




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
上海航頭學校中考數(shù)學幾何綜合壓軸題易錯專題一、中考數(shù)學幾何綜合壓軸題1.(探究函數(shù)y=x+的圖象與性質)(1)函數(shù)y=x+的自變量x的取值范圍是;(2)下列四個函數(shù)圖象中函數(shù)y=x+的圖象大致是;(3)對于函數(shù)y=x+,求當x>0時,y的取值范圍.請將下列的求解過程補充完整.解:∵x>0∴y=x+=()2+()2=(﹣)2+∵(﹣)2≥0∴y≥.[拓展運用](4)若函數(shù)y=,則y的取值范圍.解析:(1)x≠0;(2)C(3)4;4;(4)y≥13【解析】試題分析:根據(jù)反比例函數(shù)的性質,一次函數(shù)的性質;二次函數(shù)的性質解答即可.試題解析:(1)函數(shù)y=x+的自變量x的取值范圍是x≠0;(2)函數(shù)y=x+的圖象大致是C;(3)解:∵x>0∴y=x+=()2+()2=(﹣)2+4∵(﹣)2≥0∴y≥4.(4)y==x+﹣5═()2+()2﹣5=(+)2+13∵(﹣)2≥0,∴y≥13.考點:1.反比例函數(shù)的性質;一次函數(shù)的性質;二次函數(shù)的性質.2.(基礎鞏固)(1)如圖1,在中,,直線過點,分別過兩點作,垂足分別為.求證:.(嘗試應用)(2)如圖2,在中,,是上一點,過作的垂線交于點.若,求的長.(拓展提高)(3)如圖3,在中,在上取點,使得,若,求的面積.解析:(1)見解析;(2);(3)【分析】(1)由直角三角形的性質證得∠BDC=∠AEC,由相似三角形的判定定理可得出結論;(2)過點E作EF⊥BC于點F,由相似三角形的性質得出,由銳角三角函數(shù)的定義求出DF=16,則可求出答案;(3)過點A作AM⊥BC于點M,過點D作DN⊥BC,交BC的延長線于點N,證明△ABM≌△DCN(AAS),由全等三角形的性質得出BM=CN,AM=DN,設BE=4a,EC=3a,由(1)得△AEM∽△EDN,得出比例線段,求出a=1,b=,由平行四邊形的面積公式可得出答案.【詳解】解:(1)∵,∴,∵,∴,∴,∴.∵,∴,∴,∴(2)過點作于點,由(1)得,∴∵,,∴,∴∵,∴∴(3)過點作于點,過點作的延長線于點,∴∵四邊形是平行四邊形,∴,∴,∴,∴,∵,∴∵,設∴∵,由(1)得,∴,∴∴∵,∴∴∴的面積【點睛】本題是相似形綜合題,考查了相似三角形的判定與性質,全等三角形的判定與性質,平行四邊形的性質,銳角三角函數(shù)的定義,熟練掌握相似三角形的判定與性質是解題的關鍵.3.[初步嘗試](1)如圖①,在三角形紙片ABC中,∠ACB=90°,將△ABC折疊,使點B與點C重合,折痕為MN,則AM與BM的數(shù)量關系為;[思考說理](2)如圖②,在三角形紙片ABC中,AC=BC=6,AB=10,將△ABC折疊,使點B與點C重合,折痕為MN,求的值;[拓展延伸](3)如圖③,在三角形紙片ABC中,AB=9,BC=6,∠ACB=2∠A,將△ABC沿過頂點C的直線折疊,使點B落在邊AC上的點B′處,折痕為CM.①求線段AC的長;②若點O是邊AC的中點,點P為線段OB′上的一個動點,將△APM沿PM折疊得到△A′PM,點A的對應點為點A′,A′M與CP交于點F,求的取值范圍.解析:(1)AM=BM;(2);(3)①AC=;②≤≤.【分析】(1)利用平行線分線段成比例定理解決問題即可.(2)利用相似三角形的性質求出BM,AM即可.(3)①證明△BCM∽△BAC,推出由此即可解決問題.②證明△PFA′∽△MFC,推出,因為CM=5,推出即可解決問題.【詳解】解:(1)如圖①中,∵△ABC折疊,使點B與點C重合,折痕為MN,∴MN垂直平分線段BC,∴CN=BN,∵∠MNB=∠ACB=90°,∴MN∥AC,∵CN=BN,∴AM=BM.故答案為:AM=BM.(2)如圖②中,∵CA=CB=6,∴∠A=∠B,由題意MN垂直平分線段BC,∴BM=CM,∴∠B=∠MCB,∴∠BCM=∠A,∵∠B=∠B,∴△BCM∽△BAC,∴,∴,∴BM=,∴AM=AB﹣BM=10﹣,∴;(3)①如圖③中,由折疊的性質可知,CB=CB′=6,∠BCM=∠ACM,∵∠ACB=2∠A,∴∠BCM=∠A,∵∠B=∠B,∴△BCM∽△BAC,∴∴,∴BM=4,∴AM=CM=5,∴,∴AC=.②如圖③﹣1中,∵∠A=∠A′=∠MCF,∠PFA′=∠MFC,PA=PA′,∴△PFA′∽△MFC,∴,∵CM=5,∴,∵點P在線段OB上運動,OA=OC=,AB′=﹣6=,∴≤PA′≤,∴≤≤.【點睛】本題屬于幾何變換綜合題,考查了相似三角形的判定和性質,解直角三角形,等腰三角形的判定和性質,平行線分線段成比例定理等知識,解題的關鍵是正確尋找相似三角形解決問題,屬于中考壓軸題.4.情境觀察:將矩形ABCD紙片沿對角線AC剪開,得到△ABC和△A′C′D,如圖1所示.將△A′C′D的頂點A′與點A重合,并繞點A按逆時針方向旋轉,使點D、A(A′)、B在同一條直線上,如圖2所示.觀察圖2可知:與BC相等的線段是▲,∠CAC′=▲°.問題探究:如圖3,△ABC中,AG⊥BC于點G,以A為直角頂點,分別以AB、AC為直角邊,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,過點E、F作射線GA的垂線,垂足分別為P、Q.試探究EP與FQ之間的數(shù)量關系,并證明你的結論.拓展延伸:如圖4,△ABC中,AG⊥BC于點G,分別以AB、AC為一邊向△ABC外作矩形ABME和矩形ACNF,射線GA交EF于點H.若AB=kAE,AC=kAF,試探究HE與HF之間的數(shù)量關系,并說明理由.解析:情境觀察:AD(或A′D),90問題探究:EP=FQ.證明見解析結論:HE=HF.證明見解析【詳解】情境觀察AD(或A′D),90問題探究結論:EP=FQ.證明:∵△ABE是等腰三角形,∴AB=AE,∠BAE=90°.∴∠BAG+∠EAP=90°.∵AG⊥BC,∴∠BAG+∠ABG=90°,∴∠ABG=∠EAP.∵EP⊥AG,∴∠AGB=∠EPA=90°,∴Rt△ABG≌Rt△EAP.∴AG=EP.同理AG=FQ.∴EP=FQ拓展延伸結論:HE=HF.理由:過點E作EP⊥GA,F(xiàn)Q⊥GA,垂足分別為P、Q.∵四邊形ABME是矩形,∴∠BAE=90°,∴∠BAG+∠EAP=90°.AG⊥BC,∴∠BAG+∠ABG=90°,∴∠ABG=∠EAP.∵∠AGB=∠EPA=90°,∴△ABG∽△EAP,同理△ACG∽△FAQ,∵AB=kAE,AC=kAF,∴EP=FQ.∵∠EHP=∠FHQ,∴Rt△EPH≌Rt△FQH.∴HE=HF5.已知△ABC是等腰三角形,AB=AC.(1)特殊情形:如圖1,當DE∥BC時,有DBEC.(填“>”,“<”或“=”)(2)發(fā)現(xiàn)探究:若將圖1中的△ADE繞點A順時針旋轉α(0°<α<180°)到圖2位置,則(1)中的結論還成立嗎?若成立,請給予證明;若不成立,請說明理由.(3)拓展運用:如圖3,P是等腰直角三角形ABC內(nèi)一點,∠ACB=90°,且PB=1,PC=2,PA=3,求∠BPC的度數(shù).解析:(1)=;(2)成立,證明見解析;(3)135°.【分析】試題(1)由DE∥BC,得到,結合AB=AC,得到DB=EC;(2)由旋轉得到的結論判斷出△DAB≌△EAC,得到DB=CE;(3)由旋轉構造出△CPB≌△CEA,再用勾股定理計算出PE,然后用勾股定理逆定理判斷出△PEA是直角三角形,再簡單計算即可.【詳解】(1)∵DE∥BC,∴,∵AB=AC,∴DB=EC,故答案為=,(2)成立.證明:由①易知AD=AE,∴由旋轉性質可知∠DAB=∠EAC,又∵AD=AE,AB=AC∴△DAB≌△EAC,∴DB=CE,(3)如圖,將△CPB繞點C旋轉90°得△CEA,連接PE,∴△CPB≌△CEA,∴CE=CP=2,AE=BP=1,∠PCE=90°,∴∠CEP=∠CPE=45°,在Rt△PCE中,由勾股定理可得,PE=,在△PEA中,PE2=()2=8,AE2=12=1,PA2=32=9,∵PE2+AE2=AP2,∴△PEA是直角三角形∴∠PEA=90°,∴∠CEA=135°,又∵△CPB≌△CEA∴∠BPC=∠CEA=135°.【點睛】考點:幾何變換綜合題;平行線平行線分線段成比例.6.已知四邊形ABCD中,E、F分別是AB、AD邊上的點,DE與CF交于點G.問題發(fā)現(xiàn)如圖,若四邊形ABCD是矩形,且于G,,填空:______;當矩形ABCD是正方形時,______;拓展探究如圖,若四邊形ABCD是平行四邊形,試探究:當與滿足什么關系時,成立?并證明你的結論;解決問題如圖,若于G,請直接寫出的值.解析:(1)①,②1;(2)當+=180°時,成立,理由見解析;(3).【分析】(1)根據(jù)矩形的性質先一步證明△AED~△DFC,然后進一步利用相似三角形性質求解即可;(2)在AD的延長線上取一點M,使得CM=CF,則∠CMD=∠CFM,通過證明△ADE~△DCM進一步求解即可;(3)過C點作CN⊥AD于N點,CM⊥AB交AB延長線于M點,連接BD,先證明△BAD≌△BCD,然后進一步證明△BCM~△DCN,再結合勾股定理求出CN,最終通過證明△AED~△NFC進一步求解即可.【詳解】(1)∵四邊形ABCD為矩形,∴∠A=∠FDC=90°,AB=CD,∵CF⊥DE,∴∠DGF=90°,∴∠ADE+∠CFD=90°,∠ADE+∠AED=90°,∴∠CFD=∠AED,∵∠A=∠CDF,∴△AED~△DFC,∴,∴①,②若四邊形ABCD為正方形,,故答案為:①,②1;(2)當+=180°時,成立,理由如下:如圖,在AD的延長線上取一點M,使得CM=CF,則∠CMD=∠CFM,∵四邊形ABCD為平行四邊形,∴AB∥CD,AD∥BC,∴∠A=∠CDM,∵∠B+∠EGC=180°,∴∠BEG+∠FCB=180°,∵∠BEG+∠AED=180°,∴∠AED=∠FCB,∵AD∥BC,∴∠CFM=∠FCB,∴∠CMD=∠AED,∴△ADE~△DCM,∴,即:;(3),理由如下:過C點作CN⊥AD于N點,CM⊥AB交AB延長線于M點,連接BD,設CN=x,∵∠BAD=90°,即AB⊥AD,∴∠A=∠M=∠CAN=90°,∴四邊形AMCN為矩形,∴AM=CN,AN=CM,在△BAD與△BCD中,∵AD=CD,AB=BC,BD=BD,∴△BAD≌△BCD(SSS),∴∠BCD=∠A=90°,∴∠ABC+∠ADC=180°,∵∠ABC+∠CBM=180°,∴∠MBC=∠ADC,∵∠CND=∠M=90°,∴△BCM~△DCN,∴,∴,∴,在Rt△CMB中,,BM=AM?AB=,由勾股定理可得:,∴,解得:(舍去)或,∴,∵∠A=∠FGD=90°,∴∠AED+∠AFG=180°,∵∠AFG+∠NFC=180°,∴∠AED=∠CFN,∵∠A=∠CNF,∴△AED~△NFC,∴.【點睛】本題主要考查了相似三角形性質與判定和全等三角形性質與判定及矩形性質的綜合運用,熟練掌握相關概念是解題關鍵.7.問題發(fā)現(xiàn)如圖,正方形將正方形繞點旋轉,直線交于點請直接寫出線段與的數(shù)量關系是,位置關系是_;拓展探究如圖,矩形將矩形繞點旋轉,直線交于點中線段關系還成立嗎/若成立,請寫出理由;若不成立,請寫出線段的數(shù)量關系和位置關系,并說明理由;解決問題在的條件下,矩形繞點旋轉過程中,請直接寫出當點與點重合時,線段的長,解析:;中數(shù)量關系不成立,位置關系成立.,理由見解析;或【分析】(1)證明△ADE≌△CDG(SAS),可得AE=CG,∠DAG=∠DCG,再由直角三角形兩個銳角互余即可證得AE⊥CG;(2)先證明△ADE∽△CDG,利用相似三角形的性質證明即可.(3)先通過作圖找到符合題意的兩種情況,第一種情況利用勾股定理求解即可;第二種情況借助相似三角形及勾股定理計算即可.【詳解】(1);理由如下:由題意知在正方形中,,,在△ADE與△CDG中,∴△ADE≌△CDG(SAS)∴,∵對頂角相等,∴.(2)(1)中數(shù)量關系不成立,位置關系成立.即:理由如下:由題意知在矩形中,,,,∵對頂角相等∴.綜上所述:(3)如圖1,當點G、P在點A處重合時,連接AE,則此時∠ADE=∠GDE=90°∴在Rt△ADE中,AE=,如圖1,當點G、P重合時,則點A、E、G在同一直線上,∵AD=DG=4,∴∠DAG=∠DGA,∵∠ADC=∠AGP=90°,∠AOD=∠COG,∴∠DAG=∠COG,∴∠DGA=∠COG,又∵∠GDO=∠CDG,∴△GDO∽△CDG,∴∴∴DO=2,CG=2OG,∴OC=DC-DO=8-2=6,∵在Rt△COG中,OG2+GC2=OC2,∴OG2+(2OG)2=62,∴OG=(舍負),∴CG=,由(2)得:∴AE=,綜上所述,AE的長為或.【點睛】本題綜合考查了全等三角形及相似三角形的判定及性質,以及勾股定理的應用,根據(jù)題意畫出符合題意的圖形是解決本題的關鍵.8.問題提出(1)如圖①,在△ABC中,BC=6,D為BC上一點,AD=4,則△ABC面積的最大值是.問題探究(2)如圖②,已知矩形ABCD的周長為12,求矩形ABCD面積的最大值.問題解決(3)如圖③,△ABC是葛叔叔家的菜地示意圖,其中AB=30米,BC=40米,AC=50米,現(xiàn)在他想利用周邊地的情況,把原來的三角形地拓展成符合條件的面積盡可能大、周長盡可能長的四邊形地,用來建魚塘.已知葛叔叔欲建的魚塘是四邊形ABCD,且滿足∠ADC=60°.你認為葛叔叔的想法能否實現(xiàn)?若能,求出這個四邊形魚塘周長的最大值;若不能,請說明理由.解析:(1)12;(2)9;(3)能實現(xiàn);170(米).【分析】(1)當AD⊥BC時,△ABC的面積最大.(2)由題意矩形鄰邊之和為6,設矩形的一邊為m,另一邊為6﹣m,可得S=m(6﹣m)=﹣(m﹣3)2+9,利用二次函數(shù)的性質解決問題即可.(3)由題意,AC=100,∠ADC=60°,即點D在優(yōu)弧ADC上運動,當點D運動到優(yōu)弧ADC的中點時,四邊形魚塘面積和周長達到最大值,此時△ACD為等邊三角形,計算出△ADC的面積和AD的長即可得出這個四邊形魚塘面積和周長的最大值.【詳解】(1)如圖①中,∵BC=6,AD=4,∴當AD⊥BC時,△ABC的面積最大,最大值=×6×4=12.故答案為12.(2)∵矩形的周長為12,∴鄰邊之和為6,設矩形的一邊為m,另一邊為6﹣m,∴S=m(6﹣m)=﹣(m﹣3)2+9,∵﹣1<0,∴m=3時,S有最大值,最大值為9.(3)如圖③中,∵AC=50米,AB=40米,BC=30米,∴AC2=AB2+BC2∴∠ABC=90°,作△AOC,使得∠AOC=120°,OA=OC,以O為圓心,OA長為半徑畫⊙O,∵∠ADC=60°,∴點D在優(yōu)弧ADC上運動,當點D是優(yōu)弧ADC的中點時,四邊形ABCD面積取得最大值,設D′是優(yōu)弧ADC上任意一點,連接AD′,CD′,延長CD′到F,使得D′F=D′A,連接AF,則∠AFC=30°=∠ADC,∴點F在D為圓心DA為半徑的圓上,∴DF=DA,∵DF+DC≥CF,∴DA+DC≥D′A+D′C,∴DA+DC+AC≥D′A+D′C+AC,∴此時四邊形ADCB的周長最大,最大值=40+30+50+50=170(米).答:這個四邊形魚塘周長的最大值為170(米).【點睛】本題主要是最大值的考查,求最大值,常用方法為:(1)利用平方為非負的性質求解;(2)利用三角形兩邊之和大于第三邊求解,在求解過程中,關鍵在與將要求解的線段集中到一個三角形中9.問題呈現(xiàn):如圖1,在邊長為1的正方形網(wǎng)格中,分別連接格點A,B和C,D,AB和CD相交于點P,求tan∠BPD的值.方法歸納:利用網(wǎng)格將線段CD平移到線段BE,連接AE,得到格點△ABE,且AE⊥BE,則∠BPD就變換成Rt△ABE中的∠ABE.問題解決:(1)圖1中tan∠BPD的值為________;(2)如圖2,在邊長為1的正方形網(wǎng)格中,分別連接格點A,B和C,D,AB與CD交于點P,求cos∠BPD的值;思維拓展:(3)如圖3,AB⊥CD,垂足為B,且AB=4BC,BD=2BC,點E在AB上,且AE=BC,連接AD交CE的延長線于點P,利用網(wǎng)格求sin∠CPD.解析:(1)2;(2);(3)【分析】(1)由題意可得BE∥DC,則∠ABE=∠DPB,那么∠BPD就變換到Rt△ABE中,由銳角三角函數(shù)的定義可得出答案;(2)過點A作AE//CD,連接BE,那么∠BPD就變換到等腰Rt△ABE中,由銳角三角函數(shù)的定義可得出答案;(3)以BC為邊長構造網(wǎng)格,然后把PC平移到AN,則∠CPD就變換成Rt△ADN中的∠NAD,再由銳角三角函數(shù)的定義可得出答案.【詳解】(1)由勾股定理可得:,∵CD//BE,∴tan∠BPD=tan∠ABE=;(2)過點A作AE//CD,連接BE,由圖可知E點在格點上,且∠AEB=90°,由勾股定理可得:∴cos∠BPD=cos∠BAE=(3)如圖3構造網(wǎng)格,過點A作AN//PC,連接DN,由圖可知N點在格點上,且∠AND=90°,由勾股定理可得:∴sin∠CPD=sin∠NAD=【點睛】本題考查三角形綜合題、平行線的性質、勾股定理、直角三角形的判定和性質等知識,解題的關鍵是學會利用數(shù)形結合的思想解決問題,學會用轉化的思想思考問題,屬于中考壓軸題.10.探究:小明在求同一坐標軸上兩點間的距離時發(fā)現(xiàn),對于平面直角坐標系內(nèi)任意兩點P1(x1,y1),P2(x2,y2),可通過構造直角三角形利用圖1得到結論:他還利用圖2證明了線段P1P2的中點P(x,y)P的坐標公式:,.(1)請你幫小明寫出中點坐標公式的證明過程;運用:(2)①已知點M(2,﹣1),N(﹣3,5),則線段MN長度為;②直接寫出以點A(2,2),B(﹣2,0),C(3,﹣1),D為頂點的平行四邊形頂點D的坐標:;拓展:(3)如圖3,點P(2,n)在函數(shù)(x≥0)的圖象OL與x軸正半軸夾角的平分線上,請在OL、x軸上分別找出點E、F,使△PEF的周長最小,簡要敘述作圖方法,并求出周長的最小值.解析:(1)答案見解析;(2)①;②(﹣3,3)或(7,1)或(﹣1,﹣3);(3).【詳解】試題分析:(1)用P1、P2的坐標分別表示出OQ和PQ的長即可證得結論;(2)①直接利用兩點間距離公式可求得MN的長;②分AB、AC、BC為對角線,可求得其中心的坐標,再利用中點坐標公式可求得D點坐標;(3)設P關于直線OL的對稱點為M,關于x軸的對稱點為N,連接PM交直線OL于點R,連接PN交x軸于點S,則可知OR=OS=2,利用兩點間距離公式可求得R的坐標,再由PR=PS=n,可求得n的值,可求得P點坐標,利用中點坐標公式可求得M點坐標,由對稱性可求得N點坐標,連接MN交直線OL于點E,交x軸于點S,此時EP=EM,F(xiàn)P=FN,此時滿足△PEF的周長最小,利用兩點間距離公式可求得其周長的最小值.試題解析:(1)∵P1(x1,y1),P2(x2,y2),∴Q1Q2=OQ2﹣OQ1=x2﹣x1,∴Q1Q=,∴OQ=OQ1+Q1Q=x1+=,∵PQ為梯形P1Q1Q2P2的中位線,∴PQ==,即線段P1P2的中點P(x,y)P的坐標公式為x=,y=;(2)①∵M(2,﹣1),N(﹣3,5),∴MN==,故答案為;②∵A(2,2),B(﹣2,0),C(3,﹣1),∴當AB為平行四邊形的對角線時,其對稱中心坐標為(0,1),設D(x,y),則x+3=0,y+(﹣1)=2,解得x=﹣3,y=3,∴此時D點坐標為(﹣3,3),當AC為對角線時,同理可求得D點坐標為(7,1),當BC為對角線時,同理可求得D點坐標為(﹣1,﹣3),綜上可知D點坐標為(﹣3,3)或(7,1)或(﹣1,﹣3),故答案為(﹣3,3)或(7,1)或(﹣1,﹣3);(3)如圖,設P關于直線OL的對稱點為M,關于x軸的對稱點為N,連接PM交直線OL于點R,連接PN交x軸于點S,連接MN交直線OL于點E,交x軸于點F,又對稱性可知EP=EM,F(xiàn)P=FN,∴PE+PF+EF=ME+EF+NF=MN,∴此時△PEF的周長即為MN的長,為最小,設R(x,),由題意可知OR=OS=2,PR=PS=n,∴=2,解得x=﹣(舍去)或x=,∴R(,),∴,解得n=1,∴P(2,1),∴N(2,﹣1),設M(x,y),則=,=,解得x=,y=,∴M(,),∴MN==,即△PEF的周長的最小值為.考點:一次函數(shù)綜合題;閱讀型;分類討論;最值問題;探究型;壓軸題.11.(知識再現(xiàn))學完《全等三角形》一章后,我們知道“斜邊和一條直角邊分別相等的兩個直角三角形全等(簡稱HL定理)”是判定直角三角形全等的特有方法.(簡單應用)如圖(1),在△ABC中,∠BAC=90°,AB=AC,點D、E分別在邊AC、AB上.若CE=BD,則線段AE和線段AD的數(shù)量關系是.(拓展延伸)在△ABC中,∠BAC=(90°<<180°),AB=AC=m,點D在邊AC上.(1)若點E在邊AB上,且CE=BD,如圖(2)所示,則線段AE與線段AD相等嗎?如果相等,請給出證明;如果不相等,請說明理由.(2)若點E在BA的延長線上,且CE=BD.試探究線段AE與線段AD的數(shù)量關系(用含有a、m的式子表示),并說明理由.解析:【簡單應用】AE=AD;【拓展延伸】(1)相等,證明見解析;(2)AE﹣AD=2AC?cos(180°﹣),理由見解析【分析】簡單應用:證明Rt△ABD≌Rt△ACE(HL),可得結論.拓展延伸:(1)結論:AE=AD.如圖(2)中,過點C作CM⊥BA交BA的延長線于M,過點N作BN⊥CA交CA的延長線于N.證明△CAM≌△BAN(AAS),推出CM=BN,AM=AN,證明Rt△CME≌Rt△BND(HL),推出EM=DN,可得結論.(2)如圖(3)中,結論:AE﹣AD=2m?cos(180°﹣).在AB上取一點E′,使得BD=CE′,則AD=AE′.過點C作CT⊥AE于T.證明TE=TE′,求出AT,可得結論.【詳解】簡單應用:解:如圖(1)中,結論:AE=AD.理由:∵∠A=∠A=90°,AB=AC,BD=CE,∴Rt△ABD≌Rt△ACE(HL),∴AD=AE.故答案為:AE=AD.拓展延伸:(1)結論:AE=AD.理由:如圖(2)中,過點C作CM⊥BA交BA的延長線于M,過點N作BN⊥CA交CA的延長線于N.∵∠M=∠N=90°,∠CAM=∠BAN,CA=BA,∴△CAM≌△BAN(AAS),∴CM=BN,AM=AN,∵∠M=∠N=90°,CE=BD,CM=BN,∴Rt△CME≌Rt△BND(HL),∴EM=DN,∵AM=AN,∴AE=AD.(2)如圖(3)中,結論:AE﹣AD=2m?cos(180°﹣).理由:在AB上取一點E′,使得BD=CE′,則AD=AE′.過點C作CT⊥AE于T.∵CE′=BD,CE=BD,∴CE=CE′,∵CT⊥EE′,∴ET=TE′,∵AT=AC?cos(180°﹣)=m?cos(180°﹣),∴AE﹣AD=AE﹣AE′=2AT=2m?cos(180°﹣).【點睛】本題主要考查了全等三角形的性質與判定,等腰三角形的性質與判定,解直角三角形等知識,解題的關鍵在于能夠熟練尋找全等三角形解決問題.12.(1)(探究發(fā)現(xiàn))如圖1,的頂點在正方形兩條對角線的交點處,,將繞點旋轉,旋轉過程中,的兩邊分別與正方形的邊和交于點和點(點與點,不重合).則之間滿足的數(shù)量關系是.(2)(類比應用)如圖2,若將(1)中的“正方形”改為“的菱形”,其他條件不變,當時,上述結論是否仍然成立?若成立,請給出證明;若不成立,請猜想結論并說明理由.(3)(拓展延伸)如圖3,,,,平分,,且,點是上一點,,求的長.解析:(1)(2)結論不成立.(3)【分析】(1)結論:.根據(jù)正方形性質,證,根據(jù)全等三角形性質可得結論;(2)結論不成立..連接,在上截取,連接.根據(jù)菱形性質,證,四點共圓,分別證是等邊三角形,是等邊三角形,根據(jù)等邊三角形性質證,根據(jù)全等三角形性質可得結論;(3)由可知是鈍角三角形,,作于,設.根據(jù)勾股定理,可得到,由,得四點共圓,再證是等邊三角形,由(2)可知:,故可得.【詳解】(1)如圖1中,結論:.理由如下:∵四邊形是正方形,∴,,,∵,∴,∴,∴,∴.故答案為.(2)如圖2中,結論不成立..理由:連接,在上截取,連接.∵四邊形是菱形,,∴,∵,∴四點共圓,∴,∵,∴是等邊三角形,∴,,∵,,∴是等邊三角形,∴,,∴,∴,∴,∴,(3)如圖3中,由可知是鈍角三角形,,作于,設.在中,,∵,∴,解得(舍棄)或,∴,∵,∴四點共圓,∵平分,∴,∴,∵,∴是等邊三角形,由(2)可知:,∴.【點睛】考核知識點:正方形性質,全等三角形判定和性質,等邊三角形判定和性質,圓的性質.綜合運用各個幾何性質定理是關鍵;此題比較綜合.13.(1)證明推斷:如圖(1),在正方形中,點,分別在邊,上,于點,點,分別在邊,上,.①求證:;②推斷:的值為;(2)類比探究:如圖(2),在矩形中,(為常數(shù)).將矩形沿折疊,使點落在邊上的點處,得到四邊形,交于點,連接交于點.試探究與CP之間的數(shù)量關系,并說明理由;(3)拓展應用:在(2)的條件下,連接,當時,若,,求的長.解析:(1)①證明見解析;②解:結論:.理由見解析;(2)結論:.理由見解析;(3).【解析】【分析】(1)①由正方形的性質得AB=DA,∠ABE=90°=∠DAH.所以∠HAO+∠OAD=90°,又知∠ADO+∠OAD=90°,所以∠HAO=∠ADO,于是△ABE≌△DAH,可得AE=DQ.②證明四邊形DQFG是平行四邊形即可解決問題.(2)結論:如圖2中,作GM⊥AB于M.證明:△ABE∽△GMF即可解決問題.(3)如圖2-1中,作PM⊥BC交BC的延長線于M.利用相似三角形的性質求出PM,CM即可解決問題.【詳解】(1)①證明:∵四邊形是正方形,∴,.∴.∵,∴.∴.∴≌,∴.②解:結論:.理由:∵,,∴,∵,∴四邊形是平行四邊形,∴,∵,∴,∴.故答案為1.(2)解:結論:.理由:如圖2中,作于.∵,∴,∴,,∴,∴∽,∴,∵,∴四邊形是矩形,∴,∴.(3)解:如圖2﹣1中,作交的延長線于.∵,,∴,∴,∴可以假設,,,∵,,∴,∴,∴或﹣1(舍棄),∴,,∵,∴,∴,,∵,∴,,∴,∴∽,∴,∴,∴,,∴,∴.【點睛】本題屬于相似形綜合題,考查了正方形的性質,矩形的性質,全等三角形的判定和性質,相似三角形的判定和性質,解直角三角形等知識,解題的關鍵是正確尋找全等三角形或相似三角形解決問題,學會利用參數(shù)構建方程解決問題,屬于中考壓軸題.14.小圓同學對圖形旋轉前后的線段之間、角之間的關系進行了拓展探究.(一)猜測探究在中,,是平面內(nèi)任意一點,將線段繞點按順時針方向旋轉與相等的角度,得到線段,連接.(1)如圖1,若是線段上的任意一點,請直接寫出與的數(shù)量關系是,與的數(shù)量關系是;(2)如圖2,點是延長線上點,若是內(nèi)部射線上任意一點,連接,(1)中結論是否仍然成立?若成立,請給予證明,若不成立,請說明理由.(二)拓展應用如圖3,在中,,,,是上的任意點,連接,將繞點按順時針方向旋轉,得到線段,連接.求線段長度的最小值.解析:(一)(1)結論:,.理由見解析;(2)如圖2中,①中結論仍然成立.理由見解析;(二)的最小值為.【分析】(一)①結論:,.根據(jù)證明≌即可.②①中結論仍然成立.證明方法類似.(二)如圖3中,在上截取,連接,作于,作于.理由全等三角形的性質證明,推出當?shù)闹底钚r,的值最小,求出的值即可解決問題.【詳解】(一)(1)結論:,.理由:如圖1中,∵,∴,∴,∵,,∴≌(),∴.故答案為,.(2)如圖2中,①中結論仍然成立.理由:∵,∴,∴,∵,,∴≌(),∴.(二)如圖3中,在上截取,連接,作于,作于.∵,∴,∵,,∴≌(),∴,∴當?shù)闹底钚r,的值最小,在中,∵,,∴,∵,∴,∴,在,∵,∴,根據(jù)垂線段最短可知,當點與重合時,的值最小,∴的最小值為.【點睛】本題屬于幾何變換綜合題,考查了全等三角形的判定和性質,等腰三角形的性質,解直角三角形,垂線段最短等知識,解題的關鍵是學會添加常用輔助線,構造全等三角形解決問題,學會利用垂線段最短解決最值問題,屬于中考壓軸題.15.在中,,.點D在邊上,且,交邊于點F,連接.(1)特例發(fā)現(xiàn):如圖1,當時,①求證:;②推斷:_________.;(2)探究證明:如圖2,當時,請?zhí)骄康亩葦?shù)是否為定值,并說明理由;(3)拓展運用:如圖3,在(2)的條件下,當時,過點D作的垂線,交于點P,交于點K,若,求的長.解析:(1)①證明見解析,②;(2)為定值,證明見解析;(3)【分析】(1)①利用已知條件證明即可得到結論,②先證明利用相似三角形的性質再證明結合相似三角形的性質可得答案;(2)由(1)中②的解題思路可得結論;(3)設則利用等腰直角三角形的性質分別表示:由表示再證明利用相似三角形的性質建立方程求解,即可得到答案.【詳解】證明:(1)①②推斷:理由如下:(2)為定值,理由如下:由(1)得:(3),設則,解得:【點睛】本題考查的是三角形的全等的判定與性質,等腰直角三角形的性質,三角形相似的判定與性質,更重要的是考查學生的學習探究的能力,掌握以上知識是解題的關鍵.16.性質探究如圖(1),在等腰三角形中,,則底邊與腰的長度之比為_________.理解運用(1)若頂角為的等腰三角形的周長為,則它的面積為_________;(2)如圖(2),在四邊形中,.在邊,上分別取中點,連接.若,,求線段的長.類比拓展頂角為的等腰三角形的底邊與一腰的長度之比為__________(用含的式子表示)解析:性質探究:(或);理解運用:(1);(2);類比拓展:(或).【分析】性質探究作CD⊥AB于D,則∠ADC=∠BDC=90°,由等腰三角形的性質得出AD=BD,∠A=∠B=30°,由直角三角形的性質得出AC=2CD,AD=CD,得出AB=2AD=2CD,即可得出結果;理解運用(1)同上得出則AC=2CD,AD=CD,由等腰三角形的周長得出4CD+2CD=4+2,解得:CD=1,得出AB=2,由三角形面積公式即可得出結果;(2)①由等腰三角形的性質得出∠EFG=∠EGF,∠EGH=∠EHG,得出∠EFG+∠EHG=∠EGF+∠EGH=∠FGH即可;②連接FH,作EP⊥FH于P,由等腰三角形的性質得出PF=PH,由①得:∠EFG+∠EHG=∠FGH=120°,由四邊形內(nèi)角和定理求出∠FEH=120°,由等腰三角形的性質得出∠EFH=30°,由直角三角形的性質得出PE=EF=10,PF=PE=10,得出FH=2PF=20,證明MN是△FGH的中位線,由三角形中位線定理即可得出結果;類比拓展作AD⊥BC于D,由等腰三角形的性質得出BD=CD,∠BAD=∠BAC=α,由三角函數(shù)得出BD=AB×sinα,得出BC=2BD=2AB×sinα,即可得出結果.【詳解】性質探究解:作CD⊥AB于D,如圖①所示:則∠ADC=∠BDC=90°,∵AC=BC,∠ACB=120°,∴AD=BD,∠A=∠B=30°,∴AC=2CD,AD=CD,∴AB=2AD=2CD,∴;故答案為:(或);理解運用(1)解:如圖①所示:同上得:AC=2CD,AD=CD,∵AC+BC+AB=4+2,∴4CD+2CD=4+2,解得:CD=1,∴AB=2,∴△ABC的面積=AB×CD=×2×1=;故答案為:(2)①證明:∵EF=EG=EH,∴∠EFG=∠EGF,∠EGH=∠EHG,∴∠EFG+∠EHG=∠EGF+∠EGH=∠FGH;②解:連接FH,作EP⊥FH于P,如圖②所示:則PF=PH,由①得:∠EFG+∠EHG=∠FGH=120°,∴∠FEH=360°-120°-120°=120°,∵EF=EH,∴∠EFH=30°,∴PE=EF=10,∴PF=PE=10,∴FH=2PF=20,∵點M、N分別是FG、GH的中點,∴MN是△FGH的中位線,∴MN=FH=10;類比拓展解:如圖③所示:作AD⊥BC于D,∵AB=AC,∴BD=CD,∠BAD=∠BAC=α,∵,∴BD=AB×sinα,∴BC=2BD=2AB×sinα,∴;故答案為:2sinα(或).【點睛】本題是四邊形綜合題目,考查了等腰三角形的性質、直角三角形的性質、三角形中位線定理、四邊形內(nèi)角和定理、解直角三角形等知識;本題綜合性強,熟練掌握等腰三角形的性質和含30°角的直角三角形的性質是解題的關鍵.17.如圖1,已知,,點D在上,連接并延長交于點F,(1)猜想:線段與的數(shù)量關系為_____;(2)探究:若將圖1的繞點B順時針方向旋轉,當小于時,得到圖2,連接并延長交于點F,則(1)中的結論是否還成立?若成立,請證明;若不成立,請說明理由;(3)拓展:圖1中,過點E作,垂足為點G.當?shù)拇笮“l(fā)生變化,其它條件不變時,若,,直接寫出的長.解析:(1)AF=EF;(2)成立,理由見解析;(3)12【分析】(1)延長DF到G點,并使FG=DC,連接GE,證明△ACF△EDG,進而得到△GEF為等腰三角形,即可證明AF=GE=EF;(2)證明原理同(1),延長DF到G點,并使FG=DC,連接GE,證明△ACF△EDG,進而得到△GEF為等腰三角形,即可證明AF=GE=EF;(3)補充完整圖后證明四邊形AEGC為矩形,進而得到∠ABC=∠ABE=∠EBG=60°即可求解.【詳解】解:(1)延長DF到G點,并使FG=DC,連接GE,如下圖所示∵,∴DE=AC,BD=BC,∴∠CDB=∠DCB,且∠CDB=∠ADF,∴∠ADF=∠DCB,∵∠ACB=90°,∴∠ACD+∠DCB=90°,∵∠EDB=90°,∴∠ADF+∠FDE=90°,∴∠ACD=∠FDE,又延長DF使得FG=DC,∴FG+DF=DC+DF,∴DG=CF,在△ACF和△EDG中,,∴△ACF△EDG(SAS),∴GE=AF,∠G=∠AFC,又∠AFC=∠GFE,∴∠G=∠GFE∴GE=EF∴AF=EF,故AF與EF的數(shù)量關系為:AF=EF.故答案為:AF=EF;(2)仍舊成立,理由如下:延長DF到G點,并使FG=DC,連接GE,如下圖所示設BD延長線DM交AE于M點,∵,∴DE=AC,BD=BC,∴∠CDB=∠DCB,且∠CDB=∠MDF,∴∠MDF=∠DCB,∵∠ACB=90°,∴∠ACD+∠DCB=90°,∵∠EDB=90°,∴∠MDF+∠FDE=90°,∴∠ACD=∠FDE,又延長DF使得FG=DC,∴FG+DF=DC+DF,∴DG=CF,在△ACF和△EDG中,,∴△ACF△EDG(SAS),∴GE=AF,∠G=∠AFC,又∠AFC=∠GFE,∴∠G=∠GFE∴GE=EF,∴AF=EF,故AF與EF的數(shù)量關系為:AF=EF.故答案為:AF=EF;(3)如下圖所示:∵BA=BE,∴∠BAE=∠BEA,∵∠BAE=∠EBG,∴∠BEA=∠EBG,∴AECG,∴∠AEG+∠G=180°,∴∠AEG=90°,∴∠ACG=∠G=∠AEG=90°,∴四邊形AEGC為矩形,∴AC=EG,且AB=BE,∴Rt△ACBRt△EGB(HL),∴BG=BC=6,∠ABC=∠EBG,又∵ED=AC=EG,且EB=EB,∴Rt△EDBRt△EGB(HL),∴DB=GB=6,∠EBG=∠ABE,∴∠ABC=∠ABE=∠EBG=60°,∴∠BAC=30°,∴在Rt△ABC中由30°所對的直角邊等于斜邊的一半可知:.故答案為:.【點睛】本題屬于四邊形的綜合題,考查了三角形全等的性質和判定,矩形的性質和判定,本題的關鍵是延長DF到G點并使FG=DC,進而構造全等,本題難度稍大,需要作出合適的輔助線.18.在中,,,是邊上一點,將沿折疊得到,連接.(1)特例發(fā)現(xiàn):如圖1,當,落在直線上時,①求證:;②填空:的值為______;(2)類比探究:如圖2,當,與邊相交時,在上取一點,使,交于點.探究的值(用含的式子表示),并寫出探究過程;(3)拓展運用:在(2)的條件下,當,是的中點時,若,求的長.解析:(1)①見解析;②1;(2),見解析;(3)【分析】(1)①根據(jù)折疊性質證明即可;②當,證明,即可得出的值;(2)延長交于點,根據(jù)折疊性質證明,即可得出結論;(3)由(2)可知,設,則,,,可得,再由勾股定理列方程求解即可.【詳解】解:(1)①證明:延長交于點.由折疊得.∴.∵,∴.②當,即時,可知AC=BC,在和中,,∴(AAS),∴,∴.故答案為:1;(2)解:.理由:延長交于點,由折疊得.∴,∵,∴,∵,∴,∴.(3)解:由折疊得,,∵是的中點,∴,∴,,,由(2)知,∴,,是的中點,∴,∴,設,則,,,∴,∴,∴,,∴,在中,由勾股定理得,∵,∴,解得(負值舍去),∴.【點睛】本題為三角形綜合題,考查折疊的性質,全等三角形判定與性質,相似三角
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 校園伴舞基礎知識培訓總結課件
- 2025年貴港市平南縣事業(yè)單位選調(diào)小學教師考試筆試試題(含答案)
- 維生素基礎知識練習題(附答案)
- 2025年汽車駕駛員技師資格證書考試及考試題庫含答案
- 2024年多重耐藥菌醫(yī)院感染預防與控制試題試題(附答案)
- 意外傷害急救知識與技能考核試題及答案
- 2025全國減稅降費知識競賽試題庫(含答案)
- (2024)口服給藥制度考試試題及答案
- 基礎護理學試題庫及答案
- 2025年計算機組裝與維護試題及答案
- 顯微注射技術課件
- 醫(yī)療健康領域的數(shù)字化人才培養(yǎng)計劃
- 汽車貼膜外包合同范本
- DB31/T 1341-2021商務辦公建筑合理用能指南
- 綜合門診部管理制度
- (高清版)DG∕TJ 08-9-2023 建筑抗震設計標準
- 特崗服務協(xié)議書
- GB/T 10250-2025船舶電氣與電子設備電磁兼容性金屬船體船舶
- 2025全國小學生“學憲法、講憲法”活動知識競賽題庫及答案
- 2025年自動駕駛卡車在港口物流中的應用與挑戰(zhàn)報告
- 菜籽餅供貨合同協(xié)議
評論
0/150
提交評論