




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》定向測(cè)評(píng)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、在Rt△ABC中,∠C=90°,若D為斜邊AB上的中點(diǎn),AB的長(zhǎng)為10,則DC的長(zhǎng)為()A.5 B.4 C.3 D.22、如圖,將矩形紙片ABCD沿BD折疊,得到△BC′D,C′D與AB交于點(diǎn)E,若∠1=40°,則∠2的度數(shù)為()A.25° B.20° C.15° D.10°3、如圖,OA⊥OB,OB=4,P是射線OA上一動(dòng)點(diǎn),連接BP,以B為直角頂點(diǎn)向上作等腰直角三角形,在OA上取一點(diǎn)D,使∠CDO=45°,當(dāng)P在射線OA上自O(shè)向A運(yùn)動(dòng)時(shí),PD的長(zhǎng)度的變化()A.一直增大 B.一直減小C.先增大后減小 D.保持不變4、直角三角形中,兩直角邊長(zhǎng)分別是12和5,則斜邊上的中線長(zhǎng)是()A.2.5 B.6 C.6.5 D.135、如圖,在△ABC中,點(diǎn)E,F(xiàn)分別是AB,AC的中點(diǎn).已知∠B=55°,則∠AEF的度數(shù)是()A.75° B.60° C.55° D.40°第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖,在矩形紙片ABCD中,AB=6,BC=4,點(diǎn)E是AD的中點(diǎn),點(diǎn)F是AB上一動(dòng)點(diǎn)將AEF沿直線EF折疊,點(diǎn)A落在點(diǎn)A′處在EF上任取一點(diǎn)G,連接GC,,,則的周長(zhǎng)的最小值為_(kāi)_______.2、平面直角坐標(biāo)系中,四邊形ABCD的頂點(diǎn)坐標(biāo)分別是A(-3,0),B(0,2),C(3,0),D(0,-2),則四邊形ABCD是__________.3、如圖,為了測(cè)量池塘兩岸A,B兩點(diǎn)之間的距離,可在AB外選一點(diǎn)C,連接AC和BC,再分別取AC、BC的中點(diǎn)D,E,連接DE并測(cè)量出DE的長(zhǎng),即可確定A、B之間的距離.若量得DE=15m,則A、B之間的距離為_(kāi)_________m4、如圖,在平行四邊形ABCD中,∠B=45°,AD=8,E、H分別為邊AB、CD上一點(diǎn),將?ABCD沿EH翻折,使得AD的對(duì)應(yīng)線段FG經(jīng)過(guò)點(diǎn)C,若FG⊥CD,CG=4,則EF的長(zhǎng)度為_(kāi)____.5、如圖,在正方形ABCD中,點(diǎn)O在內(nèi),,則的度數(shù)為_(kāi)_____.三、解答題(5小題,每小題10分,共計(jì)50分)1、如圖,在平行四邊形ABCD中,E為BC的中點(diǎn),連接AE并延長(zhǎng)交DC的延長(zhǎng)線于點(diǎn)F,連接BF,AC,且AD=AF.(1)判斷四邊形ABFC的形狀并證明;(2)若AB=3,∠ABC=60°,求EF的長(zhǎng).2、如圖,已知在Rt△ABC中,∠ACB=90°,CD是斜邊AB上的中線,點(diǎn)E是邊BC延長(zhǎng)線上一點(diǎn),連接AE、DE,過(guò)點(diǎn)C作CF⊥DE于點(diǎn)F,且DF=EF.(1)求證:AD=CE.(2)若CD=5,AC=6,求△AEB的面積.3、如圖,四邊形ABCD是平行四邊形,∠BAC=90°.(1)尺規(guī)作圖:在BC上截取CE,使CE=CD,連接DE與AC交于點(diǎn)F,過(guò)點(diǎn)F作線段AD的垂線交AD于點(diǎn)M;(不寫(xiě)作法,保留作圖痕跡)(2)在(1)的條件下,猜想線段FM和CF的數(shù)量關(guān)系,并證明你的結(jié)論.4、如圖,將直角三角形分割成一個(gè)正方形和兩對(duì)全等的直角三角形,在Rt△ABC中,∠ACB=90°,四邊形FCEO是正方形,Rt△AOF≌Rt△AOD,Rt△BOE≌Rt△BOD.若設(shè)正方形的邊長(zhǎng)為x,則可以探究x與直角三角形ABC的三邊a,b,c之間的關(guān)系.探究:∵Rt△BOE≌Rt△BOD,∴BD=BE=a﹣x,∵Rt△AOF≌Rt△AOD,∴AD=AF=b﹣x,∵AB=BD+AD,∴a﹣x+b﹣x=c,∴x=.(1)小穎同學(xué)發(fā)現(xiàn)利用S△ABC=S△AOB+S△AOC+S△BOC也可以探究正方形的邊長(zhǎng)x與直角三角形ABC的三邊a,b,c之間的關(guān)系.請(qǐng)你根據(jù)小穎的思路,完成她的探究過(guò)程.(2)請(qǐng)你結(jié)合探究和小穎的解答過(guò)程驗(yàn)證勾股定理.
5、如圖,?ABCD的對(duì)角線AC,BD相交于點(diǎn)O,點(diǎn)E,點(diǎn)F在線段BD上,且DE=BF.求證:AE∥CF.-參考答案-一、單選題1、A【解析】【分析】利用直角三角形斜邊的中線的性質(zhì)可得答案.【詳解】解:∵∠C=90°,若D為斜邊AB上的中點(diǎn),∴CD=AB,∵AB的長(zhǎng)為10,∴DC=5,故選:A.【點(diǎn)睛】此題主要考查了直角三角形斜邊的中線,關(guān)鍵是掌握在直角三角形中,斜邊上的中線等于斜邊的一半.2、D【解析】【分析】根據(jù)矩形的性質(zhì),可得∠ABD=40°,∠DBC=50°,根據(jù)折疊可得∠DBC′=∠DBC=50°,最后根據(jù)∠2=∠DBC′?∠DBA進(jìn)行計(jì)算即可.【詳解】解:∵四邊形ABCD是矩形,∴∠ABC=90°,CD∥AB,∴∠ABD=∠1=40°,∴∠DBC=∠ABC-∠ABD=50°,由折疊可得∠DBC′=∠DBC=50°,∴∠2=∠DBC′?∠DBA=50°?40°=10°,故選D.【點(diǎn)睛】本題考查了長(zhǎng)方形性質(zhì),平行線性質(zhì),折疊性質(zhì),角的有關(guān)計(jì)算的應(yīng)用,關(guān)鍵是求出∠DBC′和∠DBA的度數(shù).3、D【解析】【分析】過(guò)點(diǎn)作于,于,先根據(jù)矩形的判定與性質(zhì)可得,再根據(jù)三角形全等的判定定理證出,根據(jù)全等三角形的性質(zhì)可得,然后根據(jù)等腰直角三角形的判定與性質(zhì)可得,最后根據(jù)線段的和差、等量代換即可得出結(jié)論.【詳解】解:如圖,過(guò)點(diǎn)作于,于,則四邊形是矩形,,∵是等腰直角三角形,∴,∴,∵,∴,∴,在和中,,∴,∴,∴,∵,∴是等腰直角三角形,∴,∴,∴的長(zhǎng)度保持不變,故選:D.【點(diǎn)睛】本題考查了矩形的判定與性質(zhì)、三角形全等的判定定理與性質(zhì)等知識(shí)點(diǎn),通過(guò)作輔助線,構(gòu)造矩形和全等三角形是解題關(guān)鍵.4、C【解析】【分析】利用勾股定理列式求出斜邊,再根據(jù)直角三角形斜邊上的中線等于斜邊的一半解答.【詳解】解:由勾股定理得,斜邊,所以,斜邊上的中線長(zhǎng).故選:C.【點(diǎn)睛】本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),勾股定理,解題的關(guān)鍵是熟記性質(zhì).5、C【解析】【分析】證EF是△ABC的中位線,得EF∥BC,再由平行線的性質(zhì)即可求解.【詳解】解:∵點(diǎn)E,F(xiàn)分別是AB,AC的中點(diǎn),∴EF是△ABC的中位線,∴EF∥BC,∴∠AEF=∠B=55°,故選:C.【點(diǎn)睛】本題考查了三角形中位線定理以及平行線的性質(zhì);熟練掌握三角形中位線定理,證出EF∥BC是解題的關(guān)鍵.二、填空題1、【解析】【分析】連接AC交EF于G,連接A′G,此時(shí)△CGA′的周長(zhǎng)最小,最小值=A′G+GC+CA′=GA+GC+CA′=AC+CA′.當(dāng)CA′最小時(shí),△CGA′的周長(zhǎng)最小,求出CA′的最小值即可解決問(wèn)題.【詳解】解:如圖,連接AC交EF于G,連接A′G,連接EC,由折疊的性質(zhì)可知A′G=GA,此時(shí)△A′GC的周長(zhǎng)最小,最小值=A′G+GC+CA′=GA+GC+CA′=AC+CA′.∵四邊形ABCD是矩形,∴∠D=90°,AD=BC=4,CD=AB=6,∴AC2,∴△A′CG的周長(zhǎng)的最小值+CA′,當(dāng)CA′最小時(shí),△CGA′的周長(zhǎng)最小,∵AE=DE=EA′=2,∴CE2,∵CA′≥EC﹣EA′,∴CA′≥2-2,∴CA′的最小值為2-2,∴△CGA′的周長(zhǎng)的最小值為2-2,故答案為:.【點(diǎn)睛】本題考查翻折變換,矩形的性質(zhì),勾股定理,最短路徑問(wèn)題等知識(shí),解題的關(guān)鍵是學(xué)會(huì)用轉(zhuǎn)化的思想思考問(wèn)題,屬于中考填空題中的壓軸題.2、菱形【解析】【分析】先在坐標(biāo)系中畫(huà)出四邊形ABCD,由A、B、C、D的坐標(biāo)即可得到OA=OC=3,OB=OD=2,再由AC⊥BD,即可得到答案.【詳解】解:圖象如圖所示:∵A(-3,0)、B(0,2)、C(3,0)、D(0,-2),∴OA=OC=3,OB=OD=2,∴四邊形ABCD為平行四邊形,∵AC⊥BD,∴四邊形ABCD為菱形,故答案為:菱形.【點(diǎn)睛】本題主要考查了菱形的判定,坐標(biāo)與圖形,解題的關(guān)鍵在于能夠熟練掌握菱形的判定條件.3、30【解析】【分析】根據(jù)三角形中位線的性質(zhì)解答即可.【詳解】解:∵點(diǎn)D,E分別是AC,BC的中點(diǎn),∴DE是△ABC的中位線,∴AB=2DE=30m.故填30.【點(diǎn)睛】本題主要考查的是三角形中位線定理,掌握三角形的中位線平行于第三邊且等于第三邊的一半是解答本題的關(guān)鍵.4、【解析】【分析】延長(zhǎng)CF與AB交于點(diǎn)M,由平行四邊形的性質(zhì)得BC長(zhǎng)度,GM⊥AB,由折疊性質(zhì)得GF,∠EFM,進(jìn)而得FM,再根據(jù)△EFM是等腰直角三角形,便可求得結(jié)果.【詳解】解:延長(zhǎng)CF與AB交于點(diǎn)M,∵FG⊥CD,AB∥CD,∴CM⊥AB,∵∠B=45°,BC=AD=8,∴CM=4,由折疊知GF=AD=8,∵CG=4,∴MF=CM-CF=CM-(GF-CG)=4-4,∵∠EFC=∠A=180°-∠B=135°,∴∠MFE=45°,∴EF=MF=(4-4)=8-4.故答案為:8-4.【點(diǎn)睛】本題主要考查了平行四邊形的性質(zhì),折疊的性質(zhì),解直角三角形的應(yīng)用,關(guān)鍵是作輔助線構(gòu)造直角三角形.5、135°【解析】【分析】先根據(jù)正方形的性質(zhì)得到∠OAC+∠OAD=45°,再由∠OAC=∠ODA,推出∠ODA+∠OAD=45°,即可利用三角形內(nèi)角和定理求解.【詳解】解:∵四邊形ABCD是正方形,∴∠CAD=45°,∴∠OAC+∠OAD=45°,又∵∠OAC=∠ODA,∴∠ODA+∠OAD=45°,∴∠AOD=180°-∠ODA-∠OAD=135°,故答案為:135°.【點(diǎn)睛】本題主要考查了正方形的性質(zhì),三角形內(nèi)角和定理,解題的關(guān)鍵在于能夠熟練掌握正方形的性質(zhì).三、解答題1、(1)矩形,見(jiàn)解析;(2)3【分析】(1)利用AAS判定△ABE≌△FCE,從而得到AB=CF;由已知可得四邊形ABFC是平行四邊形,BC=AF,根據(jù)對(duì)角線相等的平行四邊形是矩形,可得到四邊形ABFC是矩形;(2)先證△ABE是等邊三角形,可得AB=AE=EF=3.【詳解】解:(1)四邊形ABFC是矩形,理由如下:∵四邊形ABCD是平行四邊形,∴,∴∠BAE=∠CFE,∠ABE=∠FCE,∵E為BC的中點(diǎn),∴EB=EC,在△ABE和△FCE中,,∴△ABE≌△FCE(AAS),∴AB=CF.∵,∴四邊形ABFC是平行四邊形,∵AD=BC,AD=AF,∴BC=AF,∴四邊形ABFC是矩形.(2)∵四邊形ABFC是矩形,∴BC=AF,AE=EF,BE=CE,∴AE=BE,∵∠ABC=60°,∴△ABE是等邊三角形,∴AB=AE=3,∴EF=3.【點(diǎn)睛】本題考查了平行四邊形的性質(zhì)與判定,矩形的判定,三角形全等的性質(zhì)與判定,等邊三角形的性質(zhì)與判定,掌握以上性質(zhì)定理是解題的關(guān)鍵.2、(1)見(jiàn)解析;(2)39【分析】(1)首先根據(jù)CF⊥DE,DF=EF得出CF為DE的中垂線,然后根據(jù)垂直平分線的性質(zhì)得到CD=CE,然后根據(jù)直角三角形斜邊上的中線等于斜邊的一半得到CD=AD,即可證明AD=CE;(2)由(1)得CD=CE=AB=5,由勾股定理求出BC,然后結(jié)合三角形的面積公式進(jìn)行計(jì)算.【詳解】(1)證明:∵DF=EF∴點(diǎn)F為DE的中點(diǎn)又∵CF⊥DE∴CF為DE的中垂線∴CD=CE又∵在Rt△ABC中,∠ACB=90°,CD是斜邊AB上的中線∴CD==AD∴AD=CE(2)解:由(1)得CD=CE==5∴AB=10∴在Rt△ABC中,BC==8∴EB=EC+BC=13∴.【點(diǎn)睛】此題考查了垂直平分線的判定和性質(zhì),直角三角形性質(zhì),三角形面積公式等知識(shí),解題的關(guān)鍵是熟練掌握垂直平分線的判定和性質(zhì),直角三角形性質(zhì),三角形面積公式.3、(1)圖形見(jiàn)解析;(2),證明見(jiàn)解析【分析】(1)以C為圓心CD長(zhǎng)為半徑畫(huà)弧于BC交點(diǎn)即為E;連DE與AC交點(diǎn)即為F;過(guò)F作AD的垂直平分線與AD交點(diǎn)即為M;(2)證明DF平分,再利用角平分線的性質(zhì)判定即可.【詳解】(1)圖形如下:(2),證明如下:由(1)可得:,CE=CD∴∵四邊形ABCD是平行四邊形∴AD∥BC,AB∥CD∴,∴即DF平分∵∠BAC=90°∴∴【點(diǎn)睛】本題考查了作圖-復(fù)雜作圖:解決此類題目的關(guān)鍵是熟悉基本幾何圖形的性質(zhì),結(jié)合幾何圖形的基本性質(zhì)把復(fù)雜作圖拆解成基本作圖,逐步操作.也考查了平行四邊形的判定與性質(zhì).4、(1),證明見(jiàn)解析;(2)見(jiàn)解析【分析】(1)由正方形的性質(zhì)可得OF=OE,OF⊥AC,OE⊥BC,由Rt△AOF≌Rt△AOD,可以推出OE=OD=OE,再由可得,由此即可得到答案;(2)根據(jù)(1)和題目已知可得,由此利用完全平方公式和平方差公式求解即可.【詳解】解:(1)如圖所示,連接OC∵四邊形OECF是正方形,∴OF=OE,OF⊥AC,OE⊥BC,∵Rt△AOF≌Rt△AOD,∴OF=OD,∴OE=OD=OE,∵∠ACB=90°,∴∴,∴,即∴;
(2)∵,∴,∴,∴,∴即.【點(diǎn)睛】本題主要考查了正方形
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版國(guó)有企業(yè)勞務(wù)派遣員工服務(wù)協(xié)議
- 2025房地產(chǎn)項(xiàng)目居間合同范本:可持續(xù)發(fā)展地產(chǎn)項(xiàng)目合作
- 2025電商代運(yùn)營(yíng)年度供應(yīng)鏈管理服務(wù)合同范本
- 2025版鋼構(gòu)工程安裝與綠色環(huán)保驗(yàn)收合同協(xié)議
- 2025版專業(yè)清潔公司勞務(wù)分包安全合作協(xié)議書(shū)
- 二零二五版深基坑定向鉆施工與支護(hù)設(shè)計(jì)合同
- 2025版大學(xué)生創(chuàng)新創(chuàng)業(yè)項(xiàng)目投資合作協(xié)議
- 2025版二手商鋪?zhàn)赓U合同租賃雙方權(quán)利義務(wù)說(shuō)明書(shū)
- 2025范本模板:內(nèi)部股東退出及環(huán)境保護(hù)責(zé)任合同
- 2025版企業(yè)單位食堂外包服務(wù)托管合同協(xié)議書(shū)
- 崗位職責(zé)管理辦法
- 3.1.4 認(rèn)識(shí)除法算式(課件) 人教版數(shù)學(xué)二年級(jí)上冊(cè)
- 2025版保育員理論考試試題試題(附答案)
- 基于無(wú)人機(jī)的公路路面及設(shè)施狀況智能檢測(cè)技術(shù)研究采購(gòu)服務(wù)方案投標(biāo)文件(技術(shù)方案)
- 履約能力提升培訓(xùn)大綱
- 農(nóng)產(chǎn)品經(jīng)紀(jì)人基礎(chǔ)技能培訓(xùn)手冊(cè)
- 2024年湖南省古丈縣人民醫(yī)院公開(kāi)招聘醫(yī)務(wù)工作人員試題帶答案詳解
- 海南省2024-2025學(xué)年高一下學(xué)期學(xué)業(yè)水平診斷(二)物理
- 2025年食品安全抽查考試復(fù)習(xí)題庫(kù)模擬題及答案指導(dǎo)
- 海爾冰箱BCD-257DVC使用說(shuō)明書(shū)
- 2025年高考真題-政治(河南卷) 含解析
評(píng)論
0/150
提交評(píng)論