




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
京改版數(shù)學(xué)9年級上冊期末試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題26分)一、單選題(6小題,每小題2分,共計12分)1、如圖,AD//BC,∠D=90°,AD=3,BC=4,DC=6,若在邊DC上有點P,使△PAD與△PBC相似,則這樣的點P有(
)A.1個 B.2個 C.3個 D.4個2、如圖,Rt△ABC中,,,,D為BC的中點,若動點E以1cm/s的速度從A點出發(fā),沿AB向B點運動,設(shè)E點的運動時間為t秒,連接DE,當以B、D、E為頂點的三角形與△ABC相似時,t的值為()A.2或3.5 B.2或3.2 C.2或3.4 D.3.2或3.43、已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,則一次函數(shù)y=bx+c的圖象和反比例函數(shù)y=的圖象在同一坐標系中大致為(
)A. B.C. D.4、已知點都在反比例函數(shù)的圖象上,且,則下列結(jié)論一定正確的是(
)A. B. C. D.5、已知點在半徑為8的外,則(
)A. B. C. D.6、在同一坐標系中,二次函數(shù)與一次函數(shù)的圖像可能是(
)A. B.C. D.二、多選題(7小題,每小題2分,共計14分)1、季是呼吸道疾病多發(fā)的季節(jié),為預(yù)防病毒的傳播,某學(xué)校用藥熏消毒法對教室進行消毒,已知藥物釋放過程中,教室內(nèi)每立方米空氣中含藥量與時間成正比例;藥物釋放完畢后,y與t成反比例,如圖所示.空氣中的含藥量低于時對身體無害.則下列選項正確的是(
)A.藥物釋放過程中,y與t的函數(shù)表達式是B.藥物的釋放過程需要2hC.從開始消毒,6h后空氣中的含藥量低于D.空氣中含藥量不低于的時長為6h2、下列說法中,不正確的是(
)A.平分一條直徑的弦必垂直于這條直徑B.平分一條弧的直線垂直于這條弧所對的弦C.弦的垂線必經(jīng)過這條弦所在圓的圓心D.在一個圓內(nèi)平分一條弧和平分它所對的弦的直線必經(jīng)過這個圓的圓心3、已知:如圖,△ABC中,∠A=60°,BC為定長,以BC為直徑的⊙O分別交AB、AC于點D、E.連接DE、OE.下列結(jié)論中正確的結(jié)論是()A.BC=2DE B.D點到OE的距離不變 C.BD+CE=2DE D.AE為外接圓的切線4、如圖,正方形ABCD,點E在邊AB上,且AE:EB=2:3,過點A作DE的垂線,垂足為I,交BC于點F,交BD于點H,延長DC至G,使CG=DC,連接GI,EH.下列結(jié)論正確的是(
)A. B. C. D.5、已知Rt△ABC中,∠C=90°,AC=2,BC=3,則下列各式中,不正確的是()A.sinB= B.cosB= C.tanB= D.以上都不對6、如圖所示,二次函數(shù)的圖象的一部分,圖像與x軸交于點.下列結(jié)論中正確的是(
)A.拋物線與x軸的另一個交點坐標是B.C.若拋物線經(jīng)過點,則關(guān)于x的一元二次方程的兩根分別為,5D.將拋物線向左平移3個單位,則新拋物線的表達式為7、下表時二次函數(shù)y=ax2+bx+c的x,y的部分對應(yīng)值:…………則對于該函數(shù)的性質(zhì)的判斷中正確的是()A.該二次函數(shù)有最大值B.不等式y(tǒng)>﹣1的解集是x<0或x>2C.方程y=ax2+bx+c的兩個實數(shù)根分別位于﹣<x<0和2<x<之間D.當x>0時,函數(shù)值y隨x的增大而增大第Ⅱ卷(非選擇題74分)三、填空題(7小題,每小題2分,共計14分)1、已知點A(3,a)、B(-1,b)在函數(shù)的圖像上,那么a___b(填“>”或“=”或“<”)2、《九章算術(shù)》是中國古代的數(shù)學(xué)專著,是“算經(jīng)十書”(漢唐之間出現(xiàn)的十部古算書)中最重要的一種.中有下列問題:“今有邑方不知大小,各中開門.出北門八十步有木,出西門二百四十五步見木.問邑方有幾何?”意思是:如圖,點M、點N分別是正方形ABCD的邊AD、AB的中點,,,EF過點A,且步,步,已知每步約40厘米,則正方形的邊長約為__________米.3、圖1是一輛吊車的實物圖,圖2是其工作示意圖,AC是可以伸縮的起重臂,其轉(zhuǎn)動點A離地面BD的高度AH為3.4m.當起重臂AC長度為9m,張角∠HAC為118°時,操作平臺C離地面的高度為_______米.(結(jié)果保留小數(shù)點后一位:參考數(shù)據(jù):sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)4、如圖,四邊形內(nèi)接于⊙O若,則_______°.5、二次函數(shù)的部分圖象如圖所示,由圖象可知,方程的解為___________________;不等式的解集為___________________.6、如圖,點O是正方形ABCD的對稱中心,射線OM,ON分別交正方形的邊AD,CD于E,F(xiàn)兩點,連接EF,已知,.(1)以點E,O,F(xiàn),D為頂點的圖形的面積為_________;(2)線段EF的最小值是_________.7、如圖,直線MN∥PQ,直線AB分別與MN,PQ相交于點A,B.小宇同學(xué)利用以下步驟作圖:①以點A為圓心,適當長為半徑作弧交射線AN于點C,交線段AB于點D;②以點C為圓心,適當長為半徑畫?。蝗缓笤僖渣cD為圓心,同樣長為半徑畫弧.前后兩弧在∠NAB內(nèi)交于點E;③作射線AE,交PQ于點F;若AF=2,∠FAN=30°,則線段BF的長為_____.四、解答題(6小題,每小題10分,共計60分)1、已知拋物線c:y=-x2-2x+3和直線l:y=x+d。將拋物線c在x軸上方的部分沿x軸翻折180°,其余部分保持不變,翻折后的圖象與x軸下方的部分組成一個“M”型的新圖象(即新函數(shù)m:y=-|x2+2x-3|的圖象)。(1)當直線l與這個新圖象有且只有一個公共點時,d=;(2)當直線l與這個新圖象有且只有三個公共點時,求d的值;(3)當直線l與這個新圖象有且只有兩個公共點時,求d的取值范圍;(4)當直線l與這個新圖象有四個公共點時,直接寫出d的取值范圍.2、如圖,AB為⊙O直徑,AC為弦,過⊙O外的點D作DE⊥OA于點E,交AC于點F,連接DC并延長交AB的延長線于點H,且∠D=2∠A.(1)求證:DC與⊙O相切;(2)若⊙O半徑為4,,求AC的長.3、如圖,Rt△ABO的頂點A是反比例函數(shù)的圖象與一次函數(shù)的圖象在第二象限的交點,AB⊥x軸于點B,且.(1)求反比例函數(shù)和一次函數(shù)的解析式;(2)求一次函數(shù)與反比例函數(shù)圖象的兩個交點A,C的坐標.4、已知,且,求x,y的值.5、解方程與計算(1)
(2)計算:.6、已知:如圖,△ABC中,AB=AC,AB>BC.求作:線段BD,使得點D在線段AC上,且∠CBD=∠BAC.作法:①以點A為圓心,AB長為半徑畫圓;②以點C為圓心,BC長為半徑畫弧,交⊙A于點P(不與點B重合);③連接BP交AC于點D.線段BD就是所求作的線段.(1)使用直尺和圓規(guī),依作法補全圖形(保留作圖痕跡);(2)完成下面的證明.證明:連接PC.∵AB=AC,∴點C在⊙A上.∵點P在⊙A上,∴∠CPB=∠BAC.()(填推理的依據(jù))∵BC=PC,∴∠CBD=.()(填推理的依據(jù))∴∠CBD=∠BAC.-參考答案-一、單選題1、A【解析】【分析】根據(jù)已知分兩種情況△PAD∽△PBC或△PAD∽△CBP來進行分析,求得PD的長,從而確定P存在的個數(shù).【詳解】解:∵AD∥BC,∠D=90°,∴∠C=∠D=90°,∵DC=6,AD=3,BC=4,設(shè)PD=x,則PC=6-x.①若PD:PC=AD:BC,則△PAD∽△PBC,則,解得:x=,經(jīng)檢驗:x=是原方程的解;②若PD:BC=AD:PC,則△PAD∽△BPC,則,解得:x無解,所以這樣的點P存在的個數(shù)有1個.故選:A.【考點】此題考查了相似三角形的性質(zhì),熟練掌握相似三角形對應(yīng)邊成比例是解本題的關(guān)鍵.2、A【解析】【分析】求出AB=2BC=4cm,分兩種情況:①當∠EDB=∠ACB=90°時,DE∥AC,△EBD∽△ABC,得出AE=BE=AB=2cm,即可得出t=2s;②當∠DEB=∠ACB=90°時,證出△DBE∽△ABC,得出∠BDE=∠A=30°,因此BE=BD=cm,得出AE=3.5cm,t=3.5s;即可得出結(jié)果.【詳解】解:∵∠ACB=90°,∠ABC=60°,∴∠A=30°,∴AB=2BC=4cm,分兩種情況:①當∠EDB=∠ACB=90°時,DE∥AC,所以△EBD∽△ABC,E為AB的中點,AE=BE=AB=2cm,∴t=2s;②當∠DEB=∠ACB=90°時,∵∠B=∠B,∴△DBE∽△ABC,∴∠BDE=∠A=30°,∵D為BC的中點,∴BD=BC=1cm,∴BE=BD=0.5cm,∴AE=3.5cm,∴t=3.5s;綜上所述,當以B、D、E為頂點的三角形與△ABC相似時,t的值為2或3.5,故選A.【考點】本題考查了相似三角形的判定、平行線的性質(zhì)、含30°角的直角三角形的性質(zhì)等知識;熟記相似三角形的判定方法是解決問題的關(guān)鍵,注意分類討論.3、D【解析】【分析】先通過二次函數(shù)的圖像確定a、b、c的正負,再利用x=1代入解析式,得到a+b+c的正負即可判定兩個函數(shù)的圖像所在的象限,即可得出正確選項.【詳解】解:由圖像可知:圖像開口向下,對稱軸位于y軸左側(cè),與y軸正半軸交于一點,可得:又由于當x=1時,因此一次函數(shù)的圖像經(jīng)過一、二、四三個象限,反比例函數(shù)的圖像位于二、四象限;故選:D.【考點】本題考查了二次函數(shù)的圖像與性質(zhì)、一次函數(shù)的圖像與性質(zhì)以及反比例函數(shù)的圖像與性質(zhì),解決本題的關(guān)鍵是能讀懂題干中的二次函數(shù)圖像,能根據(jù)圖像確定解析式中各系數(shù)的正負,再通過各項系數(shù)的正負判定另外兩個函數(shù)的圖像所在的象限,本題蘊含了數(shù)形結(jié)合的思想方法等.4、C【解析】【分析】根據(jù)反比例函數(shù)的性質(zhì),可得答案.【詳解】反比例函數(shù)中,=-2020<0,圖象位于二、四象限,∵a<0,∴P(a,m)在第二象限,∴m>0;∵b>0,∴Q(b,n)在第四象限,∴n<0.∴n<0<m,即m>n,故選:C.【考點】本題考查了反比例函數(shù)的性質(zhì),利用反比例函數(shù)的性質(zhì):k<0時,圖象位于二四象限是解題關(guān)鍵.5、A【解析】【分析】根據(jù)點P與⊙O的位置關(guān)系即可確定OP的范圍.【詳解】解:∵點P在圓O的外部,∴點P到圓心O的距離大于8,故選:A.【考點】本題主要考查點與圓的位置關(guān)系,關(guān)鍵是要牢記判斷點與圓的位置關(guān)系的方法.6、C【解析】【分析】直線與拋物線聯(lián)立解方程組,若有解,則圖象有交點,若無解,則圖象無交點;根據(jù)二次函數(shù)的對稱軸在y左側(cè),a,b同號,對稱軸在y軸右側(cè)a,b異號,以及當a大于0時開口向上,當a小于0時開口向下,來分析二次函數(shù);同時在假定二次函數(shù)圖象正確的前提下,根據(jù)一次函數(shù)的一次項系數(shù)為正,圖象從左向右逐漸上升,一次項系數(shù)為負,圖象從左向右逐漸下降;一次函數(shù)的常數(shù)項為正,交y軸于正半軸,常數(shù)項為負,交y軸于負半軸.如此分析下來,二次函數(shù)與一次函數(shù)無矛盾者為正確答案.【詳解】解:由方程組得ax2=?a,∵a≠0∴x2=?1,該方程無實數(shù)根,故二次函數(shù)與一次函數(shù)圖象無交點,排除B.A:二次函數(shù)開口向上,說明a>0,對稱軸在y軸右側(cè),則b<0;但是一次函數(shù)b為一次項系數(shù),圖象顯示從左向右上升,b>0,兩者矛盾,故A錯;C:二次函數(shù)開口向上,說明a>0,對稱軸在y軸右側(cè),則b<0;b為一次函數(shù)的一次項系數(shù),圖象顯示從左向右下降,b<0,兩者相符,故C正確;D:二次函數(shù)的圖象應(yīng)過原點,此選項不符,故D錯.故選C.【考點】本題考查的是同一坐標系中二次函數(shù)與一次函數(shù)的圖象問題,必須明確二次函數(shù)的開口方向與a的正負的關(guān)系,a,b的符號與對稱軸的位置關(guān)系,并結(jié)合一次函數(shù)的相關(guān)性質(zhì)進行分析,本題中等難度偏上.二、多選題1、AC【解析】【分析】根據(jù)題意及圖象先確定反比例函數(shù)解析式及正比例函數(shù)解析式,然后根據(jù)題意對各選項進行判斷即可.【詳解】解:A、藥物釋放完畢后,y與t成反比例,設(shè),由圖象可得經(jīng)過點,∴k=3×,∴,當y=1時,t=,∴正比例函數(shù)經(jīng)過點,設(shè)正比例函數(shù)解析式為y=at,將點代入求得:a=,∴正比例函數(shù)解析式為y=t,故A正確;B、由A選項可得,當t=時,y達到最大為1,故B錯誤;C、當t=6時,代入反比例函數(shù)可得:,∴6h后空氣中的含藥量低于0.25mg/m3,故C正確;D、根據(jù)圖象及C選項可得:空氣中含藥量不低于0.25mg/m3的時長小于6h,故D錯誤;故選:AC.【考點】題目主要考查一次函數(shù)與反比例函數(shù)的綜合應(yīng)用,理解題意,確定出一次函數(shù)與反比例函數(shù)解析式是解題關(guān)鍵.2、ABC【解析】【分析】根據(jù)垂徑定理的推論,即如果一條直線滿足:①垂直于弦,②平分弦,③過圓心,④平分優(yōu)弧,⑤平分劣弧中的兩個條件,即可推論出其余三個,逐一進行判斷即可.【詳解】解:A、由于直徑也是弦,所以平分一條直徑的弦不一定垂直這條直徑,選項說法錯誤,符合題意;B、平分一條弧的直線不一定垂直于這條弧,應(yīng)該是:過圓心,且平分一條弧的直線垂直于這條弧所對的弦,選項說法錯誤,符合題意;C、弦的垂線不一定經(jīng)過這條弦所在的圓心,應(yīng)該是:弦的垂直平分線必經(jīng)過這條弦所在的圓心,選項說法錯誤,符合題意;D、在一個圓內(nèi),平分一條弧和它所對弦的直線必經(jīng)過這個圓的圓心,選項說法正確,不符合題意;故選ABC.【考點】本題考查了垂徑定理,解題的關(guān)鍵是掌握垂徑定理及其推論.3、AB【解析】【分析】連接OD,可證明△ODE是等邊三角形,所以A,B正確;通過舉反例:當重合,時,可得:<可得C不一定成立,根據(jù)切線的定義,可得D不正確,從而可得答案.【詳解】解:連接OD,∵∠A=60°∴∠B+∠C=120°,的度數(shù)為∵的度數(shù)為∴的度數(shù)為∴∠DOE=60°,又OD=OE,∴△ODE是等邊三角形,即所以A正確,符合題意;則D到OE的長度是等邊△ODE的高,而等邊的邊長等于圓的半徑,則高一定是一個定值,因而B正確,符合題意;如圖:當重合,時,則為的切線,同理可得:此時則為的直徑,>此時<所以C不符合題意;與的外接圓有兩個交點,不是外接圓的切線,所以D不符合題意;故選:AB.【考點】本題考查的是圓的基本性質(zhì),圓弧的度數(shù)與其所對的圓周角的度數(shù)之間的關(guān)系,切線的概念的理解,等邊三角形的判定與性質(zhì),靈活運用以上知識解題是解題的關(guān)鍵.4、ABD【解析】【分析】證明△BAF≌△ADE,可判斷選項A和選項B,設(shè)AE=2a,則EB=3a,正方形ABCD的邊長為5a,求得BH=a,DH=a,利用反證法判斷選項C;利用相似三角形的性質(zhì)以及三角函數(shù)求得IG=a,即可判斷選項D.【詳解】解:∵AE:EB=2:3,∴設(shè)AE=2a,則EB=3a,正方形ABCD的邊長為5a,∵四邊形ABCD是正方形,AI⊥DE,∴AD=AB,∠DAB=∠ABF=∠AID=90°,∴∠BAF=90°-∠DAI=∠ADE,∴△BAF≌△ADE,∴BF=AE,故選項A正確;∴S△BAF=S△ADE,∴S△BAF-S△AEI=S△ADE-S△AEI,即S△ADI=S四邊形BFIE,故選項B正確;∵四邊形ABCD是正方形,邊長為5a,∴BD=5a,BF∥AD,∴,∴BH=a,DH=a,假設(shè)EH⊥BD,則△BHE是等腰直角三角形,則BE=BH=3a,∴假設(shè)EH⊥BD不成立,故選項C錯誤;過點I作IM⊥AD于點M,過點I作IN⊥DC于點N,∵四邊形ABCD是正方形,∴∠ADC=90°,∴四邊形IMDN是矩形,∵DE=a,AE×AD=DE×AI,∴AI=a,∴DI==a,∵sin∠ADI=,cos∠ADI=,∴IM=a,DM=a,∵CG=DC,∴DG=a,∴NG=a,IN=DM=a,∴IG=a,∴IG=DG.故選項D正確;故選:ABD.【考點】本題考查了正方形的性質(zhì),全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),解直角三角形,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,5、ABD【解析】【分析】根據(jù)勾股定理求出AB的值,再根據(jù)銳角三角函數(shù)定義求出的三個函數(shù)值,進行判斷即可得.【詳解】解:如圖所示,在中,AC=2,BC=3,根據(jù)勾股定理,,A、,選項說法錯誤,符合題意;B、,選項說法錯誤,符合題意;C、,選項說法正確,不符合題意;D、選項C說法正確,選項說法錯誤,符合題意;故選ABD.【考點】本題考查了銳角三角形函數(shù)的定義,解題的關(guān)鍵是掌握勾股定理和銳角三角函數(shù)的定義.6、ABD【解析】【分析】結(jié)合圖象,根據(jù)二次函數(shù)的性質(zhì)進行判斷即可求解【詳解】∵拋物線開口向下,∴a<0,將(-1,0)代入拋物線方程,可得:4a+k=0,∵4a+k=0,∴k=-4a,∴k+a=-3a,∵a<0,∴k+a=-3a>0,即B選項正確;將k=-4a代入拋物線方程,可得:拋物線方程為:,當y=0時,方程的根為-1和3,∴拋物線與x軸的另一個交點為(3,0),即A項正確;將點(-3,m)代入到拋物線方程,可得m=12a,∵結(jié)合k=-4a,∴方程,化簡為:,∵a<0,∴,即,顯然方程無實數(shù)解,故C項說法錯誤;向左平移3個單位,依據(jù)左加右減原則,可得新拋物線為:,即D說法正確,故選:ABD.【考點】本題考查了拋物線的性質(zhì)與圖象的知識,解答本題時需注重運用數(shù)形結(jié)合的思想.7、BC【解析】【分析】由圖表可得二次函數(shù)y=ax2+bx+c的對稱軸為直線x=1,a>0,即可判斷A,D不正確,由圖表可直接判斷B,C正確.【詳解】解:∵當x=0時,y=-1;當x=2時,y=-1;當x=,y=;當x=,y=;∴二次函數(shù)y=ax2+bx+c的對稱軸為直線x=1,x>1時,y隨x的增大而增大,x<1時,y隨x的增大而減?。郺>0即二次函數(shù)有最小值則A,D錯誤由圖表可得:不等式y(tǒng)>-1的解集是x<0或x>2;由圖表可得:方程ax2+bx+c=0的兩個實數(shù)根分別位于-<x<0和2<x<之間;所以選項B,C正確,故選:BC.【考點】本題考查了拋物線與x軸的交點,二次函數(shù)的性質(zhì),二次函數(shù)的最值,理解圖表中信息是本題的關(guān)鍵.三、填空題1、<【解析】【分析】把點A(3,a),B(-1,b)代入函數(shù)上求出a、b的值,再進行比較即可.【詳解】把點A(3,a)代入函數(shù)可得,a=-1;把點B(-1,b)代入函數(shù)可得,b=3;∵3>-1,即a<b.故答案為:<.【考點】本題比較簡單,考查了反比例函數(shù)圖象上點的坐標特點,即反比例函數(shù)圖象上點的坐標一定適合此函數(shù)的解析式.2、112【解析】【分析】根據(jù)題意,可知Rt△AEN∽Rt△FAN,從而可以得到對應(yīng)邊的比相等,從而可以求得正方形的邊長.【詳解】解:∵點M、點N分別是正方形ABCD的邊AD、AB的中點,∴,∴AM=AN,由題意可得,∠ANF=∠EMA=90°,∠NAF+∠AFN=∠NAF+∠EAM=90°,∴∠AFN=∠EAM,∴Rt△AEM∽Rt△FAN,∴,∵AM=AN,∴,解得:AM=140,∴AD=2AM=280(步),∴(米)故答案為:112.【考點】本題考查相似三角形的應(yīng)用、數(shù)學(xué)常識、正方形的性質(zhì),解答本題的關(guān)鍵是明確題意.利用相似三角形的性質(zhì)和數(shù)形結(jié)合的思想解答.3、7.6【解析】【分析】作于,于,如圖2,易得四邊形為矩形,則,,再計算出,在中利用正弦可計算出,然后計算即可.【詳解】解:作于E,于,如圖2,∴四邊形為矩形,∴,,∴,∴在中,,∴,∴,∴操作平臺離地面的高度為.故答案是:.【考點】本題考查了解直角三角形的應(yīng)用:先將實際問題抽象為數(shù)學(xué)問題(畫出平面圖形,構(gòu)造出直角三角形轉(zhuǎn)化為解直角三角形問題),然后利用三角函數(shù)的定義進行幾何計算.4、104【解析】【分析】根據(jù)圓內(nèi)接四邊形的對角互補列式計算即可.【詳解】解:∵四邊形ABCD內(nèi)接于⊙O,∴∠A+∠C=180°,∴∠C=180°﹣∠A=180°﹣76°=104°,故答案為:104.【考點】本題考查的是圓內(nèi)接四邊形的性質(zhì),掌握圓內(nèi)接四邊形的對角互補是解題的關(guān)鍵.5、
,
或【解析】【分析】根據(jù)拋物線的對稱軸和拋物線與x軸一個交點求出另一個交點,再通過二次函數(shù)與方程的兩根,二次函數(shù)與不等式解集的關(guān)系求得答案.【詳解】∵拋物線的對稱軸為,拋物線與x軸一個交點為(5,0)∴拋物線與x軸另一個交點為(-1,0)∴方程的解為:,由圖像可知,不等式的解集為:或.故答案為:,;或.【考點】本題考查了二次函數(shù)的圖像性質(zhì),掌握二次函數(shù)與方程的兩根,二次函數(shù)與不等式的解集關(guān)系,是解決問題的關(guān)鍵.6、
1
【解析】【分析】(1)連接AO,DO,證明,可得,求出即可求解;(2)設(shè),則,由勾股定理可得,即可求EF的最小值.【詳解】解:(1)連接AO,DO,∵,∴,∵四邊形ABCD是正方形,O是中心,∴,,,∴,∴,∴,∴,∵,∴,∴故答案為:1;(2)設(shè),則,,在中,,∴當時,EF有最小值,故答案為:.【考點】本題考查正方形的性質(zhì),全等三角形的判定與性質(zhì),二次函數(shù)的性質(zhì),熟練掌握二次函數(shù)求最值的方法是解題的關(guān)鍵.7、2【解析】【分析】過B作BG⊥AF于G,依據(jù)AB=BF,運用等腰三角形的性質(zhì),即可得出GF的長,進而得到BF的長.【詳解】解:如圖,過B作BG⊥AF于G,∵MN∥PQ,∴∠FAN=∠3=30°,由題意得:AF平分∠NAB,∴∠1=∠2=30°,∴∠1=∠3=30°,∴AB=BF,又∵BG⊥AF,∴AG=GF=AF=,∴Rt△BFG中,BF=,故答案為:2.【考點】本題考查了平行線的性質(zhì)、角平分線的基本作圖、直角三角形30度角的性質(zhì),熟練掌握平行線和角平分線的基本作圖是關(guān)鍵.四、解答題1、(1)d=;(2)d=或d=(3)<d<或d<;(4)<d<?!窘馕觥俊痉治觥浚?)令-x2-2x+3=x+d求解即可;(2)設(shè)拋物線c:y=-x2-2x+3與x軸交于點A(-3,0),點B(1,0),則根據(jù)方程有兩個相等的實根求出P的坐標,然后求解即可;(3)(4)根據(jù)(2)求出的P點坐標進行數(shù)形結(jié)合畫圖找出d的取值范圍即可.【詳解】解:(1)當直線l經(jīng)過點A(-3,0)時,d=;(2)設(shè)拋物線c:y=-x2-2x+3與x軸交于點A(-3,0),點B(1,0),直線l:y=x+d與拋物線c:y=x2+2x-3(-3<x<1)相切于點P,則點P的橫坐標恰好是方程x+d=x2+2x-3,即2x2+3x-2d-6=0(-3<x<1)的兩個相等實數(shù)根,解△=9+8(2d+6)=0得d=,∴點P的坐標為().①當直線l經(jīng)過點B(1,0)時,直線l與這個新圖象有且只有三個公共點,解得d=;②當直線l經(jīng)過點P()時,直線l與這個新圖象有且只有三個公共點,解得d=;
∴綜合①、②得:d=或d=(3)①由平移直線l可得:直線l從經(jīng)過點A(-3,0)開始向下平移到直線l經(jīng)過點P()的過程中,直線l與這個新圖象有且只有兩個公共點,可得<d<②直線l從經(jīng)過點P()繼續(xù)向下平移的過程中,直線l與這個新圖象有且只有兩個公共點,可得d<;∴綜合①、②得:<d<或d<;(4)如圖:當直線l經(jīng)過點B(1,0)時,直線l與這個新圖象有且只有三個公共點,解得d=;當直線l繼續(xù)向下平移的過程中經(jīng)過點P(),直線l與這個新圖象有且只有三個公共點,可得d=;∴要使直線l與這個新圖象有四個公共點則d的取值范圍是<d<.【考點】本題考查的是二次函數(shù)綜合運用,關(guān)鍵是通過數(shù)形變換,確定變換后圖形與直線的位置關(guān)系.2、(1)證明見解析(2)【解析】【分析】(1)連接OC,由圓周角定理和已知條件得出∠BOC=∠D,證出∠OCH=90°,得出DC⊥OC,即可得出結(jié)論;(2)作AG⊥CD于G,則AG∥OC,由三角函數(shù)定義求出OH=OC=5,得出AH=OA+OH=9,由勾股定理得出CH==3,證△OCH∽△AGH,求出AG=OC=,GH=CH=,得出CG=GH﹣CH=,再由勾股定理即可得出答案.【詳解】(1)證明:連接OC,如圖1所示:∵DE⊥OA,∴∠HED=90°,∴∠H+∠D=90°,∵∠BOC=2∠A,∠D=2∠A,∴∠BOC=∠D,∴∠H+∠BOC=90°,∴∠OCH=90°,∴DC⊥O
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 教練專業(yè)測試題及答案
- 2025年和田地區(qū)教師招聘考試筆試試題(含答案)
- mapjava面試題及答案
- 東北護士考試題及答案
- 2025年貴州畢節(jié)工業(yè)職業(yè)技術(shù)學(xué)院招聘考試筆試試題(含答案)
- 2025年廣東省電工技師職業(yè)技能理論考試練習(xí)題庫(含答案)
- 2024年山東臨沂中考道德與法治試題及答案
- 資產(chǎn)評估師財務(wù)會計應(yīng)收賬款考試題(含答案)
- 數(shù)字化物流商業(yè)運營 習(xí)題答案-模塊七
- 2024年醫(yī)務(wù)人員查對制度考試題(含答案)
- 《患者安全目標解讀》課件
- 甲狀腺功能亢進癥課件
- 鋰離子電池正極材料研究進展
- 二手房屋買賣物品交接清單
- 技師論文 變頻器的維修與保養(yǎng)
- 非標自動化設(shè)備項目進度表
- 診斷學(xué)教學(xué)胸部查體
- 橋梁安全事故案例警示
- SB/T 10460-2008商用電開水器
- GB/T 9124.1-2019鋼制管法蘭第1部分:PN系列
- GA 1800.2-2021電力系統(tǒng)治安反恐防范要求第2部分:火力發(fā)電企業(yè)
評論
0/150
提交評論