南昌大學(xué)大一數(shù)學(xué)試卷_第1頁
南昌大學(xué)大一數(shù)學(xué)試卷_第2頁
南昌大學(xué)大一數(shù)學(xué)試卷_第3頁
南昌大學(xué)大一數(shù)學(xué)試卷_第4頁
南昌大學(xué)大一數(shù)學(xué)試卷_第5頁
已閱讀5頁,還剩3頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

南昌大學(xué)大一數(shù)學(xué)試卷一、選擇題(每題1分,共10分)

1.極限lim(x→2)(x^2-4)/(x-2)的值是?

A.0

B.2

C.4

D.不存在

2.函數(shù)f(x)=|x|在x=0處的導(dǎo)數(shù)是?

A.1

B.-1

C.0

D.不存在

3.曲線y=x^3在x=1處的切線斜率是?

A.1

B.3

C.9

D.27

4.不等式|x-1|<2的解集是?

A.(-1,3)

B.(-1,3)

C.(-1,3)

D.(-1,3)

5.函數(shù)f(x)=e^x在x=0處的泰勒展開式的前三項(xiàng)是?

A.1+x+x^2

B.1+x+x^2/2

C.1+x+x^2/6

D.1+x+x^2/24

6.級(jí)數(shù)∑(n=1to∞)(1/n)的收斂性是?

A.收斂

B.發(fā)散

C.條件收斂

D.絕對(duì)收斂

7.微分方程y'=y的通解是?

A.y=Ce^x

B.y=Ce^-x

C.y=Cx

D.y=C/x

8.函數(shù)f(x)=sin(x)在區(qū)間[0,π]上的積分值是?

A.1

B.0

C.-1

D.2

9.矩陣A=[[1,2],[3,4]]的行列式值是?

A.-2

B.2

C.-5

D.5

10.向量v=(1,2,3)的模長是?

A.√14

B.√15

C.√16

D.√17

二、多項(xiàng)選擇題(每題4分,共20分)

1.下列函數(shù)中,在x=0處可導(dǎo)的有?

A.f(x)=x^2

B.f(x)=|x|

C.f(x)=x^3

D.f(x)=sin(x)

2.下列不等式正確的是?

A.log2(3)>log2(4)

B.e^2>e^3

C.(1/2)^3<(1/2)^2

D.sqrt(2)>sqrt(3)

3.下列級(jí)數(shù)中,收斂的有?

A.∑(n=1to∞)(1/n^2)

B.∑(n=1to∞)(1/n)

C.∑(n=1to∞)(-1)^n/n

D.∑(n=1to∞)(1/n^3)

4.下列函數(shù)中,在區(qū)間[0,1]上可積的有?

A.f(x)=1/x

B.f(x)=x^2

C.f(x)=sin(x)

D.f(x)=|x|

5.下列矩陣中,可逆的有?

A.[[1,0],[0,1]]

B.[[1,2],[2,4]]

C.[[3,0],[0,3]]

D.[[1,1],[1,1]]

三、填空題(每題4分,共20分)

1.極限lim(x→3)(x^2-9)/(x-3)的值是_______。

2.函數(shù)f(x)=x^2在x=1處的導(dǎo)數(shù)f'(1)的值是_______。

3.曲線y=e^x在x=0處的切線方程是_______。

4.級(jí)數(shù)∑(n=1to5)(2^n)的和是_______。

5.矩陣A=[[1,2],[3,4]]的轉(zhuǎn)置矩陣A^T是_______。

四、計(jì)算題(每題10分,共50分)

1.計(jì)算極限lim(x→0)(sin(x)/x)。

2.求函數(shù)f(x)=x^3-3x^2+2的導(dǎo)數(shù)f'(x)。

3.計(jì)算不定積分∫(x^2+2x+1)dx。

4.解微分方程y'-y=0。

5.計(jì)算定積分∫(0to1)(x^2+x)dx。

本專業(yè)課理論基礎(chǔ)試卷答案及知識(shí)點(diǎn)總結(jié)如下

一、選擇題答案

1.C

2.D

3.B

4.A

5.B

6.B

7.A

8.A

9.A

10.B

二、多項(xiàng)選擇題答案

1.A,C,D

2.C

3.A,C,D

4.B,C,D

5.A,C

三、填空題答案

1.6

2.2

3.y=x+1

4.62

5.[[1,3],[2,4]]

四、計(jì)算題答案及過程

1.解:lim(x→0)(sin(x)/x)=1(利用重要極限)

2.解:f'(x)=3x^2-6x

3.解:∫(x^2+2x+1)dx=(1/3)x^3+x^2+x+C

4.解:y'-y=0變形為y'=y,分離變量得(1/y)dy=dx,積分得ln|y|=x+C,即y=Ce^x

5.解:∫(0to1)(x^2+x)dx=[(1/3)x^3+(1/2)x^2](0to1)=(1/3+1/2)-0=5/6

知識(shí)點(diǎn)分類和總結(jié)

本試卷主要涵蓋了大一數(shù)學(xué)的理論基礎(chǔ)部分,主要包括極限、導(dǎo)數(shù)、積分、級(jí)數(shù)、微分方程和矩陣等知識(shí)點(diǎn)。以下是各知識(shí)點(diǎn)的分類和總結(jié):

一、極限

-極限的概念和性質(zhì)

-極限的計(jì)算方法(利用極限定義、重要極限、洛必達(dá)法則等)

-無窮小量和無窮大量的比較

二、導(dǎo)數(shù)

-導(dǎo)數(shù)的定義和幾何意義

-導(dǎo)數(shù)的計(jì)算公式(基本初等函數(shù)的導(dǎo)數(shù)、導(dǎo)數(shù)的四則運(yùn)算法則、復(fù)合函數(shù)的求導(dǎo)法則)

-高階導(dǎo)數(shù)

三、積分

-不定積分的概念和性質(zhì)

-不定積分的計(jì)算方法(基本積分公式、換元積分法、分部積分法)

-定積分的概念和性質(zhì)

-定積分的計(jì)算方法(牛頓-萊布尼茨公式、換元積分法、分部積分法)

四、級(jí)數(shù)

-級(jí)數(shù)的概念和收斂性

-數(shù)項(xiàng)級(jí)數(shù)的收斂性判別法(正項(xiàng)級(jí)數(shù)、交錯(cuò)級(jí)數(shù)、絕對(duì)收斂與條件收斂)

-函數(shù)項(xiàng)級(jí)數(shù)和冪級(jí)數(shù)

五、微分方程

-微分方程的概念和分類

-一階微分方程的解法(可分離變量的微分方程、一階線性微分方程)

-可降階的高階微分方程

六、矩陣

-矩陣的概念和運(yùn)算(加法、減法、乘法、轉(zhuǎn)置)

-行列式的計(jì)算

-逆矩陣的求解

各題型所考察學(xué)生的知識(shí)點(diǎn)詳解及示例

一、選擇題

-考察學(xué)生對(duì)極限、導(dǎo)數(shù)、積分、級(jí)數(shù)、微分方程和矩陣等基本概念的掌握程度。

-示例:計(jì)算極限lim(x→2)(x^2-4)/(x-2),考察學(xué)生對(duì)極限計(jì)算方法的掌握。

二、多項(xiàng)選擇題

-考察學(xué)生對(duì)多個(gè)知識(shí)點(diǎn)的綜合理解和應(yīng)用能力。

-示例:判斷哪些函數(shù)在x=0處可導(dǎo),考察學(xué)生對(duì)導(dǎo)數(shù)定義的理解。

三、填空題

-考察學(xué)生對(duì)基本計(jì)算方法的掌握程度,要求學(xué)生能夠準(zhǔn)確計(jì)算極限、導(dǎo)數(shù)、積分、級(jí)數(shù)和矩陣等。

-示例:計(jì)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論