難點(diǎn)解析-滬科版9年級(jí)下冊(cè)期末試題附答案詳解(輕巧奪冠)_第1頁
難點(diǎn)解析-滬科版9年級(jí)下冊(cè)期末試題附答案詳解(輕巧奪冠)_第2頁
難點(diǎn)解析-滬科版9年級(jí)下冊(cè)期末試題附答案詳解(輕巧奪冠)_第3頁
難點(diǎn)解析-滬科版9年級(jí)下冊(cè)期末試題附答案詳解(輕巧奪冠)_第4頁
難點(diǎn)解析-滬科版9年級(jí)下冊(cè)期末試題附答案詳解(輕巧奪冠)_第5頁
已閱讀5頁,還剩31頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

滬科版9年級(jí)下冊(cè)期末試題考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計(jì)16分)1、往直徑為78cm的圓柱形容器內(nèi)裝入一些水以后,截面如圖所示,若水面寬,則水的最大深度為()A.36cm B.27cm C.24cm D.15cm2、下列說法正確的是()A.?dāng)S一枚質(zhì)地均勻的骰子,擲得的點(diǎn)數(shù)為3的概率是.B.若AC、BD為菱形ABCD的對(duì)角線,則的概率為1.C.概率很小的事件不可能發(fā)生.D.通過少量重復(fù)試驗(yàn),可以用頻率估計(jì)概率.3、如圖,在中,,,,將繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,則旋轉(zhuǎn)后點(diǎn)A的對(duì)應(yīng)點(diǎn)的坐標(biāo)是()A. B. C. D.4、如圖是下列哪個(gè)立體圖形的主視圖()A. B.C. D.5、下列各點(diǎn)中,關(guān)于原點(diǎn)對(duì)稱的兩個(gè)點(diǎn)是()A.(﹣5,0)與(0,5) B.(0,2)與(2,0)C.(﹣2,﹣1)與(﹣2,1) D.(2,﹣1)與(﹣2,1)6、7個(gè)小正方體按如圖所示的方式擺放,則這個(gè)圖形的左視圖是()A.B. C.D.7、扇形的半徑擴(kuò)大為原來的3倍,圓心角縮小為原來的,那么扇形的面積()A.不變 B.面積擴(kuò)大為原來的3倍C.面積擴(kuò)大為原來的9倍 D.面積縮小為原來的8、如圖,ABCD是正方形,△CDE繞點(diǎn)C逆時(shí)針方向旋轉(zhuǎn)90°后能與△CBF重合,那么△CEF是()A..等腰三角形 B.等邊三角形C..直角三角形 D..等腰直角三角形第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計(jì)14分)1、為了落實(shí)“雙減”政策,朝陽區(qū)一些學(xué)校在課后服務(wù)時(shí)段開設(shè)了與冬奧會(huì)項(xiàng)目冰壺有關(guān)的選修課.如圖,在冰壺比賽場(chǎng)地的一端畫有一些同心圓作為營壘,其中有兩個(gè)圓的半徑分別約為60cm和180cm,小明擲出一球恰好沿著小圓的切線滑行出界,則該球在大圓內(nèi)滑行的路徑MN的長度為______cm.2、圓錐的底面直徑是80cm,母線長90cm.它的側(cè)面展開圖的圓心角和圓錐的全面積依次是______.3、把一個(gè)正六邊形繞其中心旋轉(zhuǎn),至少旋轉(zhuǎn)________度,可以與自身重合.4、點(diǎn)P為邊長為2的正方形ABCD內(nèi)一點(diǎn),是等邊三角形,點(diǎn)M為BC中點(diǎn),N是線段BP上一動(dòng)點(diǎn),將線段MN繞點(diǎn)M順時(shí)針旋轉(zhuǎn)60°得到線段MQ,連接AQ、PQ,則的最小值為______.5、在平面直角坐標(biāo)系中,點(diǎn),圓C與x軸相切于點(diǎn)A,過A作一條直線與圓交于A,B兩點(diǎn),AB中點(diǎn)為M,則OM的最大值為______.6、已知如圖,AB=8,AC=4,∠BAC=60°,BC所在圓的圓心是點(diǎn)O,∠BOC=60°,分別在、線段AB和AC上選取點(diǎn)P、E、F,則PE+EF+FP的最小值為____________.7、如圖,AB是半圓O的弦,DE是直徑,過點(diǎn)B的切線BC與⊙O相切于點(diǎn)B,與DE的延長線交于點(diǎn)C,連接BD,若四邊形OABC為平行四邊形,則∠BDC的度數(shù)為______.三、解答題(7小題,每小題0分,共計(jì)0分)1、如圖,AB是⊙O的直徑,點(diǎn)D,E在⊙O上,四邊形BDEO是平行四邊形,過點(diǎn)D作交AE的延長線于點(diǎn)C.(1)求證:CD是⊙O的切線.(2)若,求陰影部分的面積.2、如圖,是⊙的直徑,弦,垂足為E,弦與弦相交于點(diǎn)G,且,過點(diǎn)C作的垂線交的延長線于點(diǎn)H.(1)判斷與⊙的位置關(guān)系并說明理由;(2)若,求弧的長.3、如圖1,在中,,,點(diǎn)D為AB邊上一點(diǎn).(1)若,則______;(2)如圖2,將線段CD繞著點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°得到線段CE,連接AE,求證:;(3)如圖3,過點(diǎn)A作直線CD的垂線AF,垂足為F,連接BF.直接寫出BF的最小值.4、太原是國家歷史文化名城,有很多旅游的好去處,周末哥哥計(jì)劃帶弟弟出去玩,放假前他收集了太原動(dòng)物園、晉祠公園、森林公園、汾河濕地公園四個(gè)景點(diǎn)的旅游宣傳卡片,這些卡片的大小、形狀及背面完全相同,分別用D,J,S,F(xiàn)表示,如圖所示,請(qǐng)用列表或畫樹狀圖的方法,求下列事件發(fā)生的概率.(1)把這四張卡片背面朝上洗勻后,弟弟從中隨機(jī)抽取一張,作好記錄后,將卡片放回洗勻,哥哥再抽取一張,求兩人抽到同一景點(diǎn)的概率;(2)把這四張卡片背面朝上洗勻后,弟弟和哥哥從中各隨機(jī)抽取一張(不放回),求兩人抽到動(dòng)物園和森林公園的概率.5、新高考“3+1+2”是指:3,語數(shù)外三科是必考科目;1,物理、歷史兩科中任選一科;2,化學(xué)、生物、地理、政治四科中任選兩科.某同學(xué)確定選擇“物理”,但他不確定其它兩科選什么,于是他做了一個(gè)游戲:他拿來四張不透明的卡片,正面分別寫著“化學(xué)、生物、地理、政治”,再將這四張卡片背面朝上并打亂順序,然后從這四張卡片中隨機(jī)抽取兩張,請(qǐng)你用畫樹狀圖(或列表)的方法,求該同學(xué)抽出的兩張卡片是“化學(xué)、政治”的概率.6、綜合與實(shí)踐“利用尺規(guī)作圖三等分一個(gè)任意角”曾是數(shù)學(xué)史上一大難題,之后被數(shù)學(xué)家證明是不可能完成的.人們根據(jù)實(shí)際需要,發(fā)明了一種簡易操作工具——三分角器.圖1是它的示意圖,其中與半圓的直徑在同一直線上,且的長度與半圓的半徑相等;與垂直于點(diǎn),足夠長.使用方法如圖2所示,若要把三等分,只需適當(dāng)放置三分角器,使經(jīng)過的頂點(diǎn),點(diǎn)落在邊上,半圓與另一邊恰好相切,切點(diǎn)為,則,就把三等分了.為了說明這一方法的正確性,需要對(duì)其進(jìn)行證明.獨(dú)立思考:(1)如下給出了不完整的“已知”和“求證”,請(qǐng)補(bǔ)充完整.已知:如圖2,點(diǎn),,,在同一直線上,,垂足為點(diǎn),________,切半圓于.求證:________________.探究解決:(2)請(qǐng)完成證明過程.應(yīng)用實(shí)踐:(3)若半圓的直徑為,,求的長度.7、如圖,AB是⊙O的直徑,點(diǎn)C是⊙O上一點(diǎn),連接BC,半徑OD弦BC.(1)求證:弧AD=弧CD;(2)連接AC、BD相交于點(diǎn)F,AC與OD相交于點(diǎn)E,連接CD,若⊙O的半徑為5,BC=6,求CD和EF的長.-參考答案-一、單選題1、C【分析】連接,過點(diǎn)作于點(diǎn),交于點(diǎn),先由垂徑定理求出的長,再根據(jù)勾股定理求出的長,進(jìn)而得出的長即可.【詳解】解:連接,過點(diǎn)作于點(diǎn),交于點(diǎn),如圖所示:則,的直徑為,,在中,,,即水的最大深度為,故選:C.【點(diǎn)睛】本題考查了垂徑定理、勾股定理等知識(shí),解題的關(guān)鍵是根據(jù)題意作出輔助線,構(gòu)造出直角三角形是解答此題的關(guān)鍵.2、B【分析】概率是指事情發(fā)生的可能性,等可能發(fā)生的事件的概率相同,小概率事件是指發(fā)生的概率比較小,不代表不會(huì)發(fā)生,通過大量重復(fù)試驗(yàn)才能用頻率估計(jì)概率,利用這些對(duì)四個(gè)選項(xiàng)一次判斷即可.【詳解】A項(xiàng):擲一枚質(zhì)地均勻的骰子,每個(gè)面朝上的概率都是一樣的都是,故A錯(cuò)誤,不符合題意;B項(xiàng):若AC、BD為菱形ABCD的對(duì)角線,由菱形的性質(zhì):對(duì)角線相互垂直平分得知兩條線段一定垂直,則AC⊥BD的概率為1是正確的,故B正確,符合題意;C項(xiàng):概率很小的事件只是發(fā)生的概率很小,不代表不會(huì)發(fā)生,故C錯(cuò)誤,不符合題意;D項(xiàng):通過大量重復(fù)試驗(yàn)才能用頻率估計(jì)概率,故D錯(cuò)誤,不符合題意.故選B【點(diǎn)睛】本題考查概率的命題真假,準(zhǔn)確理解事務(wù)發(fā)生的概率是本題關(guān)鍵.3、C【分析】過點(diǎn)A作AC⊥x軸于點(diǎn)C,設(shè),則,根據(jù)勾股定理,可得,從而得到,進(jìn)而得到∴,可得到點(diǎn),再根據(jù)旋轉(zhuǎn)的性質(zhì),即可求解.【詳解】解:如圖,過點(diǎn)A作AC⊥x軸于點(diǎn)C,設(shè),則,∵,,∴,∵,,∴,解得:,∴,∴,∴點(diǎn),∴將繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,則旋轉(zhuǎn)后點(diǎn)A的對(duì)應(yīng)點(diǎn)的坐標(biāo)是,∴將繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,則旋轉(zhuǎn)后點(diǎn)A的對(duì)應(yīng)點(diǎn)的坐標(biāo)是.故選:C【點(diǎn)睛】本題考查坐標(biāo)與圖形變化一旋轉(zhuǎn),解直角三角形等知識(shí),解題的關(guān)鍵是求出點(diǎn)A的坐標(biāo),屬于中考常考題型.4、B【分析】根據(jù)主視圖即從物體正面觀察所得的視圖求解即可.【詳解】解:的主視圖為,故選:B.【點(diǎn)睛】本題主要考查由三視圖判斷幾何體,解題的關(guān)鍵是掌握由三視圖想象幾何體的形狀,首先,應(yīng)分別根據(jù)主視圖、俯視圖和左視圖想象幾何體的前面、上面和左側(cè)面的形狀,然后綜合起來考慮整體形狀.5、D【分析】根據(jù)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的橫坐標(biāo)互為相反數(shù),縱坐標(biāo)互為相反數(shù),可得答案.【詳解】解:A、(﹣5,0)與(0,5)橫、縱坐標(biāo)不滿足關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的橫坐標(biāo)互為相反數(shù),縱坐標(biāo)互為相反數(shù)的特征,故A錯(cuò)誤;B、(0,2)與(2,0)橫、縱坐標(biāo)不滿足關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的橫坐標(biāo)互為相反數(shù),縱坐標(biāo)互為相反數(shù)的特征,故B錯(cuò)誤;C、(﹣2,﹣1)與(﹣2,1)關(guān)于x軸對(duì)稱,故C錯(cuò)誤;D、關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的橫坐標(biāo)互為相反數(shù),縱坐標(biāo)互為相反數(shù),故D正確;故選:D.【點(diǎn)睛】本題考查了關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo),關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的橫坐標(biāo)互為相反數(shù),縱坐標(biāo)互為相反數(shù).6、C【分析】細(xì)心觀察圖中幾何體擺放的位置,根據(jù)左視圖是從左面看到的圖象判定則可.【詳解】解:從左邊看,是左邊3個(gè)正方形,右邊一個(gè)正方形.故選:C.【點(diǎn)睛】本題考查了三視圖的知識(shí),左視圖是從物體的左面看得到的視圖.7、A【分析】設(shè)原來扇形的半徑為r,圓心角為n,則變化后的扇形的半徑為3r,圓心角為,利用扇形的面積公式即可計(jì)算得出它們的面積,從而進(jìn)行比較即可得答案.【詳解】設(shè)原來扇形的半徑為r,圓心角為n,∴原來扇形的面積為,∵扇形的半徑擴(kuò)大為原來的3倍,圓心角縮小為原來的,∴變化后的扇形的半徑為3r,圓心角為,∴變化后的扇形的面積為,∴扇形的面積不變.故選:A.【點(diǎn)睛】本題考查了扇形面積,熟練掌握并靈活運(yùn)用扇形面積公式是解題關(guān)鍵.8、D【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)推出相等的邊CE=CF,旋轉(zhuǎn)角推出∠ECF=90°,即可得到△CEF為等腰直角三角形.【詳解】解:∵△CDE繞點(diǎn)C逆時(shí)針方向旋轉(zhuǎn)90°后能與△CBF重合,∴∠ECF=90°,CE=CF,∴△CEF是等腰直角三角形,故選:D.【點(diǎn)睛】本題主要考查旋轉(zhuǎn)的性質(zhì),掌握?qǐng)D形旋轉(zhuǎn)前后的大小和形狀不變是解決問題的關(guān)鍵.二、填空題1、【分析】如圖,設(shè)小圓的切線MN與小圓相切于點(diǎn)D,與大圓交于M、N,連接OD、OM,根據(jù)切線的性質(zhì)定理和垂徑定理求解即可.【詳解】解:如圖,設(shè)小圓的切線MN與小圓相切于點(diǎn)D,與大圓交于M、N,連接OD、OM,則OD⊥MN,∴MD=DN,在Rt△ODM中,OM=180cm,OD=60cm,∴cm,∴cm,即該球在大圓內(nèi)滑行的路徑MN的長度為cm,故答案為:.【點(diǎn)睛】本題考查切線的性質(zhì)定理、垂徑定理、勾股定理,熟練掌握切線的性質(zhì)和垂徑定理是解答的關(guān)鍵.2、160°,5200【分析】由題意知,圓錐的展開圖扇形的r半徑為90cm,弧長l為.代入扇形弧長公式求解圓心角;代入扇形面積公式求出圓錐側(cè)面積,然后加上底面面積即可求出全面積.【詳解】解:圓錐的展開圖扇形的r半徑為90cm,弧長l為∵∴解得∵∴故答案為:160°,.【點(diǎn)睛】本題考查了扇形的圓心角與面積.解題的關(guān)鍵在于運(yùn)用扇形的弧長與面積公式進(jìn)行求解.難點(diǎn)在于求出公式中的未知量.3、60【分析】正六邊形連接各個(gè)頂點(diǎn)和中心,這些連線會(huì)將360°分成6分,每份60°因此至少旋轉(zhuǎn)60°,正六邊形就能與自身重合.【詳解】360°÷6=60°故答案為:60【點(diǎn)睛】本題考查中心對(duì)稱圖形的性質(zhì),根據(jù)圖形特征找到最少旋轉(zhuǎn)度數(shù)是本題關(guān)鍵.4、【分析】如圖,取的中點(diǎn),連接,,,證明,進(jìn)而證明在上運(yùn)動(dòng),且垂直平分,根據(jù),求得最值,根據(jù)正方形的性質(zhì)和勾股定理求得的長即可求得的最小值.【詳解】解:如圖,取的中點(diǎn),連接,,,將線段MN繞點(diǎn)M順時(shí)針旋轉(zhuǎn)60°得到線段MQ,,是等邊三角形,,是的中點(diǎn),是的中點(diǎn)是等邊三角形,即在和中,又是的中點(diǎn)點(diǎn)在上是的中點(diǎn),是等邊三角,又垂直平分即的最小值為四邊形是正方形,且的最小值為故答案為:【點(diǎn)睛】本題考查了正方形的性質(zhì)等邊三角形的性質(zhì),旋轉(zhuǎn)的性質(zhì),全等三角形的性質(zhì)與判定,勾股定理,垂直平分線的性質(zhì)與判定,根據(jù)以上知識(shí)轉(zhuǎn)化線段是解題的關(guān)鍵.5、##【分析】如圖所示,取D(-2,0),連接BD,連接CD與圓C交于點(diǎn),先求出A點(diǎn)坐標(biāo),從而可證OM是△ABD的中位線,得到,則當(dāng)BD最小時(shí),OM也最小,即當(dāng)B運(yùn)動(dòng)到時(shí),BD有最小值,由此求解即可.【詳解】解:如圖所示,取D(-2,0),連接BD,連接CD與圓C交于點(diǎn)∵點(diǎn)C的坐標(biāo)為(2,2),圓C與x軸相切于點(diǎn)A,∴點(diǎn)A的坐標(biāo)為(2,0),∴OA=OD=2,即O是AD的中點(diǎn),又∵M(jìn)是AB的中點(diǎn),∴OM是△ABD的中位線,∴,∴當(dāng)BD最小時(shí),OM也最小,∴當(dāng)B運(yùn)動(dòng)到時(shí),BD有最小值,∵C(2,2),D(-2,0),∴,∴,∴,故答案為:.【點(diǎn)睛】本題主要考查了坐標(biāo)與圖形,一點(diǎn)到圓上一點(diǎn)的距離得到最小值,兩點(diǎn)距離公式,三角形中位線定理,把求出OM的最小值轉(zhuǎn)換成求BD的最小值是解題的關(guān)鍵.6、12【分析】如圖,連接BC,AO,作點(diǎn)P關(guān)于AB的對(duì)稱點(diǎn)M,作點(diǎn)P關(guān)于AC的對(duì)稱點(diǎn)N,連接MN交AB于E,交AC于F,此時(shí)△PEF的周長=PE+PF+EF=EM+EF+FM=MN,想辦法求出MN的最小值即可解決問題.【詳解】解:如圖,連接BC,AO,作點(diǎn)P關(guān)于AB的對(duì)稱點(diǎn)M,作點(diǎn)P關(guān)于AC的對(duì)稱點(diǎn)N,連接MN交AB于E,交AC于F,此時(shí)△PEF的周長=PE+PF+EF=EM+EF+FM=MN,∴當(dāng)MN的值最小時(shí),△PEF的值最小,∵AP=AM=AN,∠BAM=∠BAP,∠CAP=∠CAN,∠BAC=60°,∴∠MAN=120°,∴MN=AM=PA,∴當(dāng)PA的值最小時(shí),MN的值最小,取AB的中點(diǎn)J,連接CJ.∵AB=8,AC=4,∴AJ=JB=AC=4,∵∠JAC=60°,∴△JAC是等邊三角形,∴JC=JA=JB,∴∠ACB=90°,∴BC=,∵∠BOC=60°,OB=OC,∴△OBC是等邊三角形,∴OB=OC=BC=4,∠BCO=60°,∴∠ACH=30°,∵AH⊥OH,AH=AC=2,CH=AH=2,∴OH=6,∴OA==4,∵當(dāng)點(diǎn)P在直線OA上時(shí),PA的值最小,最小值為-,∴MN的最小值為?(-)=-12.故答案:-12.【點(diǎn)睛】本題考查了圓周角定理,垂徑定理,軸對(duì)稱-最短問題等知識(shí),解題的關(guān)鍵是學(xué)會(huì)利用軸對(duì)稱解決最短問題,屬于中考填空題中的壓軸題.7、【分析】先由切線的性質(zhì)得到∠OBC=90°,再由平行四邊形的性質(zhì)得到BO=BC,則∠BOC=∠BCO=45°,由OD=OB,得到∠ODB=∠OBD,由∠ODB+∠OBD=∠BOC,即可得到∠ODB=∠OBD=22.5°,即∠BDC=22.5°.【詳解】解:∵BC是圓O的切線,∴∠OBC=90°,∵四邊形ABCO是平行四邊形,∴AO=BC,又∵AO=BO,∴BO=BC,∴∠BOC=∠BCO=45°,∵OD=OB,∴∠ODB=∠OBD,∵∠ODB+∠OBD=∠BOC,∴∠ODB=∠OBD=22.5°,即∠BDC=22.5°,故答案為:22.5°.【點(diǎn)睛】本題主要考查了平行四邊形的性質(zhì),切線的性質(zhì),等腰三角形的性質(zhì)與判定,三角形外角的性質(zhì),熟知切線的性質(zhì)是解題的關(guān)鍵.三、解答題1、(1)見詳解;(2)【分析】(1)連接OD,由題意易得,則有△ODB是等邊三角形,然后可得△AEO也為等邊三角形,進(jìn)而可得OD∥AC,最后問題可求證;(2)由(1)易得AE=ED,∠CED=∠OBD=60°,然后可得圓O的半徑,進(jìn)而可得扇形OED和△OED的面積,則有弓形ED的面積,最后問題可求解.【詳解】(1)證明:連接OD,如圖所示:∵四邊形BDEO是平行四邊形,∴,∴△ODB是等邊三角形,∴∠OBD=∠BOD=60°,∴∠AOE=∠OBD=60°,∵OE=OA,∴△AEO也為等邊三角形,∴∠EAO=∠DOB=60°,∴AE∥OD,∴∠ODC+∠C=180°,∵CD⊥AE,∴∠C=90°,∴∠ODC=90°,∵OD是圓O的半徑,∴CD是⊙O的切線.(2)解:由(1)得∠EAO=∠AOE=∠OBD=∠BOD=60°,ED∥AB,∴∠EAO=∠CED=60°,∵∠AOE+∠EOD+∠BOD=180°,∴∠EOD=60°,∴△DEO為等邊三角形,∴ED=OE=AE,∵CD⊥AE,∠CED=60°,∴∠CDE=30°,∴,∵,∴,∴,設(shè)△OED的高為h,∴,∴,∴.【點(diǎn)睛】本題主要考查扇形面積公式、切線的判定定理及解直角三角形,熟練掌握扇形面積公式、切線的判定定理及解直角三角形是解題的關(guān)鍵.2、(1)相切,見解析(2)【分析】(1)連接OC、OD、AC,OC交AF于點(diǎn)M,根據(jù)AG=CG,CD⊥AB,可得,從而OC⊥AF,再由∠AFB=90°,可得CH∥AF,即可求證;(2)先證明四邊形CMFH為矩形,可得OC⊥AF,CM=HF=2,從而得到AM=FM,進(jìn)而得到OM=BF=2,可得到CM=OM,進(jìn)而得到OC=4,AM垂直平分OC,可證得△AOC為等邊三角形,即可求解.(1)解:CH與⊙O相切.理由如下:如圖,連接OC、OD、AC,OC交AF于點(diǎn)M,∵AG=CG,∴∠ACG=∠CAG,∴,∵CD⊥AB,∴,∴,∴OC⊥AF,∵AB為直徑,∴∠AFB=90°,∵BH⊥CH,∴CH∥AF,∴OC⊥CH,∵OC為半徑,∴CH為⊙O的切線;(2)解:由(1)得:BH⊥CH,OC⊥CH,∴OC∥BH,∵CH∥AF,∴四邊形CMFH為平行四邊形,∵OC⊥CH,∴∠OCH=90°,∴四邊形CMFH為矩形,∴OC⊥AF,CM=HF=2,∴AM=FM,∵點(diǎn)O為AB的中點(diǎn),∴OM=BF=2,∴CM=OM,∴OC=4,AM垂直平分OC,∴AC=AO,而AO=OC,∴AC=OC=OA,,∴△AOC為等邊三角形,∴∠AOC=60°,∵,∴∠AOD=∠AOC=60°,∴∠COD=120°,∴弧CD的長度為.【點(diǎn)睛】本題主要考查了圓的基本性質(zhì),垂徑定理,切線的判定,等邊三角形的判定和性質(zhì),熟練掌握相關(guān)知識(shí)點(diǎn)是解題的關(guān)鍵.3、(1)5(2)證明見解析(3)【分析】(1)過C作CM⊥AB于M,根據(jù)等腰三角形的性質(zhì)求出CM和DM,再根據(jù)勾股定理計(jì)算即可;(2)連BE,先證明,即可得到直角三角形ABE,利用勾股定理證明即可;(3)取AC中點(diǎn)N,連接FN、BN,根據(jù)三角形BFN中三邊關(guān)系判斷即可.(1)過C作CM⊥AB于M,∵,∴∵∴∴在Rt中(2)連接BE,∵,,,∴,∴∴,∴在Rt中∴∴(3)取AC中點(diǎn)N,連接FN、BN,∵,,∴∵AF垂直CD∴∵AC中點(diǎn)N,∴∴∵三角形BFN中∴∴當(dāng)B、F、N三點(diǎn)共線時(shí)BF最小,最小值為.【點(diǎn)睛】本題考查等腰直角三角形的常用輔助線以及直角三角形斜邊上的中線,解題的關(guān)鍵是根據(jù)等腰直角三角形作斜邊垂線或者構(gòu)造“手拉手模型”.4、(1);(2).【分析】(1)根據(jù)題意列表可得共有16種等可能的結(jié)果,其中兩人抽到同一景點(diǎn)的結(jié)果有4種,進(jìn)而由概率公式求解即可;(2)根據(jù)題意列表可得共有12種等可能的結(jié)果,其中兩人抽到動(dòng)物園和森林公園的結(jié)果有2種,進(jìn)而由概率公式求解即可.【詳解】解:(1)列表如下:DJSFD(D,D)(J,D)(S,D)(F,D)J(D,J)(J,J)(S,J)(F,J)S(D,S)(J,S)(S,S)(F,S)F(D,F)(J,F)(S,F)(F,F)所有等可能的情況數(shù)為16種,兩人抽到同一景點(diǎn)的結(jié)果有4種,所以兩人抽到同一景點(diǎn)的概率為.(2)列表如下:DJSFD(J,D)(S,D)(F,D)J(D,J)(S,J)(F,J)S(D,S)(J,S)(F,S)F(D,F)(J,F)(S,F)所有等可能的情況數(shù)為12種,其中兩人抽到動(dòng)物園和森林公園的結(jié)果有2種,所以兩人抽到動(dòng)物園和森林公園的概率為.【點(diǎn)睛】本題考查列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式計(jì)算事件A或事件B的概率.5、【分析】用A、B、C、D分別表示化學(xué)、生物、地理、政治,然后畫出樹狀圖求解.【詳解】解:用A、B、C、D分別表示化學(xué)、生物、地理、政治,畫樹狀圖如下,,由樹狀圖可知,共有12種等可能發(fā)生的情況,其中符合條件的情況有2種,所以該同學(xué)抽出的兩張卡片是“化學(xué)、政治”的概率=.【點(diǎn)睛】本題考查了樹狀圖法或列表法求概率,解題的關(guān)鍵是正確畫出樹狀圖或表格,然后

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論