




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
一、解答題1.如圖,在下面直角坐標(biāo)系中,已知,,三點(diǎn),其中,,滿足關(guān)系式.(1)求,,的值;(2)如果在第二象限內(nèi)有一點(diǎn),請(qǐng)用含的式子表示四邊形的面積;(3)在(2)的條件下,是否存在點(diǎn),使四邊形的面積與三角形的面積相等?若存在,求出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說明理由.2.閱讀下面材料:小亮同學(xué)遇到這樣一個(gè)問題:已知:如圖甲,ABCD,E為AB,CD之間一點(diǎn),連接BE,DE,得到∠BED.求證:∠BED=∠B+∠D.(1)小亮寫出了該問題的證明,請(qǐng)你幫他把證明過程補(bǔ)充完整.證明:過點(diǎn)E作EFAB,則有∠BEF=.∵ABCD,∴,∴∠FED=.∴∠BED=∠BEF+∠FED=∠B+∠D.(2)請(qǐng)你參考小亮思考問題的方法,解決問題:如圖乙,已知:直線ab,點(diǎn)A,B在直線a上,點(diǎn)C,D在直線b上,連接AD,BC,BE平分∠ABC,DE平分∠ADC,且BE,DE所在的直線交于點(diǎn)E.①如圖1,當(dāng)點(diǎn)B在點(diǎn)A的左側(cè)時(shí),若∠ABC=60°,∠ADC=70°,求∠BED的度數(shù);②如圖2,當(dāng)點(diǎn)B在點(diǎn)A的右側(cè)時(shí),設(shè)∠ABC=α,∠ADC=β,請(qǐng)你求出∠BED的度數(shù)(用含有α,β的式子表示).3.已知,如圖1,射線PE分別與直線AB,CD相交于E、F兩點(diǎn),∠PFD的平分線與直線AB相交于點(diǎn)M,射線PM交CD于點(diǎn)N,設(shè)∠PFM=α°,∠EMF=β°,且(40﹣2α)2+|β﹣20|=0(1)α=,β=;直線AB與CD的位置關(guān)系是;(2)如圖2,若點(diǎn)G、H分別在射線MA和線段MF上,且∠MGH=∠PNF,試找出∠FMN與∠GHF之間存在的數(shù)量關(guān)系,并證明你的結(jié)論;(3)若將圖中的射線PM繞著端點(diǎn)P逆時(shí)針方向旋轉(zhuǎn)(如圖3),分別與AB、CD相交于點(diǎn)M1和點(diǎn)N1時(shí),作∠PM1B的角平分線M1Q與射線FM相交于點(diǎn)Q,問在旋轉(zhuǎn)的過程中的值是否改變?若不變,請(qǐng)求出其值;若變化,請(qǐng)說明理由.4.如圖,∠EBF=50°,點(diǎn)C是∠EBF的邊BF上一點(diǎn).動(dòng)點(diǎn)A從點(diǎn)B出發(fā)在∠EBF的邊BE上,沿BE方向運(yùn)動(dòng),在動(dòng)點(diǎn)A運(yùn)動(dòng)的過程中,始終有過點(diǎn)A的射線AD∥BC.(1)在動(dòng)點(diǎn)A運(yùn)動(dòng)的過程中,(填“是”或“否”)存在某一時(shí)刻,使得AD平分∠EAC?(2)假設(shè)存在AD平分∠EAC,在此情形下,你能猜想∠B和∠ACB之間有何數(shù)量關(guān)系?并請(qǐng)說明理由;(3)當(dāng)AC⊥BC時(shí),直接寫出∠BAC的度數(shù)和此時(shí)AD與AC之間的位置關(guān)系.5.如圖1,已AB∥CD,∠C=∠A.(1)求證:AD∥BC;(2)如圖2,若點(diǎn)E是在平行線AB,CD內(nèi),AD右側(cè)的任意一點(diǎn),探究∠BAE,∠CDE,∠E之間的數(shù)量關(guān)系,并證明.(3)如圖3,若∠C=90°,且點(diǎn)E在線段BC上,DF平分∠EDC,射線DF在∠EDC的內(nèi)部,且交BC于點(diǎn)M,交AE延長(zhǎng)線于點(diǎn)F,∠AED+∠AEC=180°,①直接寫出∠AED與∠FDC的數(shù)量關(guān)系:.②點(diǎn)P在射線DA上,且滿足∠DEP=2∠F,∠DEA﹣∠PEA=∠DEB,補(bǔ)全圖形后,求∠EPD的度數(shù)6.(1)如圖①,若∠B+∠D=∠E,則直線AB與CD有什么位置關(guān)系?請(qǐng)證明(不需要注明理由).(2)如圖②中,AB//CD,又能得出什么結(jié)論?請(qǐng)直接寫出結(jié)論.(3)如圖③,已知AB//CD,則∠1+∠2+…+∠n-1+∠n的度數(shù)為.7.請(qǐng)觀察下列等式,找出規(guī)律并回答以下問題.,,,,……(1)按照這個(gè)規(guī)律寫下去,第5個(gè)等式是:______;第n個(gè)等式是:______.(2)①計(jì)算:.②若a為最小的正整數(shù),,求:.8.?dāng)?shù)學(xué)中有很多的可逆的推理.如果,那么利用可逆推理,已知n可求b的運(yùn)算,記為,如,則,則.①根據(jù)定義,填空:_________,__________.②若有如下運(yùn)算性質(zhì):.根據(jù)運(yùn)算性質(zhì)填空,填空:若,則__________;___________;③下表中與數(shù)x對(duì)應(yīng)的有且只有兩個(gè)是錯(cuò)誤的,請(qǐng)直接找出錯(cuò)誤并改正.x1.5356891227錯(cuò)誤的式子是__________,_____________;分別改為__________,_____________.9.給定一個(gè)十進(jìn)制下的自然數(shù),對(duì)于每個(gè)數(shù)位上的數(shù),求出它除以的余數(shù),再把每一個(gè)余數(shù)按照原來的數(shù)位順序排列,得到一個(gè)新的數(shù),定義這個(gè)新數(shù)為原數(shù)的“模二數(shù)”,記為.如.對(duì)于“模二數(shù)”的加法規(guī)定如下:將兩數(shù)末位對(duì)齊,從右往左依次將相應(yīng)數(shù)位.上的數(shù)分別相加,規(guī)定:與相加得;與相加得與相加得,并向左邊一位進(jìn).如的“模二數(shù)”相加的運(yùn)算過程如下圖所示.根據(jù)以上材料,解決下列問題:(1)的值為______,的值為_(2)如果兩個(gè)自然數(shù)的和的“模二數(shù)”與它們的“模二數(shù)”的和相等,則稱這兩個(gè)數(shù)“模二相加不變”.如,因?yàn)?,所以,即與滿足“模二相加不變”.①判斷這三個(gè)數(shù)中哪些與“模二相加不變”,并說明理由;②與“模二相加不變”的兩位數(shù)有______個(gè)10.對(duì)數(shù)運(yùn)算是高中常用的一種重要運(yùn)算,它的定義為:如果ax=N(a>0,且a≠1),那么數(shù)x叫做以a為底N的對(duì)數(shù),記作:x=logaN,例如:32=9,則log39=2,其中a=10的對(duì)數(shù)叫做常用對(duì)數(shù),此時(shí)log10N可記為lgN.當(dāng)a>0,且a≠1,M>0,N>0時(shí),loga(M?N)=logaM+logaN.(I)解方程:logx4=2;(Ⅱ)log28=(Ⅲ)計(jì)算:(lg2)2+lg2?1g5+1g5﹣2018=(直接寫答案)11.規(guī)律探究,觀察下列等式:第1個(gè)等式:第2個(gè)等式:第3個(gè)等式:第4個(gè)等式:請(qǐng)回答下列問題:(1)按以上規(guī)律寫出第5個(gè)等式:=___________=___________(2)用含n的式子表示第n個(gè)等式:=___________=___________(n為正整數(shù))(3)求12.閱讀材料,回答問題:(1)對(duì)于任意實(shí)數(shù)x,符號(hào)表示“不超過x的最大整數(shù)”,在數(shù)軸上,當(dāng)x是整數(shù),就是x,當(dāng)x不是整數(shù)時(shí),是點(diǎn)x左側(cè)的第一個(gè)整數(shù)點(diǎn),如,,,,則________,________.(2)2015年11月24日,杭州地鐵1號(hào)線下沙延伸段開通運(yùn)營(yíng),極大的方便了下沙江濱居住區(qū)居民的出行,杭州地鐵收費(fèi)采用里程分段計(jì)價(jià),起步價(jià)為2元/人次,最高價(jià)為8元/人次,不足1元按1元計(jì)算,具體權(quán)費(fèi)標(biāo)準(zhǔn)如下:里程范圍4公里以內(nèi)(含4公里)4-12公里以內(nèi)(含12公里)12-24公里以內(nèi)(含24公里)24公里以上收費(fèi)標(biāo)準(zhǔn)2元4公里/元6公里/元8公里/元①若從下沙江濱站到文海南路站的里程是3.07公里,車費(fèi)________元,下沙江濱站到金沙湖站里程是7.93公里,車費(fèi)________元,下沙江濱站到杭州火東站里程是19.17公里,車費(fèi)________元;②若某人乘地鐵花了7元,則他乘地鐵行駛的路程范圍(不考慮實(shí)際站點(diǎn)下車?yán)锍糖闆r)?13.如圖,以直角三角形AOC的直角頂點(diǎn)O為原點(diǎn),以O(shè)C、OA所在直線為x軸和y軸建立平面直角坐標(biāo)系,點(diǎn)A(0,a),C(b,0)滿足+|b﹣2|=0,D為線段AC的中點(diǎn).在平面直角坐標(biāo)系中,以任意兩點(diǎn)P(x1,y1)、Q(x2,y2)為端點(diǎn)的線段中點(diǎn)坐標(biāo)為(,).(1)則A點(diǎn)的坐標(biāo)為;點(diǎn)C的坐標(biāo)為,D點(diǎn)的坐標(biāo)為.(2)已知坐標(biāo)軸上有兩動(dòng)點(diǎn)P、Q同時(shí)出發(fā),P點(diǎn)從C點(diǎn)出發(fā)沿x軸負(fù)方向以1個(gè)單位長(zhǎng)度每秒的速度勻速移動(dòng),Q點(diǎn)從O點(diǎn)出發(fā)以2個(gè)單位長(zhǎng)度每秒的速度沿y軸正方向移動(dòng),點(diǎn)Q到達(dá)A點(diǎn)整個(gè)運(yùn)動(dòng)隨之結(jié)束.設(shè)運(yùn)動(dòng)時(shí)間為t(t>0)秒.問:是否存在這樣的t,使S△ODP=S△ODQ,若存在,請(qǐng)求出t的值;若不存在,請(qǐng)說明理由.(3)點(diǎn)F是線段AC上一點(diǎn),滿足∠FOC=∠FCO,點(diǎn)G是第二象限中一點(diǎn),連OG,使得∠AOG=∠AOF.點(diǎn)E是線段OA上一動(dòng)點(diǎn),連CE交OF于點(diǎn)H,當(dāng)點(diǎn)E在線段OA上運(yùn)動(dòng)的過程中,請(qǐng)確定∠OHC,∠ACE和∠OEC的數(shù)量關(guān)系,并說明理由.14.問題情境:(1)如圖1,,,.求度數(shù).小穎同學(xué)的解題思路是:如圖2,過點(diǎn)作,請(qǐng)你接著完成解答.問題遷移:(2)如圖3,,點(diǎn)在射線上運(yùn)動(dòng),當(dāng)點(diǎn)在、兩點(diǎn)之間運(yùn)動(dòng)時(shí),,.試判斷、、之間有何數(shù)量關(guān)系?(提示:過點(diǎn)作),請(qǐng)說明理由;(3)在(2)的條件下,如果點(diǎn)在、兩點(diǎn)外側(cè)運(yùn)動(dòng)時(shí)(點(diǎn)與點(diǎn)、、三點(diǎn)不重合),請(qǐng)你猜想、、之間的數(shù)量關(guān)系并證明.15.如圖1,點(diǎn)是第二象限內(nèi)一點(diǎn),軸于,且是軸正半軸上一點(diǎn),是x軸負(fù)半軸上一點(diǎn),且.(1)(),()(2)如圖2,設(shè)為線段上一動(dòng)點(diǎn),當(dāng)時(shí),的角平分線與的角平分線的反向延長(zhǎng)線交于點(diǎn),求的度數(shù):(注:三角形三個(gè)內(nèi)角的和為)(3)如圖3,當(dāng)點(diǎn)在線段上運(yùn)動(dòng)時(shí),作交于的平分線交于,當(dāng)點(diǎn)在運(yùn)動(dòng)的過程中,的大小是否變化?若不變,求出其值;若變化,請(qǐng)說明理由.16.對(duì)于平面直角坐標(biāo)系xOy中的任意兩點(diǎn)M(x1,y1),N(x2,y2),給出如下定義:將|x1﹣x2|稱為點(diǎn)M,N之間的“橫長(zhǎng)”,|y1﹣y2|稱為點(diǎn)M,N之間的縱長(zhǎng)”,點(diǎn)M與點(diǎn)N的“橫長(zhǎng)”與“縱長(zhǎng)”之和稱為“折線距離”,記作d(M,N)=|x1﹣x2|+|y1﹣y2|“.例如:若點(diǎn)M(﹣1,1),點(diǎn)N(2,﹣2),則點(diǎn)M與點(diǎn)N的“折線距離”為:d(M,N)=|﹣1﹣2|+|1﹣(﹣2)|=3+3=6.根據(jù)以上定義,解決下列問題:已知點(diǎn)P(3,2).(1)若點(diǎn)A(a,2),且d(P,A)=5,求a的值;(2)已知點(diǎn)B(b,b),且d(P,B)<3,直接寫出b的取值范圍;(3)若第一象限內(nèi)的點(diǎn)T與點(diǎn)P的“橫長(zhǎng)”與“縱長(zhǎng)”相等,且d(P,T)>5,簡(jiǎn)要分析點(diǎn)T的橫坐標(biāo)t的取值范圍.17.如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn),其中滿足,D為直線AB與軸的交點(diǎn),C為線段AB上一點(diǎn),其縱坐標(biāo)為.(1)求的值;(2)當(dāng)為何值時(shí),和面積的相等;(3)若點(diǎn)C坐標(biāo)為(-2,1),點(diǎn)M(m,-3)在第三象限內(nèi),滿足,求m的取值范圍.(注:表示的面積)18.如圖1,已知,點(diǎn)A(1,a),AH⊥x軸,垂足為H,將線段AO平移至線段BC,點(diǎn)B(b,0),其中點(diǎn)A與點(diǎn)B對(duì)應(yīng),點(diǎn)O與點(diǎn)C對(duì)應(yīng),a、b滿足.(1)填空:①直接寫出A、B、C三點(diǎn)的坐標(biāo)A(________)、B(________)、C(________);②直接寫出三角形AOH的面積________.(2)如圖1,若點(diǎn)D(m,n)在線段OA上,證明:4m=n.(3)如圖2,連OC,動(dòng)點(diǎn)P從點(diǎn)B開始在x軸上以每秒2個(gè)單位的速度向左運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)O開始在y軸上以每秒1個(gè)單位的速度向下運(yùn)動(dòng).若經(jīng)過t秒,三角形AOP與三角形COQ的面積相等,試求t的值及點(diǎn)P的坐標(biāo).19.如圖,和的度數(shù)滿足方程組,且,.(1)用解方程的方法求和的度數(shù);(2)求的度數(shù).20.閱讀下面資料:小明遇到這樣一個(gè)問題:如圖1,對(duì)面積為a的△ABC逐次進(jìn)行以下操作:分別延長(zhǎng)AB、BC、CA至A1、B1、C1,使得A1B2AB,B1C2BC,C1A2CA,順次連接A1、B1、C1,得到△A1B1C1,記其面積為S1,求S1的值.小明是這樣思考和解決這個(gè)問題的:如圖2,連接A1C、B1A、C1B,因?yàn)锳1B2AB,B1C2BC,C1A2CA,根據(jù)等高兩三角形的面積比等于底之比,所以2S△ABC2a,由此繼續(xù)推理,從而解決了這個(gè)問題.(1)直接寫出S1(用含字母a的式子表示).請(qǐng)參考小明同學(xué)思考問題的方法,解決下列問題:(2)如圖3,P為△ABC內(nèi)一點(diǎn),連接AP、BP、CP并延長(zhǎng)分別交邊BC、AC、AB于點(diǎn)D、E、F,則把△ABC分成六個(gè)小三角形,其中四個(gè)小三角形面積已在圖上標(biāo)明,求△ABC的面積.(3)如圖4,若點(diǎn)P為△ABC的邊AB上的中線CF的中點(diǎn),求S△APE與S△BPF的比值.21.在平面直角坐標(biāo)系中,點(diǎn)、在坐標(biāo)軸上,其中、滿足.(1)求、兩點(diǎn)的坐標(biāo);(2)將線段平移到,點(diǎn)的對(duì)應(yīng)點(diǎn)為,如圖1所示,若三角形的面積為,求點(diǎn)的坐標(biāo);(3)平移線段到,若點(diǎn)、也在坐標(biāo)軸上,如圖2所示.為線段上的一動(dòng)點(diǎn)(不與、重合),連接、平分,.求證:.22.我市某包裝生產(chǎn)企業(yè)承接了一批上海世博會(huì)的禮品盒制作業(yè)務(wù),為了確保質(zhì)量,該企業(yè)進(jìn)行試生產(chǎn).他們購(gòu)得規(guī)格是的標(biāo)準(zhǔn)板材作為原材料,每張標(biāo)準(zhǔn)板材再按照裁法一或裁法二裁下A型與B型兩種板材.如圖甲,(單位:)(1)列出方程(組),求出圖甲中a與b的值;(2)在試生產(chǎn)階段,若將30張標(biāo)準(zhǔn)板材用裁法一裁剪,4張標(biāo)準(zhǔn)板材用裁法二裁剪,再將得到的A型與B型板材做側(cè)面和底面,做成圖乙的豎式與橫式兩種禮品盒.①兩種裁法共產(chǎn)生A型板材________張,B型板材_______張;②已知①中的A型板材和B型板材恰好做成豎式有蓋禮品盒x個(gè),橫式無蓋禮品盒的y個(gè),求x、y的值.23.如果3個(gè)數(shù)位相同的自然數(shù)m,n,k滿足:m+n=k,且k各數(shù)位上的數(shù)字全部相同,則稱數(shù)m和數(shù)n是一對(duì)“黃金搭檔數(shù)”.例如:因?yàn)?5,63,88都是兩位數(shù),且25+63=88,則25和63是一對(duì)“黃金搭檔數(shù)”.再如:因?yàn)?52,514,666都是三位數(shù),且152+514=666,則152和514是一對(duì)“黃金搭檔數(shù)”.(1)分別判斷87和12,62和49是否是一對(duì)“黃金搭檔數(shù)”,并說明理由;(2)已知兩位數(shù)s和兩位數(shù)t的十位數(shù)字相同,若s和t是一對(duì)“黃金搭檔數(shù)”,并且s與t的和能被7整除,求出滿足題意的s.24.在平面直角坐標(biāo)系中,若點(diǎn)P(x,y)的坐標(biāo)滿足x﹣2y+3=0,則我們稱點(diǎn)P為“健康點(diǎn)”:若點(diǎn)Q(x,y)的坐標(biāo)滿足x+y﹣6=0,則我們稱點(diǎn)Q為“快樂點(diǎn)”.(1)若點(diǎn)A既是“健康點(diǎn)”又是“快樂點(diǎn)”,則點(diǎn)A的坐標(biāo)為;(2)在(1)的條件下,若B是x軸上的“健康點(diǎn)”,C是y軸上的“快樂點(diǎn)”,求△ABC的面積;(3)在(2)的條件下,若P為x軸上一點(diǎn),且△BPC與△ABC面積相等,直接寫出點(diǎn)P的坐標(biāo).25.如圖,在平面直角坐標(biāo)系中,軸,軸,且,動(dòng)點(diǎn)從點(diǎn)出發(fā),以每秒的速度,沿路線向點(diǎn)運(yùn)動(dòng);動(dòng)點(diǎn)從點(diǎn)出發(fā),以每秒的速度,沿路線向點(diǎn)運(yùn)動(dòng).若兩點(diǎn)同時(shí)出發(fā),其中一點(diǎn)到達(dá)終點(diǎn)時(shí),運(yùn)動(dòng)停止.(Ⅰ)直接寫出三個(gè)點(diǎn)的坐標(biāo);(Ⅱ)設(shè)兩點(diǎn)運(yùn)動(dòng)的時(shí)間為秒,用含的式子表示運(yùn)動(dòng)過程中三角形的面積;(Ⅲ)當(dāng)三角形的面積的范圍小于16時(shí),求運(yùn)動(dòng)的時(shí)間的范圍.26.我們把關(guān)于x的一個(gè)一元一次方程和一個(gè)一元一次不等式組合成一種特殊組合,且當(dāng)一元一次方程的解正好也是一元一次不等式的解時(shí),我們把這種組合叫做“有緣組合”;當(dāng)一元一次方程的解不是一元一次不等式的解時(shí),我們把這種組合叫做“無緣組合”.(1)請(qǐng)判斷下列組合是“有緣組合”還是“無緣組合”,并說明理由;①;②.(2)若關(guān)于x的組合是“有緣組合”,求a的取值范圍;(3)若關(guān)于x的組合是“無緣組合”;求a的取值范圍.27.某加工廠用52500元購(gòu)進(jìn)A、B兩種原料共40噸,其中原料A每噸1500元,原料B每噸1000元.由于原料容易變質(zhì),該加工廠需盡快將這批原料運(yùn)往有保質(zhì)條件的倉(cāng)庫(kù)儲(chǔ)存.經(jīng)市場(chǎng)調(diào)查獲得以下信息:①將原料運(yùn)往倉(cāng)庫(kù)有公路運(yùn)輸與鐵路運(yùn)輸兩種方式可供選擇,其中公路全程120千米,鐵路全程150千米;②兩種運(yùn)輸方式的運(yùn)輸單價(jià)不同(單價(jià):每噸每千米所收的運(yùn)輸費(fèi));③公路運(yùn)輸時(shí),每噸每千米還需加收1元的燃油附加費(fèi);④運(yùn)輸還需支付原料裝卸費(fèi):公路運(yùn)輸時(shí),每噸裝卸費(fèi)100元;鐵路運(yùn)輸時(shí),每噸裝卸費(fèi)220元.(1)加工廠購(gòu)進(jìn)A、B兩種原料各多少噸?(2)由于每種運(yùn)輸方式的運(yùn)輸能力有限,都無法單獨(dú)承擔(dān)這批原料的運(yùn)輸任務(wù).加工廠為了盡快將這批原料運(yùn)往倉(cāng)庫(kù),決定將A原料選一種方式運(yùn)輸,B原料用另一種方式運(yùn)輸,哪種方案運(yùn)輸總花費(fèi)較少?請(qǐng)說明理由.28.對(duì)于三個(gè)數(shù),,,表示,,這三個(gè)數(shù)的平均數(shù),表示,,這三個(gè)數(shù)中最小的數(shù),如:,;,.解決下列問題:(1)填空:______;(2)若,求的取值范圍;(3)①若,那么______;②根據(jù)①,你發(fā)現(xiàn)結(jié)論“若,那么______”(填,,大小關(guān)系);③運(yùn)用②解決問題:若,求的值.29.使方程(組)與不等式(組)同時(shí)成立的末知數(shù)的值稱為此方程(組)和不等式(組)的“理想解”.例:已知方程2x﹣3=1與不等式x+3>0,當(dāng)x=2時(shí),2x﹣3=2×2﹣3=1,x+3=2+3=5>0同時(shí)成立,則稱x=2是方程2x﹣3=1與不等式x+3>0的“理想解”.(1)已知①,②2(x+3)<4,③<3,試判斷方程2x+3=1的解是否是它們中某個(gè)不等式的“理想解”,寫出過程;(2)若是方程x﹣2y=4與不等式的“理想解”,求x0+2y0的取值范圍.30.如圖1,在平面直角坐標(biāo)系中,點(diǎn)A為x軸負(fù)半軸上一點(diǎn),點(diǎn)B為x軸正半軸上一點(diǎn),,,其中a、b滿足關(guān)系式:.______,______,的面積為______;如圖2,石于點(diǎn)C,點(diǎn)P是線段OC上一點(diǎn),連接BP,延長(zhǎng)BP交AC于點(diǎn)當(dāng)時(shí),求證:BP平分;提示:三角形三個(gè)內(nèi)角和等于如圖3,若,點(diǎn)E是點(diǎn)A與點(diǎn)B之間上一點(diǎn)連接CE,且CB平分問與有什么數(shù)量關(guān)系?請(qǐng)寫出它們之間的數(shù)量關(guān)系并請(qǐng)說明理由.【參考答案】***試卷處理標(biāo)記,請(qǐng)不要?jiǎng)h除一、解答題1.(1)a=2,b=3,c=4;(2)S四邊形ABOP=3-m;(3)存在,P(-3,).【分析】(1)根據(jù)非負(fù)數(shù)的性質(zhì),即可解答;(2)四邊形ABOP的面積=△APO的面積+△AOB的面積,即可解答;(3)存在,根據(jù)面積相等求出m的值,即可解答.【詳解】解:(1)由已知可得:a-2=0,b-3=0,c-4=0,解得:a=2,b=3,c=4;(2)∵a=2,b=3,c=4,∴A(0,2),B(3,0),C(3,4),∴OA=2,OB=3,∵S△ABO=×2×3=3,S△APO=×2×(-m)=-m,∴S四邊形ABOP=S△ABO+S△APO=3+(-m)=3-m(3)存在,∵S△ABC=×4×3=6,若S四邊形ABOP=S△ABC=3-m=6,則m=-3,∴存在點(diǎn)P(-3,)使S四邊形ABOP=S△ABC.【點(diǎn)睛】本題考查了坐標(biāo)與圖形性質(zhì),解決本題的關(guān)鍵是根據(jù)非負(fù)數(shù)的性質(zhì)求出a,b,c.2.(1)∠B,EF,CD,∠D;(2)①65°;②180°﹣【分析】(1)根據(jù)平行線的判定定理與性質(zhì)定理解答即可;(2)①如圖1,過點(diǎn)E作EF∥AB,當(dāng)點(diǎn)B在點(diǎn)A的左側(cè)時(shí),根據(jù)∠ABC=60°,∠ADC=70°,參考小亮思考問題的方法即可求∠BED的度數(shù);②如圖2,過點(diǎn)E作EF∥AB,當(dāng)點(diǎn)B在點(diǎn)A的右側(cè)時(shí),∠ABC=α,∠ADC=β,參考小亮思考問題的方法即可求出∠BED的度數(shù).【詳解】解:(1)過點(diǎn)E作EF∥AB,則有∠BEF=∠B,∵AB∥CD,∴EF∥CD,∴∠FED=∠D,∴∠BED=∠BEF+∠FED=∠B+∠D;故答案為:∠B;EF;CD;∠D;(2)①如圖1,過點(diǎn)E作EF∥AB,有∠BEF=∠EBA.∵AB∥CD,∴EF∥CD.∴∠FED=∠EDC.∴∠BEF+∠FED=∠EBA+∠EDC.即∠BED=∠EBA+∠EDC,∵BE平分∠ABC,DE平分∠ADC,∴∠EBA=∠ABC=30°,∠EDC=∠ADC=35°,∴∠BED=∠EBA+∠EDC=65°.答:∠BED的度數(shù)為65°;②如圖2,過點(diǎn)E作EF∥AB,有∠BEF+∠EBA=180°.∴∠BEF=180°﹣∠EBA,∵AB∥CD,∴EF∥CD.∴∠FED=∠EDC.∴∠BEF+∠FED=180°﹣∠EBA+∠EDC.即∠BED=180°﹣∠EBA+∠EDC,∵BE平分∠ABC,DE平分∠ADC,∴∠EBA=∠ABC=,∠EDC=∠ADC=,∴∠BED=180°﹣∠EBA+∠EDC=180°﹣.答:∠BED的度數(shù)為180°﹣.【點(diǎn)睛】本題考查了平行線的判定與性質(zhì),解決本題的關(guān)鍵是熟練掌握平行線的判定與性質(zhì).3.(1)20,20,;(2);(3)的值不變,【分析】(1)根據(jù),即可計(jì)算和的值,再根據(jù)內(nèi)錯(cuò)角相等可證;(2)先根據(jù)內(nèi)錯(cuò)角相等證,再根據(jù)同旁內(nèi)角互補(bǔ)和等量代換得出;(3)作的平分線交的延長(zhǎng)線于,先根據(jù)同位角相等證,得,設(shè),,得出,即可得.【詳解】解:(1),,,,,,,;故答案為:20、20,;(2);理由:由(1)得,,,,,,,;(3)的值不變,;理由:如圖3中,作的平分線交的延長(zhǎng)線于,,,,,,,,設(shè),,則有:,可得,,.【點(diǎn)睛】本題主要考查平行線的判定與性質(zhì),熟練掌握內(nèi)錯(cuò)角相等證平行,平行線同旁內(nèi)角互補(bǔ)等知識(shí)是解題的關(guān)鍵.4.(1)是;(2)∠B=∠ACB,證明見解析;(3)∠BAC=40°,AC⊥AD.【分析】(1)要使AD平分∠EAC,則要求∠EAD=∠CAD,由平行線的性質(zhì)可得∠B=∠EAD,∠ACB=∠CAD,則當(dāng)∠ACB=∠B時(shí),有AD平分∠EAC;(2)根據(jù)角平分線可得∠EAD=∠CAD,由平行線的性質(zhì)可得∠B=∠EAD,∠ACB=∠CAD,則有∠ACB=∠B;(3)由AC⊥BC,有∠ACB=90°,則可求∠BAC=40°,由平行線的性質(zhì)可得AC⊥AD.【詳解】解:(1)是,理由如下:要使AD平分∠EAC,則要求∠EAD=∠CAD,由平行線的性質(zhì)可得∠B=∠EAD,∠ACB=∠CAD,則當(dāng)∠ACB=∠B時(shí),有AD平分∠EAC;故答案為:是;(2)∠B=∠ACB,理由如下:∵AD平分∠EAC,∴∠EAD=∠CAD,∵AD∥BC,∴∠B=∠EAD,∠ACB=∠CAD,∴∠B=∠ACB.(3)∵AC⊥BC,∴∠ACB=90°,∵∠EBF=50°,∴∠BAC=40°,∵AD∥BC,∴AD⊥AC.【點(diǎn)睛】此題考查了角平分線和平行線的性質(zhì),熟練掌握角平分線和平行線的有關(guān)性質(zhì)是解題的關(guān)鍵.5.(1)見解析;(2)∠BAE+∠CDE=∠AED,證明見解析;(3)①∠AED-∠FDC=45°,理由見解析;②50°【分析】(1)根據(jù)平行線的性質(zhì)及判定可得結(jié)論;(2)過點(diǎn)E作EF∥AB,根據(jù)平行線的性質(zhì)得AB∥CD∥EF,然后由兩直線平行內(nèi)錯(cuò)角相等可得結(jié)論;(3)①根據(jù)∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°,DF平分∠EDC,可得出2∠AED+(90°-2∠FDC)=180°,即可導(dǎo)出角的關(guān)系;②先根據(jù)∠AED=∠F+∠FDE,∠AED-∠FDC=45°得出∠DEP=2∠F=90°,再根據(jù)∠DEA-∠PEA=∠DEB,求出∠AED=50°,即可得出∠EPD的度數(shù).【詳解】解:(1)證明:AB∥CD,∴∠A+∠D=180°,∵∠C=∠A,∴∠C+∠D=180°,∴AD∥BC;(2)∠BAE+∠CDE=∠AED,理由如下:如圖2,過點(diǎn)E作EF∥AB,∵AB∥CD∴AB∥CD∥EF∴∠BAE=∠AEF,∠CDE=∠DEF即∠FEA+∠FED=∠CDE+∠BAE∴∠BAE+∠CDE=∠AED;(3)①∠AED-∠FDC=45°;∵∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°,∴∠AEC=∠DEC+∠AEB,∴∠AED=∠AEB,∵DF平分∠EDC∠DEC=2∠FDC∴∠DEC=90°-2∠FDC,∴2∠AED+(90°-2∠FDC)=180°,∴∠AED-∠FDC=45°,故答案為:∠AED-∠FDC=45°;②如圖3,∵∠AED=∠F+∠FDE,∠AED-∠FDC=45°,∴∠F=45°,∴∠DEP=2∠F=90°,∵∠DEA-∠PEA=∠DEB=∠DEA,∴∠PEA=∠AED,∴∠DEP=∠PEA+∠AED=∠AED=90°,∴∠AED=70°,∵∠AED+∠AEC=180°,∴∠DEC+2∠AED=180°,∴∠DEC=40°,∵AD∥BC,∴∠ADE=∠DEC=40°,在△PDE中,∠EPD=180°-∠DEP-∠AED=50°,即∠EPD=50°.【點(diǎn)睛】本題主要考查平行線的判定和性質(zhì),熟練掌握平行線的判定和性質(zhì),角平分線的性質(zhì)等知識(shí)點(diǎn)是解題的關(guān)鍵.6.(1)AB//CD,證明見解析;(2)∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D;(3)(n-1)?180°【分析】(1)過點(diǎn)E作EF//AB,利用平行線的性質(zhì)則可得出∠B=∠BEF,再由已知及平行線的判定即可得出AB∥CD;(2)如圖,過點(diǎn)E作EM∥AB,過點(diǎn)F作FN∥AB,過點(diǎn)G作GH∥AB,根據(jù)探究(1)的證明過程及方法,可推出∠E+∠G=∠B+∠F+∠D,則可由此得出規(guī)律,并得出∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D;(3)如圖,過點(diǎn)M作EF∥AB,過點(diǎn)N作GH∥AB,則可由平行線的性質(zhì)得出∠1+∠2+∠MNG=180°×2,依此即可得出此題結(jié)論.【詳解】解:(1)過點(diǎn)E作EF//AB,∴∠B=∠BEF.∵∠BEF+∠FED=∠BED,∴∠B+∠FED=∠BED.∵∠B+∠D=∠E(已知),∴∠FED=∠D.∴CD//EF(內(nèi)錯(cuò)角相等,兩直線平行).∴AB//CD.(2)過點(diǎn)E作EM∥AB,過點(diǎn)F作FN∥AB,過點(diǎn)G作GH∥AB,∵AB∥CD,∴AB∥EM∥FN∥GH∥CD,∴∠B=∠BEM,∠MEF=∠EFN,∠NFG=∠FGH,∠HGD=∠D,∴∠BEF+∠FGD=∠BEM+∠MEF+∠FGH+∠HGD=∠B+∠EFN+∠NFG+∠D=∠B+∠EFG+∠D,即∠E+∠G=∠B+∠F+∠D.由此可得:開口朝左的所有角度之和與開口朝右的所有角度之和相等,∴∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D.故答案為:∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D.(3)如圖,過點(diǎn)M作EF∥AB,過點(diǎn)N作GH∥AB,∴∠APM+∠PME=180°,∵EF∥AB,GH∥AB,∴EF∥GH,∴∠EMN+∠MNG=180°,∴∠1+∠2+∠MNG=180°×2,依次類推:∠1+∠2+…+∠n-1+∠n=(n-1)?180°.故答案為:(n-1)?180°.【點(diǎn)睛】本題考查了平行線的性質(zhì)與判定,屬于基礎(chǔ)題,關(guān)鍵是過E點(diǎn)作AB(或CD)的平行線,把復(fù)雜的圖形化歸為基本圖形.7.(1),;(2)①;②【分析】(1)根據(jù)規(guī)律可得第5個(gè)算式;根據(jù)規(guī)律可得第n個(gè)算式;(2)①根據(jù)運(yùn)算規(guī)律可得結(jié)果.②利用非負(fù)數(shù)的性質(zhì)求出與的值,代入原式后拆項(xiàng)變形,抵消即可得到結(jié)果.【詳解】(1)根據(jù)規(guī)律得:第5個(gè)等式是,第n個(gè)等式是;(2)①,,,;②為最小的正整數(shù),,,,原式,,,,.【點(diǎn)睛】本題主要考查了數(shù)字的變化規(guī)律,發(fā)現(xiàn)規(guī)律,運(yùn)用規(guī)律是解答此題的關(guān)鍵.8.①1,3;②0.6020;0.6990;③f(1.5),f(12);f(1.5)=3a-b+c-1,f(12)=2-b-2c.【分析】①根據(jù)定義可得:f(10b)=b,即可求得結(jié)論;②根據(jù)運(yùn)算性質(zhì):f(mn)=f(m)+f(n),f()=f(n)-f(m)進(jìn)行計(jì)算;③通過9=32,27=33,可以判斷f(3)是否正確,同樣依據(jù)5=,假設(shè)f(5)正確,可以求得f(2)的值,即可通過f(8),f(12)作出判斷.【詳解】解:①根據(jù)定義知:f(10b)=b,∴f(10)=1,f(103)=3.故答案為:1,3.②根據(jù)運(yùn)算性質(zhì),得:f(4)=f(2×2)=f(2)+f(2)=2f(2)=0.3010×2=0.6020,f(5)=f()=f(10)-f(2)=1-0.3010=0.6990.故答案為:0.6020;0.6990.③若f(3)≠2a-b,則f(9)=2f(3)≠4a-2b,f(27)=3f(3)≠6a-3b,從而表中有三個(gè)對(duì)應(yīng)的f(x)是錯(cuò)誤的,與題設(shè)矛盾,∴f(3)=2a-b;若f(5)≠a+c,則f(2)=1-f(5)≠1-a-c,∴f(8)=3f(2)≠3-3a-3c,f(6)=f(3)+f(2)≠1+a-b-c,表中也有三個(gè)對(duì)應(yīng)的f(x)是錯(cuò)誤的,與題設(shè)矛盾,∴f(5)=a+c,∴表中只有f(1.5)和f(12)的對(duì)應(yīng)值是錯(cuò)誤的,應(yīng)改正為:f(1.5)=f()=f(3)-f(2)=(2a-b)-(1-a-c)=3a-b+c-1,f(12)=f()=2f(6)-f(3)=2(1+a-b-c)-(2a-b)=2-b-2c.∵9=32,27=33,∴f(9)=2f(3)=2(2a-b)=4a-2b,f(27)=3f(3)=3(2a-b)=6a-3b.【點(diǎn)睛】本題考查了冪的應(yīng)用,新定義運(yùn)算等,解題的關(guān)鍵是深刻理解所給出的定義或規(guī)則,將它們轉(zhuǎn)化為我們所熟悉的運(yùn)算.9.(1)1011,1101;(2)①12,65,97,見解析,②38【分析】(1)根據(jù)“模二數(shù)”的定義計(jì)算即可;(2)①根據(jù)“模二數(shù)”和模二相加不變”的定義,分別計(jì)算和12+23,65+23,97+23的值,即可得出答案②設(shè)兩位數(shù)的十位數(shù)字為a,個(gè)位數(shù)字為b,根據(jù)a、b的奇偶性和“模二數(shù)”和模二相加不變”的定義進(jìn)行討論,從而得出與“模二相加不變”的兩位數(shù)的個(gè)數(shù)【詳解】解:(1),故答案為:①,,與滿足“模二相加不變”.,,,與不滿足“模二相加不變”.,,,與滿足“模二相加不變”②當(dāng)此兩位數(shù)小于77時(shí),設(shè)兩位數(shù)的十位數(shù)字為a,個(gè)位數(shù)字為b,;當(dāng)a為偶數(shù),b為偶數(shù)時(shí),∴∴與滿足“模二相加不變”有12個(gè)(28、48、68不符合)當(dāng)a為偶數(shù),b為奇數(shù)時(shí),∴∴與不滿足“模二相加不變”.但27、47、67、29、49、69符合共6個(gè)當(dāng)a為奇數(shù),b為奇數(shù)時(shí),∴∴與不滿足“模二相加不變”.但17、37、57、19、39、59也不符合當(dāng)a為奇數(shù),b為偶數(shù)時(shí),∴∴與滿足“模二相加不變”有16個(gè),(18、38、58不符合)當(dāng)此兩位數(shù)大于等于77時(shí),符合共有4個(gè)綜上所述共有12+6+16+4=38故答案為:38【點(diǎn)睛】本題考查新定義,數(shù)字的變化類,認(rèn)真觀察、仔細(xì)思考,分類討論的數(shù)學(xué)思想是解決這類問題的方法.能夠理解定義是解題的關(guān)鍵.10.(I)x=2;(Ⅱ)3;(Ⅲ)-2017.【分析】(I)根據(jù)對(duì)數(shù)的定義,得出x2=4,求解即可;(Ⅱ)根據(jù)對(duì)數(shù)的定義求解即;;(Ⅲ)根據(jù)loga(M?N)=logaM+logaN求解即可.【詳解】(I)解:∵logx4=2,∴x2=4,∴x=2或x=-2(舍去)(Ⅱ)解:∵8=23,∴l(xiāng)og28=3,故答案為3;(Ⅲ)解:(lg2)2+lg2?1g5+1g5﹣2018=lg2?(lg2+1g5)+1g5﹣2018=lg2+1g5﹣2018=1-2018=-2017故答案為-2017.【點(diǎn)睛】本題主要考查同底數(shù)冪的乘法,有理數(shù)的乘方,是一道關(guān)于新定義運(yùn)算的題目,解答本題的關(guān)鍵是理解給出的對(duì)數(shù)的定義.11.(1);;(2);;(3).【分析】(1)觀察前4個(gè)等式的分母先得出第5個(gè)式子的分母,再依照前4個(gè)等式即可得出答案;(2)根據(jù)前4個(gè)等式歸納類推出一般規(guī)律即可;(3)利用題(2)的結(jié)論,先寫出中各數(shù)的值,然后通過提取公因式、有理數(shù)加減法、乘法運(yùn)算計(jì)算即可.【詳解】(1)觀察前4個(gè)等式的分母可知,第5個(gè)式子的分母為則第5個(gè)式子為:故應(yīng)填:;;(2)第1個(gè)等式的分母為:第2個(gè)等式的分母為:第3個(gè)等式的分母為:第4個(gè)等式的分母為:歸納類推得,第n個(gè)等式的分母為:則第n個(gè)等式為:(n為正整數(shù))故應(yīng)填:;;(3)由(2)的結(jié)論得:則.【點(diǎn)睛】本題考查了有理數(shù)運(yùn)算的規(guī)律類問題,依據(jù)已知等式歸納總結(jié)出等式的一般規(guī)律是解題關(guān)鍵.12.(1);;(2)①2;3;6.②這個(gè)乘客花費(fèi)7元乘坐的地鐵行駛的路程范圍為:大于公里小于等于32公里.【分析】(1)根據(jù)題意,確定實(shí)數(shù)左側(cè)第一個(gè)整數(shù)點(diǎn)所對(duì)應(yīng)的數(shù)即得;(2)①根據(jù)表格確定乘坐里程的對(duì)應(yīng)段,然后將乘坐里程分段計(jì)費(fèi)并累加即得;②根據(jù)表格將每段的費(fèi)用從左至右依次累加直至費(fèi)用為7元,進(jìn)而確定7元乘坐的具體里程即得.【詳解】(1)∵∴∵∴故答案為:;.(2)①∵∴3.07公里需要2元∵∴7.93公里所需費(fèi)用分為兩段即:前4公里2元,后3.93公里1元∴7.93公里所需費(fèi)用為:(元)∵∴公里所需費(fèi)用分為三段計(jì)費(fèi)即:前4公里2元,4至12公里2元,12公里至19.17公里2元;∴公里所需費(fèi)用為:(元)故答案為:2;3;6.②由題意得:乘坐24公里所需費(fèi)用分為三段:前4公里2元,4至12公里2元,12公里至24公里2元;∴乘坐24公里所需費(fèi)用為:(元)∵由表格可知:乘坐24公里以上的部分,每一元可以坐8公里∴7元可以乘坐的地鐵最大里程為:(公里)∴這個(gè)乘客花費(fèi)7元乘坐的地鐵行駛的路程范圍為:大于公里小于等于32公里答:這個(gè)乘客花費(fèi)7元乘坐的地鐵行駛的路程范圍為:大于公里小于等于32公里.【點(diǎn)睛】本題是閱讀材料題,考查了實(shí)數(shù)的實(shí)際應(yīng)用,根據(jù)材料中的新定義舉一反三并挖掘材料中深層次含義是解題關(guān)鍵.13.(1),,;(2)存在,;(3)【分析】(1)根據(jù)絕對(duì)值和算術(shù)平方根的非負(fù)性,求得a,b的值,得出點(diǎn)A,C的坐標(biāo),再運(yùn)用中點(diǎn)公式求出點(diǎn)D的坐標(biāo);(2)根據(jù)題意可得CP=t,OP=2-t,OQ=2t,AQ=4-2t,再根據(jù)S△ODP=S△ODQ,列方程求解即可;(3)過點(diǎn)H作HP∥AC交x軸于點(diǎn)P,先證明OG∥AC,再根據(jù)角的和差關(guān)系以及平行線性質(zhì),得出∠PHO=∠GOF=∠1+∠2,∠OHC=∠OHP+∠PHC=∠GOF+∠4=∠1+∠2+∠4,最后代入可得.【詳解】解:(1),,,,,,,設(shè),為線段的中點(diǎn).,,,故答案為:,,;(2)存在,.由條件可知:點(diǎn)從點(diǎn)運(yùn)動(dòng)到點(diǎn)需要時(shí)間為2秒,點(diǎn)從點(diǎn)運(yùn)動(dòng)到點(diǎn)需要時(shí)間2秒,,點(diǎn)在線段上,,,,,,,,,.(3)如圖2,,,,,,,,如圖,過點(diǎn)作交軸于點(diǎn),則,,,,∴.【點(diǎn)睛】本題考查了平行線的性質(zhì),三角形面積,非負(fù)數(shù)的性質(zhì),中點(diǎn)坐標(biāo)公式等,是一道三角形綜合題,解題關(guān)鍵是學(xué)會(huì)添加輔助線,運(yùn)用轉(zhuǎn)化的思想思考問題.14.(1)見解析;(2),理由見解析;(3)①當(dāng)在延長(zhǎng)線時(shí)(點(diǎn)不與點(diǎn)重合),;②當(dāng)在之間時(shí)(點(diǎn)不與點(diǎn),重合),.理由見解析【分析】(1)過P作PE∥AB,構(gòu)造同旁內(nèi)角,利用平行線性質(zhì),可得∠APC=113°;(2)過過作交于,,推出,根據(jù)平行線的性質(zhì)得出,即可得出答案;(3)畫出圖形(分兩種情況:①點(diǎn)P在BA的延長(zhǎng)線上,②當(dāng)在之間時(shí)(點(diǎn)不與點(diǎn),重合)),根據(jù)平行線的性質(zhì)即可得出答案.【詳解】解:(1)過作,,,,,,,,;(2),理由如下:如圖3,過作交于,,,,,,,又;(3)①當(dāng)在延長(zhǎng)線時(shí)(點(diǎn)不與點(diǎn)重合),;理由:如圖4,過作交于,,,,,,,,又,;②當(dāng)在之間時(shí)(點(diǎn)不與點(diǎn),重合),.理由:如圖5,過作交于,,,,,,,,又.【點(diǎn)睛】本題考查了平行線的性質(zhì)的應(yīng)用,主要考查學(xué)生的推理能力,解決問題的關(guān)鍵是作輔助線構(gòu)造內(nèi)錯(cuò)角以及同旁內(nèi)角.15.(1)A(-2,0)、B(0,3);(2)∠APD=90°;(3)∠N的大小不變,∠N=45°【分析】(1)利用非負(fù)數(shù)的和為零,各項(xiàng)分別為零,求出a,b的值;(2)如圖,作DM∥x軸,結(jié)合題意可設(shè)∠ADP=∠OAP=x,∠EAF=∠CAF=∠OAP=y,根據(jù)平角的定義可知∠OAD=90°-2y,由平行線的性質(zhì)可得∠OAD+∠ADM=180°,即90-2y+2x+90°=180°,進(jìn)而可得出x=y,再結(jié)合圖形即可得出∠APD的度數(shù);(3)∠N的大小不變,∠N=45°,如圖,過D作DE∥BC,過N作NF∥BC,根據(jù)平行線的性質(zhì)可知∠BMD+∠OAD=∠ADM=90°,然后根據(jù)角平分線的定義和平行線的性質(zhì),可得∠ANM=∠BMD+∠OAD,據(jù)此即可得到結(jié)論.【詳解】(1)由,可得和,解得∴A的坐標(biāo)是(-2,0)、B的坐標(biāo)是(0,3);(2)如圖,作DM∥x軸根據(jù)題意,設(shè)∠ADP=∠OAP=x,∠EAF=∠CAF=∠OAP=y,∵∠CAD=90°,∴∠CAE+∠OAD=90°,∴2y+∠OAD=90°,∴∠OAD=90°-2y,∵DM∥x軸,∴∠OAD+∠ADM=180°,∴90-2y+2x+90°=180°,∴x=y,∴∠APD=180°-(∠PAD+∠ADP)=180°-(y+90°-2y+x)=180°-90°=90°(3)∠N的大小不變,∠N=45°理由:如圖,過D作DE∥BC,過N作NF∥BC.∵BC∥x軸,∴DE∥BC∥x軸,NF∥BC∥x軸,∴∠EDM=∠BMD,∠EDA=∠OAD,∵DM⊥AD,∴∠ADM=90°,∴∠BMD+∠OAD=∠EDM+∠EDA=∠ADM=90°,∵M(jìn)N平分∠BMD,AN平分∠DAO,∴∠BMN=∠BMD,∠OAN=∠OAD,∴∠ANM=∠BMN+∠OAN=∠BMD+∠OAD=×90°=45°.【點(diǎn)睛】本題考查了坐標(biāo)與圖形性質(zhì):利用點(diǎn)的坐標(biāo)計(jì)算出相應(yīng)的線段的長(zhǎng)和判斷線段與坐標(biāo)軸的位置關(guān)系.也考查了三角形內(nèi)角和定理和三角形外角性質(zhì).16.(1)a=﹣2或a=8;(2)1<b<4;(3)t或0<t.【分析】(1)將點(diǎn)P與點(diǎn)A代入d(M,N)=|x1?x2|+|y1?y2|即可求解;(2)將點(diǎn)B與點(diǎn)P代入d(M,N)=|x1?x2|+|y1?y2|,得到d(P,B)=|3?b|+|2?b|,分三種情況去掉絕對(duì)值符號(hào)進(jìn)行化簡(jiǎn),有當(dāng)b<2時(shí),d(P,B)=3?b+2?b=5?2b<3;當(dāng)2≤b≤3時(shí),d(P,B)=3?b+b?2=1<3;當(dāng)b>3時(shí),d(P,B)=b?3+b?2=2b?5<3;(3)設(shè)T點(diǎn)的坐標(biāo)為(t,m),由點(diǎn)T與點(diǎn)P的“橫長(zhǎng)”與“縱長(zhǎng)”相等,得到|t?3|=|m?2|,得到t與m的關(guān)系式,再由T在第一象限,d(P,T)>5,結(jié)合求解即可.【詳解】(1)∵點(diǎn)P(3,2),點(diǎn)A(a,2),∴d(P,A)=|3﹣a|+|2﹣2|=5,∴a=﹣2或a=8;(2)∵點(diǎn)P(3,2),點(diǎn)B(b,b),∴d(P,B)=|3﹣b|+|2﹣b|,當(dāng)b<2時(shí),d(P,B)=3﹣b+2﹣b=5﹣2b<3,∴b>1,∴1<b<2;當(dāng)2≤b≤3時(shí),d(P,B)=3﹣b+b﹣2=1<3成立,∴2≤b≤3;當(dāng)b>3時(shí),d(P,B)=b﹣3+b﹣2=2b﹣5<3,∴b<4,∴3<b<4;綜上所述:1<b<4;(3)設(shè)T點(diǎn)的坐標(biāo)為(t,m),點(diǎn)T與點(diǎn)P的“橫長(zhǎng)”=|t﹣3|,點(diǎn)T與點(diǎn)P的“縱長(zhǎng)”=|m﹣2|.∵點(diǎn)T與點(diǎn)P的“橫長(zhǎng)”與“縱長(zhǎng)”相等,∴|t﹣3|=|m﹣2|,∴t﹣3=m﹣2或t﹣3=2﹣m,∴m=t﹣1或m=5﹣t.∵點(diǎn)T是第一象限內(nèi)的點(diǎn),∴m>0,∴t>1或t<5,又∵d(P,T)>5,∴2|t﹣3|>5,∴t或t,∴t或0<t.【點(diǎn)睛】本題考查平面內(nèi)點(diǎn)的坐標(biāo),新定義;能夠?qū)⒍x內(nèi)容轉(zhuǎn)化為絕對(duì)值不等式,再將絕對(duì)值不等式根據(jù)絕對(duì)值的意義轉(zhuǎn)化為一元一次不等式的求解是解題的關(guān)鍵.17.(1);(2)當(dāng)時(shí),和面積的相等;(3)m的取值范圍是【分析】(1)利用非負(fù)數(shù)的性質(zhì)求出a,b,c即可.(2)設(shè)點(diǎn)D的坐標(biāo)為(0,y),根據(jù)面積關(guān)系,構(gòu)建方程求出y,再根據(jù)△BOC和△AOD面積的相等,構(gòu)建方程求出t即可.(3)分兩種情形:①當(dāng)-2<m<0時(shí),如圖1中,②當(dāng)m≤-2時(shí),如圖2中,根據(jù)S△MOC≥5,構(gòu)建不等式求解即可.【詳解】解:(1)∵|a-2|+(b-3)2+=0,又∵|a-2|≥0,(b-3)2≥0,≥0,∴,∴a=2,b=3,c=-4;(2)設(shè)點(diǎn)D的坐標(biāo)為(0,y),則S△BOD=×BO×OD=×4×y=2y,S△AOD=xA?OD=×2y=y,S△AOB=×OB?yA=×4×3=6,∵S△BOD+S△AOD=S△AOB,即2y+y=6,解得y=2,即點(diǎn)D的坐標(biāo)為(0,2),∴S△BOC=BO?yc=×4t=2t,S△AOD=xA?OD=×2×2=2,∵△BOC和△AOD面積的相等,即2t=2,解得t=1,∴當(dāng)t=1時(shí),△BOC和△AOD面積的相等;(3)①當(dāng)-2<m<0時(shí),如圖1中,過點(diǎn)C作CF⊥軸于點(diǎn)F,過點(diǎn)M作GE⊥軸于點(diǎn)E,過點(diǎn)C作CG⊥軸交GE于點(diǎn)G,則四邊形CGEF為矩形,∵SCGEF=2×4=8,S△CFO=×2×1=1,S△EMO=×(0?m)×3=?m,S△CMG=×(m+2)×4=2(m+2),∴S△MOC=SCGEF-S△CFO-S△EMO-S△CMG=8?1?(?m)?2(m+2)=3?m,∵S△MOC≥5,即3?m≥5,解得m≤-4,這與-2<m<0矛盾.②當(dāng)m≤-2時(shí),如圖2中,過點(diǎn)C作GF⊥軸于點(diǎn)F,過點(diǎn)M作ME⊥軸于點(diǎn)E,過點(diǎn)M作MG⊥軸交GF于點(diǎn)G,則四邊形MEFG為矩形,∵SGMEF=(0-m)×4=-4m,S△CFO=×2×1=1,S△EMO=×(0?m)×3=?m,S△CMG=×(?2?m)×4=?2(m+2),∴S△MOC=SCGEF-S△CFO-S△EMO-S△CMG=?4m?1?(?m)?[?2(m+2)]=3?m,∵S△MOC≥5,即3?m≥5,解得m≤-4,綜上所述,m的取值范圍是m≤-4.【點(diǎn)睛】本題考查了坐標(biāo)與圖形的性質(zhì),三角形的面積,非負(fù)數(shù)的性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)利用參數(shù),構(gòu)建方程解決問題,屬于中考?jí)狠S題.18.(1)①1,4;3,0;2,﹣4;②2;(2)見解析;(3)t=1.2時(shí),P(0.6,0),t=2時(shí),P(﹣1,0).【分析】(1)①利用非負(fù)數(shù)的性質(zhì)求出a,b的值,可得結(jié)論.②利用三角形面積公式求解即可.(2)連接DH,根據(jù)△ODH的面積+△ADH的面積=△OAH的面積,構(gòu)建關(guān)系式,可得結(jié)論.(3)分兩種情形:①當(dāng)點(diǎn)P在線段OB上,②當(dāng)點(diǎn)P在BO的延長(zhǎng)線上時(shí),分別利用面積關(guān)系,構(gòu)建方程,可得結(jié)論.【詳解】(1)解:①∵,又∵≥0,(b﹣3)2≥0,∴a=4,b=3,∴A(1,4),B(3,0),∵B是由A平移得到的,∴A向右平移2個(gè)單位,向下平移4個(gè)單位得到B,∴點(diǎn)C是由點(diǎn)O向右平移2個(gè)單位,向下平移4個(gè)單位得到的,∴C(2,﹣4),故答案為:1,4;3,0;2,﹣4.②△AOH的面積=×1×4=2,故答案為:2.(2)證明:如圖,連接DH.∵△ODH的面積+△ADH的面積=△OAH的面積,∴×1×n+×4×(1﹣m)=2,∴4m=n.(3)解:①當(dāng)點(diǎn)P在線段OB上,由三角形AOP與三角形COQ的面積相等得:OP·yA=OQ·xC,∴×(3﹣2t)×4=×2t,解得t=1.2.此時(shí)P(0.6,0).②當(dāng)點(diǎn)P在BO的延長(zhǎng)線上時(shí),由三角形AOP與三角形COQ的面積相等得:OP·yA=OQ·xC,×(2t﹣3)×4=×2×t,解得t=2,此時(shí)P(﹣1,0),綜上所述,t=1.2時(shí),P(0.6,0),t=2時(shí),P(﹣1,0).【點(diǎn)睛】本題考查坐標(biāo)與圖形變化-平移,非負(fù)數(shù)的性質(zhì),三角形的面積等知識(shí),解題的關(guān)鍵是學(xué)會(huì)利用參數(shù)構(gòu)建方程解決問題.19.(1),;(2)【分析】(1)把和當(dāng)做未知數(shù),利用加減消元法解二元一次方程組即可;(2)先證明AB∥EF,則可以得到CD∥AB,∠C+∠CAB=180°,求出∠CAB的度數(shù)即可求解.【詳解】解:(1)用②+①得:,解得,把代入①解得;(2)∵∴AB∥EF,∵,∴CD∥AB,∴∠C+∠CAB=180°,∵∠CAB=∠EAC+∠BAE,AC⊥AE,∴∠CAE=90°,∴∠CAB=140°∴40°.【點(diǎn)睛】本題考查了平行線的判定和性質(zhì),解二元一次方程組,解答本題的關(guān)鍵是明確題意,利用數(shù)形結(jié)合的思想解答.20.(1)19a;(2)315;(3).【解析】【分析】(1)首先根據(jù)題意,求得S△A1BC=2S△ABC,同理可求得S△A1B1C=2S△A1BC,依此得到S△A1B1C1=19S△ABC,則可求得面積S1的值;(2)根據(jù)等高不等底的三角形的面積的比等于底邊的比,求解,從而不難求得△ABC的面積;(3)設(shè)S△BPF=m,S△APE=n,依題意,得S△APF=S△APC=m,S△BPC=S△BPF=m.得出,從而求解.【詳解】解:(1)連接A1C,∵B1C=2BC,A1B=2AB,∴,,,∴,∴,同理可得出:,∴S1=6a+6a+6a+a=19a;故答案為:19a;(2)過點(diǎn)作于點(diǎn),設(shè),,;,.,即.同理,...①,,.②由①②,得,.(3)設(shè),,如圖所示.依題意,得,..,.,,...【點(diǎn)睛】此題考查了三角形面積之間的關(guān)系.(2)的關(guān)鍵是設(shè)出未知三角形的面積,然后根據(jù)等高不等底的三角形的面積的比等于底邊的比列式求解.21.(1),兩點(diǎn)的坐標(biāo)分別為,;(2)點(diǎn)的坐標(biāo)是;(3)證明見解析【分析】(1)根據(jù)非負(fù)數(shù)的性質(zhì)得出二元一次方程組,求解即可;(2)過點(diǎn)B作y軸的平行線分別與過點(diǎn)A,C作x軸的平行線交于點(diǎn)N,點(diǎn)M,過點(diǎn)C作y軸的平行線與過點(diǎn)A作x軸的平行線交于點(diǎn)T,根據(jù)三角形的面積長(zhǎng)方形的面積(三角形的面積三角形的面積三角形的面積)列出方程,求解得出點(diǎn)C的坐標(biāo),由平移的規(guī)律可得點(diǎn)D的坐標(biāo);(3)過點(diǎn)作,交軸于點(diǎn),過點(diǎn)作,交于點(diǎn),根據(jù)兩直線平行,內(nèi)錯(cuò)角相等與已知條件得出,同樣可證,由平移的性質(zhì)與平行公理的推論可得,最后根據(jù),通過等量代換進(jìn)行證明.【詳解】解:(1),又∵,,,,即,解方程組得,,兩點(diǎn)的坐標(biāo)分別為,;(2)如圖,過點(diǎn)B作y軸的平行線分別與過點(diǎn)A,C作x軸的平行線交于點(diǎn)N,點(diǎn)M,過點(diǎn)C作y軸的平行線與過點(diǎn)A作x軸的平行線交于點(diǎn)T,∴三角形的面積長(zhǎng)方形的面積(三角形的面積三角形的面積三角形的面積),根據(jù)題意得,,化簡(jiǎn),得,解得,,依題意得,,,即點(diǎn)的坐標(biāo)為,依題意可知,點(diǎn)的坐標(biāo)是由點(diǎn)的坐標(biāo)先向左平移個(gè)單位長(zhǎng)度,再向下平移個(gè)單位長(zhǎng)度得到的,從而可知,點(diǎn)的坐標(biāo)是由點(diǎn)的坐標(biāo)先向左平移個(gè)單位長(zhǎng)度,再向下平移個(gè)單位長(zhǎng)度得到的,∴點(diǎn)的坐標(biāo)是;(3)證明:過點(diǎn)作,交軸于點(diǎn),如圖所示,則,,,過點(diǎn)作,交于點(diǎn),如圖所示,則,平分,,,由平移得,,,,,,,.【點(diǎn)睛】本題綜合性較強(qiáng),考查非負(fù)數(shù)的性質(zhì),解二元一次方程組,平行線的性質(zhì),平移的性質(zhì),坐標(biāo)與圖形的性質(zhì),第(3)題巧作輔助線構(gòu)造平行線是解題的關(guān)鍵.22.(1)a=60,b=40;(2)①64,38;②x=7,y=12【分析】(1)由圖示利用板材的長(zhǎng)列出關(guān)于a、b的二元一次方程組求解;(2)①根據(jù)已知和圖示計(jì)算出兩種裁法共產(chǎn)生A型板材和B型板材的張數(shù);②根據(jù)豎式與橫式禮品盒所需要的A、B兩種型號(hào)板材的張數(shù)列出關(guān)于x、y的二元一次方程組,然后求解即可.【詳解】解:(1)由題意得:,解得:,答:圖甲中與的值分別為:60、40;(2)①由圖示裁法一產(chǎn)生型板材為:,裁法二產(chǎn)生型板材為:,所以兩種裁法共產(chǎn)生型板材為(張,由圖示裁法一產(chǎn)生型板材為:,裁法二產(chǎn)生型板材為,,所以兩種裁法共產(chǎn)生型板材為(張,故答案為:64,38;②根據(jù)題意豎式有蓋禮品盒的個(gè),橫式無蓋禮品盒的個(gè),則型板材需要個(gè),型板材需要個(gè),所以,解得.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是二元一次方程組的應(yīng)用,關(guān)鍵是根據(jù)已知先列出二元一次方程組求出a、b的值,根據(jù)圖示列出算式以及關(guān)于x、y的二元一次方程組.23.(1)87和12是“黃金搭檔數(shù)”,62和49不是“黃金搭檔數(shù)”,理由見解析;(2)39或38【分析】(1)根據(jù)“黃金搭檔數(shù)”的定義分別判斷即可;(2)由已知設(shè)x,y為整數(shù),x,z為整數(shù),表示出,由s和t是一對(duì)“黃金搭檔數(shù)”,并且s與t的和能被7整除,綜合分析,列出方程組求解即可.【詳解】(1)解:∵∴87和12是一對(duì)“黃金搭檔數(shù)”;∵∴111與62,49數(shù)位不相同,∴62和49不是一對(duì)“黃金搭檔數(shù)”;故87和12是一對(duì)“黃金搭檔數(shù)”,62和49不是一對(duì)“黃金搭檔數(shù)”;(2)∵兩位數(shù)s和兩位數(shù)t的十位數(shù)字相同,∴設(shè)x,y為整數(shù),x,z為整數(shù),∴∵s和t是一對(duì)“黃金搭檔數(shù)”,∴是一個(gè)兩位數(shù),且各個(gè)數(shù)位上的數(shù)相同,又∵s與t的和能被7整除,∴,共有兩種情況:①,解得,∵x為整數(shù),∴不合題意,舍去;②,∵都是整數(shù),且∴解得或,故s為39或38.【點(diǎn)睛】本題考查三元一次方程組的整數(shù)解,解題關(guān)鍵是理解題目中的定義,根據(jù)已知條件列出方程組.24.(1)(3,3);(2);(3)(,0)或(,0)【分析】(1)點(diǎn)A既是“健康點(diǎn)”又是“快樂點(diǎn)”,則A坐標(biāo)應(yīng)該滿足x-2y+3=0和x+y-6=0,解即可得答案;(2)設(shè)直線AB交y軸于D,求出B、C、D的坐標(biāo),根據(jù)S△ABC=S△BCD+S△ACD即可求出答案;(3)設(shè)點(diǎn)P的坐標(biāo)為(n,0),根據(jù)△PBC的面積等于△ABC的面積,即,列出方程,解之即可.【詳解】解:(1)點(diǎn)A既是“健康點(diǎn)”又是“快樂點(diǎn)”,則A坐標(biāo)應(yīng)該滿足x-2y+3=0和x+y-6=0,解得:,∴A的坐標(biāo)為(3,3);故答案為:(3,3);(2)設(shè)直線AB交y軸于D,如圖:∵B是x軸上的“健康點(diǎn)”,在x-2y+3=0中,令y=0得x=-3,∴B(-3,0),∵C是y軸上的“快樂點(diǎn)”,在x+y-6=0中,令x=0得y=6,∴C(0,6),在x-2y+3=0中,令x=0得y=,∴D(0,),∴CD=,∴S△ABC=S△BCD+S△ACD=CD?|xB|+CD?|xA|==;(3)設(shè)點(diǎn)P的坐標(biāo)為(n,0),則BP=,∵△BPC與△ABC面積相等,∴S△BPC==,∴,∴或,∴點(diǎn)P的坐標(biāo)為(,0)或(,0).【點(diǎn)睛】本題考查三角形面積,涉及新定義、坐標(biāo)軸上點(diǎn)坐標(biāo)特征等知識(shí),解題的關(guān)鍵是理解“健康點(diǎn)”、“快樂點(diǎn)”含義.25.(Ⅰ);(Ⅱ)當(dāng)時(shí),三角形的面積為;當(dāng)時(shí),三角形的面積為;(Ⅲ)或.【分析】(Ⅰ)先求出的長(zhǎng),再根據(jù)的長(zhǎng)即可得;(Ⅱ)先分別求出點(diǎn)運(yùn)動(dòng)到點(diǎn)所需時(shí)間、點(diǎn)運(yùn)動(dòng)到點(diǎn)所需時(shí)間,從而可得,再分和兩種情況,分別利用三角形的面積公式、梯形的面積公式即可得;(Ⅲ)根據(jù)(Ⅱ)的結(jié)論,分和兩種情況,分別建立不等式,解不等式即可得.【詳解】解:(Ⅰ)軸,,,軸,,;(Ⅱ)∵點(diǎn)運(yùn)動(dòng)的路徑長(zhǎng)為,所用時(shí)間為7秒;點(diǎn)運(yùn)動(dòng)的路徑長(zhǎng)為,所用時(shí)間為秒,∴根據(jù)其中一點(diǎn)到達(dá)終點(diǎn)時(shí)運(yùn)動(dòng)停止可知,運(yùn)動(dòng)時(shí)間的取值范圍為,點(diǎn)運(yùn)動(dòng)到點(diǎn)所用時(shí)間為4秒,點(diǎn)運(yùn)動(dòng)到點(diǎn)所用時(shí)間為,因此,分以下兩種情況:①如圖,當(dāng)時(shí),,則三角形的面積為;②當(dāng)時(shí),如圖,過點(diǎn)作,交延長(zhǎng)線于點(diǎn),,,則三角形的面積為,,,綜上,當(dāng)時(shí),三角形的面積為;當(dāng)時(shí),三角形的面積為;(Ⅲ)①當(dāng)時(shí),則,解得,則此時(shí)的取值范圍為;②當(dāng)時(shí),則,解得,則此時(shí)的取值范圍為,綜上,當(dāng)三角形的面積的范圍小于16時(shí),或.【點(diǎn)睛】本題考查了坐標(biāo)與圖形、三角形的面積公式、一元一次不等式的應(yīng)用等知識(shí)點(diǎn),較難的是題(Ⅱ),正確分兩種情況討論是解題關(guān)鍵.26.(1)①組合是“無緣組合”,②組合是“有緣組合”;(2)a<-3;(3)a<【分析】(1)先求方程的解,再解不等式,根據(jù)“有緣組合”和“無緣組合“的定義,判斷即可;(2)先解方程和不等式,然后根據(jù)“有緣組合”的定義求a的取值范圍;(3)先解方程和不等式,然后根據(jù)“無緣組合”的定義求a的取值范圍.【詳解】解:(1)①∵2x-4=0,∴x
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 遼寧中考一模數(shù)學(xué)試卷
- 南通二調(diào)數(shù)學(xué)試卷
- 去年保定市統(tǒng)考數(shù)學(xué)試卷
- 標(biāo)準(zhǔn)廠房生產(chǎn)線布置與規(guī)劃方案
- 七年級(jí)的數(shù)學(xué)試卷
- 司機(jī)疫情防控知識(shí)培訓(xùn)課件
- 司機(jī)救援知識(shí)培訓(xùn)課件
- 化妝品培訓(xùn)基礎(chǔ)知識(shí)課件
- 葉酸知識(shí)科普培訓(xùn)總結(jié)課件
- 2025年小學(xué)育才面試題及答案
- 全面質(zhì)量管理TQM體系概述與實(shí)踐應(yīng)用探討
- 2025年云南省事業(yè)單位招聘考試教師信息技術(shù)學(xué)科專業(yè)知識(shí)試卷試題
- 借款轉(zhuǎn)為租金合法合同范本
- 2025年電子商務(wù)師(職業(yè)資格專業(yè)初級(jí))考試試卷及答案
- 海姆立克急救法科普知識(shí)
- 《基本醫(yī)療衛(wèi)生與健康促進(jìn)法》試題(附答案)
- 2025年國(guó)企融媒體考試題庫(kù)
- 2025年事業(yè)單位筆試-云南-云南藥劑學(xué)(醫(yī)療招聘)歷年參考題庫(kù)含答案解析(5卷套題【單選100題】)
- 2025年度鋁合金門購(gòu)銷及節(jié)能技術(shù)合同
- 2024屆國(guó)家衛(wèi)健委臨床藥師培訓(xùn)學(xué)員(抗感染專業(yè))理論考核試題
- 【基層法工】基層法律服務(wù)工作者測(cè)試題附答案
評(píng)論
0/150
提交評(píng)論