǎn)”時(shí),直接寫出b的取值范圍5、隨著課后服務(wù)的全面展開,某校組織了豐富多彩的社團(tuán)活動(dòng).炯炯和露露分別打算從以下四個(gè)社團(tuán):A.快樂足球,B.?dāng)?shù)學(xué)歷史,C.文學(xué)欣賞,D.棋藝鑒賞中,選擇一個(gè)社團(tuán)參加.(1)炯炯選擇數(shù)學(xué)歷史的概率為______.(2)用畫樹狀圖或列表的方法求炯炯和露露選擇同一個(gè)社團(tuán)的概率.6、太原是國家歷史文化名城,有很多旅游的好去處,周末哥哥計(jì)劃帶弟弟出去玩,放假前他收集了太原動(dòng)物園、晉祠公園、森林公園、汾河濕地公園四個(gè)景點(diǎn)的旅游宣傳卡片,這些卡片的大小、形狀及背面完全相同,分別用D,J,S,F(xiàn)表示,如圖所示,請用列表或畫樹狀圖的方法,求下列事件發(fā)生的概率.(1)把這四張卡片背面朝上洗勻后,弟弟從中隨機(jī)抽取一張,作好記錄后,將卡片放回洗勻,哥哥再抽取一張,求兩人抽到同一景點(diǎn)的概率;(2)把這四張卡片背面朝上洗勻后,弟弟和哥哥從中各隨機(jī)抽取一張(不放回),求兩人抽到動(dòng)物園和森林公園的概率.7、如圖,是⊙的直徑,弦,垂足為E,弦與弦相交于點(diǎn)G,且,過點(diǎn)C作的垂線交的延長線于點(diǎn)H.(1)判斷與⊙的位置關(guān)系并說明理由;(2)若,求弧的長.-參考答案-一、單選題1、C【分析】根據(jù)頻率估計(jì)概率的方法并結(jié)合表格數(shù)據(jù)即可解答.【詳解】解:∵由頻率分布表可知,隨著投籃次數(shù)越來越大時(shí),頻率逐漸穩(wěn)定到常數(shù)0.600附近,∴這名球員在罰球線上投籃一次,投中的概率為0.600.故選:C.【點(diǎn)睛】本題主要考查了利用頻率估計(jì)概率,概率的得出是在大量實(shí)驗(yàn)的基礎(chǔ)上得出的,不能單純的依靠幾次決定.2、B【分析】概率是指事情發(fā)生的可能性,等可能發(fā)生的事件的概率相同,小概率事件是指發(fā)生的概率比較小,不代表不會發(fā)生,通過大量重復(fù)試驗(yàn)才能用頻率估計(jì)概率,利用這些對四個(gè)選項(xiàng)一次判斷即可.【詳解】A項(xiàng):擲一枚質(zhì)地均勻的骰子,每個(gè)面朝上的概率都是一樣的都是,故A錯(cuò)誤,不符合題意;B項(xiàng):若AC、BD為菱形ABCD的對角線,由菱形的性質(zhì):對角線相互垂直平分得知兩條線段一定垂直,則AC⊥BD的概率為1是正確的,故B正確,符合題意;C項(xiàng):概率很小的事件只是發(fā)生的概率很小,不代表不會發(fā)生,故C錯(cuò)誤,不符合題意;D項(xiàng):通過大量重復(fù)試驗(yàn)才能用頻率估計(jì)概率,故D錯(cuò)誤,不符合題意.故選B【點(diǎn)睛】本題考查概率的命題真假,準(zhǔn)確理解事務(wù)發(fā)生的概率是本題關(guān)鍵.3、D【分析】將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得,根據(jù)旋轉(zhuǎn)的性質(zhì)得,,,則為等邊三角形,得到,,在中,,,,根據(jù)勾股定理的逆定理可得到為直角三角形,且,即可得到的度數(shù).【詳解】解:為等邊三角形,,可將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得,如圖,連接,,,,為等邊三角形,,,在中,,,,,為直角三角形,且,.故選:D.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì)、等邊三角形,解題的關(guān)鍵是掌握旋轉(zhuǎn)前后的兩個(gè)圖形全等,對應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角,對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等.4、D【分析】根據(jù)必然事件的概念“在一定條件下,有些事件必然會發(fā)生,這樣的事件稱為必然事件”可判斷選項(xiàng)D是必然事件;根據(jù)不可能事件的概念“有些事件必然不會發(fā)生,這樣的事件稱為不可能事件”可判斷選項(xiàng)B是不可能事件;根據(jù)隨機(jī)事件的概念“在一定條件下,可能發(fā)生也可能不發(fā)生的事件,稱為隨機(jī)事件”判斷選項(xiàng)A、C是隨機(jī)事件,即可得.【詳解】解:A、剛到車站,恰好有車進(jìn)站是隨機(jī)事件;B、在一個(gè)僅裝著白乒乓球的盒子中,摸出黃乒乓球是不可能事件;C、打開九年級上冊數(shù)學(xué)教材,恰好是概率初步的內(nèi)容是隨機(jī)事件;D、任意畫一個(gè)三角形,其外角和是360°是必然事件;故選D.【點(diǎn)睛】本題考查了必然事件,解題的關(guān)鍵是熟記必然事件的概念,不可能事件的概念和隨機(jī)事件的概念.5、C【分析】根據(jù)從左邊看得到的圖形是左視圖解答即可.【詳解】解:從左邊看是一個(gè)正方形被水平的分成3部分,中間的兩條分線是虛線,故C正確.故選C.【點(diǎn)睛】本題主要考查了簡單組合體的三視圖,掌握三視圖的定義成為解答本題的關(guān)鍵.6、C【詳解】解:選項(xiàng)A是軸對稱圖形,不是中心對稱圖形,故A不符合題意;選項(xiàng)B不是軸對稱圖形,是中心對稱圖形,故B不符合題意;選項(xiàng)C既是軸對稱圖形,也是中心對稱圖形,故C符合題意;選項(xiàng)D是軸對稱圖形,不是中心對稱圖形,故D不符合題意;故選C【點(diǎn)睛】本題考查的是軸對稱圖形的識別,中心對稱圖形的識別,掌握“軸對稱圖形與中心對稱圖形的定義”是解本題的關(guān)鍵,軸對稱圖形:把一個(gè)圖形沿某條直線對折,直線兩旁的部分能夠完全重合;中心對稱圖形:把一個(gè)圖形繞某點(diǎn)旋轉(zhuǎn)后能與自身重合.7、D【分析】根據(jù)題意及旋轉(zhuǎn)的性質(zhì)可得是等邊三角形,則,,根據(jù)含30度角的直角三角形的性質(zhì),即可求得,由勾股定理即可求得,進(jìn)而求得陰影部分的面積.【詳解】解:如圖,設(shè)與相交于點(diǎn),,,,旋轉(zhuǎn),,是等邊三角形,,,,,,,,陰影部分的面積為故選D【點(diǎn)睛】本題考查了等邊三角形的性質(zhì),勾股定理,含30度角的直角三角形的性質(zhì),旋轉(zhuǎn)的性質(zhì),利用含30度角的直角三角形的性質(zhì)是解題的關(guān)鍵.8、C【分析】過點(diǎn)A作AC⊥x軸于點(diǎn)C,設(shè),則,根據(jù)勾股定理,可得,從而得到,進(jìn)而得到∴,可得到點(diǎn),再根據(jù)旋轉(zhuǎn)的性質(zhì),即可求解.【詳解】解:如圖,過點(diǎn)A作AC⊥x軸于點(diǎn)C,設(shè),則,∵,,∴,∵,,∴,解得:,∴,∴,∴點(diǎn),∴將繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,則旋轉(zhuǎn)后點(diǎn)A的對應(yīng)點(diǎn)的坐標(biāo)是,∴將繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,則旋轉(zhuǎn)后點(diǎn)A的對應(yīng)點(diǎn)的坐標(biāo)是.故選:C【點(diǎn)睛】本題考查坐標(biāo)與圖形變化一旋轉(zhuǎn),解直角三角形等知識,解題的關(guān)鍵是求出點(diǎn)A的坐標(biāo),屬于中考常考題型.二、填空題1、【分析】根據(jù)已知條件可得出,,再利用圓周角定理得出即可.【詳解】解:、分別與相切于、兩點(diǎn),,,,,.故答案為:.【點(diǎn)睛】本題考查的知識點(diǎn)是切線的性質(zhì)以及圓周角定理,掌握以上知識點(diǎn)是解此題的關(guān)鍵.2、5【分析】由n邊形的對角線有:條,再把代入計(jì)算即可得.【詳解】解:邊形共有條對角線,五邊形共有條對角線.故答案為:5【點(diǎn)睛】本題考查的是多邊形的對角線的條數(shù),掌握n邊形的對角線的條數(shù)是解題的關(guān)鍵.3、4或12或【分析】分三種情況討論:當(dāng)AB=BC時(shí)、當(dāng)AB=AC時(shí)、當(dāng)AC=BC時(shí),根據(jù)垂徑定理和勾股定理即可求解.【詳解】解:如圖1,當(dāng)AB=BC時(shí),BC=2,故BC2=4;如圖2,當(dāng)AB=AC=2時(shí),過A作AD⊥BC于D,連接OC,∴BD=CD,設(shè)OD=x,則在Rt△ACD中,AC2=CD2+AD2,在Rt△OCD中,OC2=CD2+OD2,∴CD2=AC2-AD2=OC2-OD2即22-(2-x)2=22-x2解得x=1∴CD=∴BC=2∴BC2=12;如圖3,當(dāng)AC=BC時(shí),則C在AB的垂直平分線上,∴CD經(jīng)過圓心O,AD=BD==1,∵OA=2,∴OD=,∴CD=CO+OD=2+,CD=C'O-OD=2-,∴BC2=CD2+BD2=(2+)2+12=,BC2=CD2+BD2=(2-)2+12=,綜上,BC2為4或12或故答案為:4或12或.【點(diǎn)睛】本題考查了垂徑定理,等腰三角形的性質(zhì),勾股定理的應(yīng)用,熟練掌握性質(zhì)定理是解題的關(guān)鍵.4、0.9【分析】根據(jù)題意可得長方形的面積,然后依據(jù)骰子落在會徽圖案上的頻率穩(wěn)定在0.15左右,總面積乘以頻率即為會徽圖案的面積.【詳解】解:由題意可得:長方形的面積為,∵骰子落在會徽圖案上的頻率穩(wěn)定在0.15左右,∴會徽圖案的面積為:,故答案為:.【點(diǎn)睛】題目主要考查根據(jù)頻率計(jì)算滿足條件的情況,理解題意,熟練掌握頻率的計(jì)算方法是解題關(guān)鍵.5、0.8【分析】重復(fù)試驗(yàn)次數(shù)越多,其頻率越能估計(jì)概率,求出射擊1000次時(shí)的頻率即可.【詳解】解:由題意可知射擊1000次時(shí),運(yùn)動(dòng)員射擊一次時(shí)“射中9環(huán)以上”的頻率為∴用頻率估計(jì)概率為0.801,保留小數(shù)點(diǎn)后一位可知概率值為0.8故答案為:0.8.【點(diǎn)睛】本題考查了概率.解題的關(guān)鍵在于明確頻率估計(jì)概率時(shí)要在重復(fù)試驗(yàn)次數(shù)盡可能多的情況下.6、【分析】根據(jù)圓心角為的扇形面積是進(jìn)行解答即可得.【詳解】解:這個(gè)扇形的面積.故答案是:.【點(diǎn)睛】本題考查了扇形的面積,解題的關(guān)鍵是掌握扇形的面積公式.7、【分析】如圖,作BH⊥x軸于H.由△ACO≌△BAH(AAS),推出BH=OA=m,AH=OC=4,可得B(m+4,m),令x=m+4,y=m,推出y=x﹣4,推出點(diǎn)B在直線y=x﹣4上運(yùn)動(dòng),設(shè)直線y=x﹣4交x軸于E,交y軸于F,作KM⊥EF于M,根據(jù)垂線段最短可知,當(dāng)點(diǎn)B與點(diǎn)M重合時(shí),BK的值最小,利用等腰直角三角形的性質(zhì)可得M的坐標(biāo),從而可得答案.【詳解】解:如圖,作BH⊥x軸于H.∵C(0,4),K(2,0),∴OC=4,OK=2,∵AC=AB,∵∠AOC=∠CAB=∠AHB=90°,∴∠CAO+∠OCA=90°,∠BAH+∠CAO=90°,∴∠ACO=∠BAH,∴△ACO≌△BAH(AAS),∴BH=OA=m,AH=OC=4,∴B(m+4,m),令x=m+4,y=m,∴y=x﹣4,∴點(diǎn)B在直線y=x﹣4上運(yùn)動(dòng),設(shè)直線y=x﹣4交x軸于E,交y軸于F,則作KM⊥EF于M,過作于則根據(jù)垂線段最短可知,當(dāng)點(diǎn)B與點(diǎn)M重合時(shí),BK的值最小,此時(shí)B(3,﹣1),故答案為:(3,﹣1)【點(diǎn)睛】本題考查坐標(biāo)與圖形的變化﹣旋轉(zhuǎn),全等三角形的判定和性質(zhì),一次函數(shù)的應(yīng)用,垂線段最短等知識,解題的關(guān)鍵是正確尋找點(diǎn)B的運(yùn)動(dòng)軌跡,學(xué)會利用垂線段最短解決最短問題.三、解答題1、(1);(2)證明見詳解;(3).【分析】(1)過點(diǎn)P作PG⊥EC于G,根據(jù)等腰直角三角形得出∠B=∠C=45°,根據(jù)PG⊥EC,可取∠GPC=90°-∠C=45°,可得PG=GC,根據(jù)三角形外角性質(zhì)∠EPC=75°,可求∠EPG=30°,根據(jù)30°直角三角形性質(zhì)得出EP=2EG,根據(jù)勾股定理根據(jù)EC=EG+GC=EG+,可求EG=即可;(2)連結(jié)AE,在CE上截取EJ=AE,連結(jié)AJ,根據(jù)∠MAH=45°=∠HEC,可得點(diǎn)A、M、C、E四點(diǎn)共圓,得出∠AEM=∠ACM=45°=∠HEC,∠AME=∠ACE,可得△AEJ為等腰直角三角形,根據(jù)根據(jù)勾股定理AJ=,得出∠CAE=∠MCE,可證∠JAC=∠JCA,可得AJ=JC=,先證△CHM∽△ECM,再證△AEM≌△HEC(AAS),得出EM=EC,再證△AME≌△MCF(AAS),得出AE=MF即可;(3)分兩種情況,當(dāng)BE在∠ABC的平分線上時(shí),與BE在△ABC外部時(shí),當(dāng)BE在∠ABC的平分線上時(shí),作∠ABC的平分線交AC于O,將△AEC逆時(shí)針旋轉(zhuǎn)90°得到△AFC′,過點(diǎn)O作OP⊥BC于P,則點(diǎn)E在BO上,有∠ABE=∠ABC,先證B、A、C′三點(diǎn)共線,根據(jù)兩點(diǎn)之交線段最短可得BF+CE=BF+C′F≥BC′,當(dāng)點(diǎn)F在BC′上時(shí),BF+CE最短=BC′,此時(shí)點(diǎn)E在AC上與點(diǎn)O重合,然后利用勾股定理EC=,BF=AB+AF=AC+AF=(1+)AF+AF=(2+)AF在Rt△ABE中,根據(jù)勾股定理,當(dāng)BE在△ABC外部時(shí),∠EBA=,將△EAC逆時(shí)針旋轉(zhuǎn)90°得到△FAC′,先證B、A、C′三點(diǎn)共線,根據(jù)兩點(diǎn)之間線段最短可得BF+CE=BF+FC′≥BC′,當(dāng)點(diǎn)F在BC′上時(shí),BF+CE最短=BC′,再證EF=BF,然后根據(jù)勾股定理BF=CE=AE+AC=AF+AB=在Rt△EAB中,根據(jù)勾股定理即可.【詳解】解:(1)過點(diǎn)P作PG⊥EC于G,∵∠BAC=90°,AB=AC,∴∠B=∠C=45°,∵PG⊥EC,∴∠GPC=90°-∠C=45°,∴PG=GC,∵∠EAC=30°,∠EDF=90°,DE=DF,∴∠DEF=∠F=45°,∴∠EPC=∠AEF+∠EAC=30°+45°=75°,∴∠EPG=∠EPC-∠GPC=75°-45°=30°,∴EP=2EG,在Rt△EPG中,根據(jù)勾股定理∴GC=PG=∴EC=EG+GC=EG+,∴EG=,∴EP=2EG=;(2)連結(jié)AE,在CE上截取EJ=AE,連結(jié)AJ,∵BM=CM,AB=AC,∠BAC=90°,∴AM⊥BC,AM=BM=CM,∴∠MAH=45°=∠HEC,∴點(diǎn)A、M、C、E四點(diǎn)共圓,∴∠AEM=∠ACM=45°=∠HEC,∠AME=∠ACE,∴∠AEJ=∠AEM+∠HEC=45°+45°=90°,∵AE=JE,∴∠EAJ=∠EJA=45°,在Rt△AEJ中,根據(jù)勾股定理AJ=,∵∠CAE=∠MCE,∴∠JAC+45°=∠JCA+45°,∴∠JAC=∠JCA,∴AJ=JC=,∵∠HCM=∠CEM=45°,∠HMC=∠CME,∴△CHM∽△ECM,∴∠MHC=∠MCE,∵∠EHA=∠MHC=∠MCE=∠EAH∴AE=HE,在△AEM和△HEC中,,∴△AEM≌△HEC(AAS),∴EM=EC,∴∠EMC=∠ECM,∵∠AME+∠EMC=∠ECM+∠MCF=90°,∴∠AME=∠MCF,在△AME和△MCF中,∴△AME≌△MCF(AAS),∴AE=MF,∴CE=EJ+JC=MF+AE;(3)分兩種情況,當(dāng)BE在∠ABC的平分線上時(shí),與BE在△ABC外部時(shí),當(dāng)當(dāng)BE在∠ABC的平分線上時(shí),作∠ABC的平分線交AC于O,將△AEC逆時(shí)針旋轉(zhuǎn)90°得到△AFC′,過點(diǎn)O作OP⊥BC于P,則點(diǎn)E在BO上,有∠ABE=∠ABC,∵△AEC≌△AFC′,∴∠CAE=∠C′AF,∵∠BAC′=∠BAC+∠OAC′=∠BAC+∠FAC′+∠OAF=∠BAC+∠EAC+∠OAF=∠BAC+∠EAF=180°,∴B、A、C′三點(diǎn)共線,∴BF+CE=BF+C′F≥BC′,當(dāng)點(diǎn)F在BC′上時(shí),BF+CE最短=BC′,此時(shí)點(diǎn)E在AC上與點(diǎn)O重合,∵BO為∠ABC的平分線,OA⊥AB,OP⊥BC,∴OP=AO=AF,∵AB=AC,∠BAC=90°,∴∠ABC=∠C=45°,∴∠PEC=180°-∠EPC-∠C=45°,∴PC=EP=AF,∴EC=,∴AC=AE+EC=AF+=(1+)AF,∴BF=AB+AF=AC+AF=(1+)AF+AF=(2+)AF,在Rt△ABE中,根據(jù)勾股定理,∴;當(dāng)BE在△ABC外部時(shí),∠EBA=,將△EAC逆時(shí)針旋轉(zhuǎn)90°得到△FAC′,則△EAC≌△FAC′,∴AC′=AC,EC=FC′,∠EAC=∠FAC′,∵∠FEB+∠EAC=360°-∠EAF-∠BAC=360°-90°-90°=180°,∴∠FAB+∠FAC′=∠FAB+∠EAC=180°,∴B、A、C′三點(diǎn)共線,∴BF+CE=BF+FC′≥BC′,∴點(diǎn)F在BC′上時(shí),BF+CE最短=BC′,∵∠EBA=,∠EFA=45°,∴∠EFA=∠EBA+∠BEF=45°,∴∠BEF=45°-∠EBA=45°-22.5°=22.5°,∴EF=BF,在Rt△EAF中,,∴BF=,∴AB=BF+AF=+AF=,∴CE=AE+AC=AF+AB=,在Rt△EAB中,根據(jù)勾股定理,∴.綜合.【點(diǎn)睛】本題考查等腰直角三角形性質(zhì),三角形外角性質(zhì),30°直角三角形性質(zhì),勾股定理,三角形全等判定與性質(zhì),四點(diǎn)共圓,同弧所對圓周角性質(zhì),三角形相似判定與性質(zhì),圖形旋轉(zhuǎn)性質(zhì),最短路徑問題,角平分線性質(zhì),分類討論思想,本題難度大,應(yīng)用知識多,是中考壓軸題,利用輔助線作出正確圖形是解題關(guān)鍵.2、(1)2b;(2)4;;(3)①.②y=x+或.【分析】(1)令y=0,解方程即可;(2)設(shè)w=,根據(jù)OD=2b,BD=4-2b,構(gòu)造二次函數(shù)求解即可;(3)①點(diǎn)N在以P為圓心,以2為半徑的圓上運(yùn)動(dòng),當(dāng)P、N、A同側(cè)且共線時(shí),AN最小,用勾股定理計(jì)算即可.②分點(diǎn)M在對稱軸的左側(cè)和右側(cè),兩種情形求解.(1)令y=0,得,解得x=0或x=2b,∵b>0,∴x=0舍去,∴點(diǎn)D的橫坐標(biāo)為2b.(2)設(shè)w=,∵點(diǎn)D的橫坐標(biāo)為2b,A(4,m),∴OD=2b,BD=4-2b,∴w==2b(4-2b)=,∵-4<0,∴當(dāng)b=1時(shí),w有最大值,最大值為4,此時(shí)拋物線的解析式為.(3)①∵點(diǎn)A(4,m)在拋物線上,∴m==4,∴OC=4,∵P為OC的中點(diǎn),∴OP=PC=2,∵點(diǎn)C關(guān)于PM的對稱點(diǎn)N,∴OP=PC=PN=2,∴點(diǎn)N在以P為圓心,以2為半徑的圓上運(yùn)動(dòng),如圖所示,當(dāng)P、N、A同側(cè)且共線時(shí),AN最小,∵AC=4,PC=2,∴PA=,∴AN的最小值為PA-PN=.②當(dāng)點(diǎn)N落在拋物線的對稱軸上,且M在對稱軸的左側(cè),如圖所示,設(shè)對稱軸與AC交于點(diǎn)H,交x軸于點(diǎn)Q,過點(diǎn)P作PG⊥HN,垂足為G,則QG=2,∵PC=PN=2,PG=1,∴NG=,∴HN=2-,點(diǎn)N(1,2+),設(shè)CM=a,則MN=a,MH=1-a,∴,解得a=4-2,∴點(diǎn)M(4-2,4),設(shè)直線MN的解析式為y=kx+b,∴,解得,∴直線MN的解析式為y=x+;當(dāng)點(diǎn)N落在拋物線的對稱軸上,且M在對稱軸的右側(cè),如圖所示,設(shè)對稱軸與AC交于點(diǎn)T,交x軸于點(diǎn)R,過點(diǎn)P作PK⊥TN,垂足為K,則KT=KR=2,∵PC=PN=2,PK=1,∴KR=,∴NR=2-,點(diǎn)N(1,2-),TN=2+設(shè)CM=b,則MN=b,MT=a-1,∴,解得b=4+2,∴點(diǎn)M(4+2,4),設(shè)直線MN的解析式為y=mx+q,∴,解得,∴直線MN的解析式為y=x+;綜上所述,直線MN的解析式為y=x+或y=x+.【點(diǎn)睛】本題考查了拋物線與x軸的交點(diǎn),二次函數(shù)的最值,圓的基本性質(zhì),待定系數(shù)法確定一次函數(shù)的解析式,軸對稱的性質(zhì),勾股定理,熟練掌握圓的性質(zhì),拋物線的性質(zhì),靈活運(yùn)用對稱的思想和勾股定理是解題的關(guān)鍵.3、垂徑定理,圓周角定理,圓周角定理,(1,),2【分析】根據(jù)垂徑定理,圓周角定理依次分析解答.【詳解】解:如圖2,連接BC.作AE⊥OB于E、AF⊥OC于F.∴、(依據(jù)是垂徑定理)∵,∴(依據(jù)是圓周角定理).∵,.∴BC是的直徑(依據(jù)是圓周角定理).∴,∵,∴A的坐標(biāo)為(1,),的半徑為2,故答案為:垂徑定理,圓周角定理,圓周角定理,(1,),2.【點(diǎn)睛】此題考查了圓的知識,垂徑定理、圓周角定理,熟記各定理知識并綜合應(yīng)用是解題的關(guān)鍵.4、(1);(2);(3)或【分析】(1)分別計(jì)算出OQ、PO和PQ的長度,比較即可得出答案;(2)先判斷點(diǎn)P在以O(shè)為圓心,1為半徑的圓外且點(diǎn)P在線段OQ垂直平分線的左側(cè),結(jié)合PO≤2,點(diǎn)P在以O(shè)為圓心,2為半徑的圓上或圓內(nèi),可得點(diǎn)P在如圖所示的線段AB上(不包含點(diǎn)B),過作軸,過作軸,垂足分別為再根據(jù)圖形的性質(zhì)求解從而可得答案;(3)由(2)得:點(diǎn)P在以O(shè)為圓心,1為半徑的圓外且點(diǎn)P在以O(shè)為圓心,2為半徑的圓上或圓內(nèi),而PO<PQ,點(diǎn)P在線段OQ垂直平分線的左側(cè),再分兩種情況討論:當(dāng)時(shí),當(dāng)時(shí),分別畫出兩種情況下的臨界直線再根據(jù)臨界直線經(jīng)過的特殊點(diǎn)求解的值,再確定范圍即可.【詳解】解:(1)O(0,0),Q(1,0),P1(0,-1),P2(,),P3(-1,1)不滿足OQ<PO<PQ且PO≤2,所以不是線段OQ的“潛力點(diǎn)”,同理:所以不滿足OQ<PO<PQ且PO≤2,所以不是線段OQ的“潛力點(diǎn)”,同理:所以滿足:OQ<PO<PQ且PO≤2,所以是線段OQ的“潛力點(diǎn)”,故答案為:P3(2)∵點(diǎn)P為線段OQ的“潛力點(diǎn)”,∴OQ<PO<PQ且PO≤2,∵OQ<PO,∴點(diǎn)P在以O(shè)為圓心,1為半徑的圓外∵PO<PQ,∴點(diǎn)P在線段OQ垂直平分線的左側(cè),而的垂直平分線為:∵PO≤2,∴點(diǎn)P在以O(shè)為圓心,2為半徑的圓上或圓內(nèi)又∵點(diǎn)P在直線y=x上,∴點(diǎn)P在如圖所示的線段AB上(不包含點(diǎn)B)過作軸,過作軸,垂足分別為由題意可知△BOC和△AOD是等腰三角形,∴∴-≤xp<-(3)由(2)得:點(diǎn)P在以O(shè)為圓心,1為半徑的圓外且點(diǎn)P在以O(shè)為圓心,2為半徑的圓上或圓內(nèi),而PO<PQ,點(diǎn)P在線段OQ垂直平分線的左側(cè)當(dāng)時(shí),過時(shí),即函數(shù)解析式為:此時(shí)則當(dāng)與半徑為2的圓相切于時(shí),則由而當(dāng)時(shí),如圖,同理可得:點(diǎn)P在以O(shè)為圓心,1為半徑的圓外且點(diǎn)P在以O(shè)為圓心,2為半徑的圓上或圓內(nèi),而PO<PQ,點(diǎn)P在線段OQ垂直平分線的左側(cè),同理:當(dāng)過則直線為在直線上,此時(shí)當(dāng)過時(shí),則所以此時(shí):綜上:的范圍為:1<b≤或<b<-1【點(diǎn)睛】本題考查的是新定義情境下的知識運(yùn)用,圓的基本性質(zhì),圓的切線的性質(zhì),一次函數(shù)的綜合應(yīng)用,銳角三角函數(shù)的應(yīng)用,勾股定理的應(yīng)用,數(shù)形結(jié)合是解本題的關(guān)鍵.5、(1)(2)炯炯和露露選擇同一個(gè)社團(tuán)的概率為【分析】(1)直接由概率公式求解即可;(2)畫樹狀圖,共有16種等可能的結(jié)果,其中炯炯和露露選同一個(gè)社團(tuán)的有4種結(jié)果,再由概率公式求解即可.(1)∵共有A.快樂足球,B.?dāng)?shù)學(xué)歷史,C.文學(xué)欣賞,D.棋藝鑒賞四個(gè)社團(tuán),數(shù)學(xué)歷史是其中一個(gè)社團(tuán),∴炯炯選擇數(shù)學(xué)歷史的概率為,故答案為:;(2)畫樹狀圖如下:共有16種等可能的結(jié)果,其中炯炯和露露選同一個(gè)社團(tuán)的有4種結(jié)果,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論