金陵科技學(xué)院《包裝與設(shè)計(jì)》2024-2025學(xué)年第一學(xué)期期末試卷_第1頁
金陵科技學(xué)院《包裝與設(shè)計(jì)》2024-2025學(xué)年第一學(xué)期期末試卷_第2頁
金陵科技學(xué)院《包裝與設(shè)計(jì)》2024-2025學(xué)年第一學(xué)期期末試卷_第3頁
金陵科技學(xué)院《包裝與設(shè)計(jì)》2024-2025學(xué)年第一學(xué)期期末試卷_第4頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

站名:站名:年級專業(yè):姓名:學(xué)號:凡年級專業(yè)、姓名、學(xué)號錯寫、漏寫或字跡不清者,成績按零分記?!堋狻€…………第1頁,共2頁金陵科技學(xué)院《包裝與設(shè)計(jì)》2024-2025學(xué)年第一學(xué)期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共20個小題,每小題1分,共20分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、計(jì)算機(jī)視覺中的行人重識別是在不同攝像頭拍攝的圖像或視頻中識別出特定的行人。以下關(guān)于行人重識別的敘述,不正確的是()A.行人重識別需要提取具有判別性的行人特征,克服視角、光照和姿態(tài)的變化B.深度學(xué)習(xí)方法在行人重識別任務(wù)中取得了顯著的性能提升C.行人重識別在智能安防、視頻監(jiān)控和人員追蹤等領(lǐng)域有重要的應(yīng)用D.行人重識別技術(shù)已經(jīng)能夠在大規(guī)模數(shù)據(jù)集上達(dá)到100%的準(zhǔn)確率2、計(jì)算機(jī)視覺在農(nóng)業(yè)中的應(yīng)用可以幫助監(jiān)測農(nóng)作物的生長狀況。假設(shè)要通過圖像分析判斷農(nóng)作物的病蟲害程度,以下關(guān)于農(nóng)業(yè)計(jì)算機(jī)視覺應(yīng)用的描述,正確的是:()A.僅依靠農(nóng)作物的顏色特征就能準(zhǔn)確判斷病蟲害的程度B.不同農(nóng)作物品種和生長階段對病蟲害判斷的影響不大C.結(jié)合圖像的紋理、形狀和顏色等多特征,可以更準(zhǔn)確地評估農(nóng)作物的健康狀況D.農(nóng)業(yè)環(huán)境的復(fù)雜性對計(jì)算機(jī)視覺的應(yīng)用沒有挑戰(zhàn)3、在計(jì)算機(jī)視覺中,圖像去霧是提高有霧圖像質(zhì)量的技術(shù)。以下關(guān)于圖像去霧的描述,不準(zhǔn)確的是()A.圖像去霧可以基于物理模型或深度學(xué)習(xí)方法來實(shí)現(xiàn)B.深度學(xué)習(xí)方法在圖像去霧中能夠有效地恢復(fù)圖像的細(xì)節(jié)和顏色C.圖像去霧只對輕度有霧的圖像有效,對于濃霧圖像效果不佳D.圖像去霧可以提高圖像的清晰度和可視性,有助于后續(xù)的處理和分析4、計(jì)算機(jī)視覺中的目標(biāo)重識別任務(wù)旨在在不同的攝像頭視角中識別出同一目標(biāo)。假設(shè)要在一個大型商場的多個攝像頭中尋找一個特定的人物。以下關(guān)于目標(biāo)重識別的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以通過提取目標(biāo)的特征,如顏色、形狀和紋理,來進(jìn)行重識別B.深度學(xué)習(xí)中的特征學(xué)習(xí)方法能夠提高目標(biāo)重識別的準(zhǔn)確率C.目標(biāo)重識別不受攝像頭視角、光照和人物姿態(tài)變化的影響D.可以通過建立目標(biāo)的特征庫,快速在多個攝像頭中進(jìn)行匹配和搜索5、計(jì)算機(jī)視覺在醫(yī)學(xué)影像分析中的應(yīng)用有助于輔助醫(yī)生進(jìn)行診斷和治療。假設(shè)要分析一張腦部CT圖像,以下關(guān)于醫(yī)學(xué)影像分析中的計(jì)算機(jī)視覺應(yīng)用的描述,哪一項(xiàng)是不正確的?()A.可以通過分割腦組織、檢測病變區(qū)域等方法,為醫(yī)生提供定量的分析結(jié)果B.深度學(xué)習(xí)模型能夠自動學(xué)習(xí)醫(yī)學(xué)影像中的特征,輔助醫(yī)生發(fā)現(xiàn)潛在的疾病C.計(jì)算機(jī)視覺在醫(yī)學(xué)影像分析中的應(yīng)用需要遵循嚴(yán)格的醫(yī)學(xué)倫理和法規(guī)D.計(jì)算機(jī)視覺系統(tǒng)可以完全替代醫(yī)生的診斷,不需要醫(yī)生的進(jìn)一步審查和判斷6、計(jì)算機(jī)視覺中的場景理解是理解圖像或視頻中的場景內(nèi)容和語義信息。假設(shè)要理解一張城市街道的圖像,以下關(guān)于場景理解方法的描述,哪一項(xiàng)是不正確的?()A.可以通過對象檢測、語義分割和場景分類等任務(wù)來實(shí)現(xiàn)場景理解B.結(jié)合上下文信息和先驗(yàn)知識能夠提高場景理解的準(zhǔn)確性C.深度學(xué)習(xí)模型能夠?qū)W習(xí)場景中的全局特征和關(guān)系,實(shí)現(xiàn)對場景的深入理解D.場景理解可以在沒有任何先驗(yàn)知識和上下文信息的情況下,準(zhǔn)確地推斷出場景的語義7、當(dāng)進(jìn)行圖像的光流估計(jì)時,假設(shè)要計(jì)算圖像中像素的運(yùn)動速度和方向。以下哪種光流估計(jì)算法在復(fù)雜場景下可能更準(zhǔn)確?()A.Horn-Schunck算法B.Lucas-Kanade算法C.隨機(jī)估計(jì)光流D.不進(jìn)行光流估計(jì),忽略像素的運(yùn)動信息8、計(jì)算機(jī)視覺在虛擬現(xiàn)實(shí)(VR)和增強(qiáng)現(xiàn)實(shí)(AR)中的應(yīng)用可以提供更沉浸式的體驗(yàn)。假設(shè)要在VR環(huán)境中實(shí)時跟蹤用戶的頭部運(yùn)動并相應(yīng)地更新場景,以下關(guān)于VR/AR計(jì)算機(jī)視覺應(yīng)用的描述,正確的是:()A.簡單的基于傳感器的跟蹤方法能夠滿足VR中高精度的頭部運(yùn)動跟蹤需求B.計(jì)算機(jī)視覺在VR/AR中的應(yīng)用主要關(guān)注圖像生成,而不是跟蹤和定位C.結(jié)合視覺特征提取和深度學(xué)習(xí)的頭部運(yùn)動跟蹤算法可以實(shí)現(xiàn)低延遲和高精度的跟蹤D.VR/AR環(huán)境中的光照條件和物體遮擋對計(jì)算機(jī)視覺算法的性能沒有影響9、圖像分類是計(jì)算機(jī)視覺中的常見任務(wù)之一。對于圖像分類模型的訓(xùn)練,以下說法錯誤的是()A.需要大量有標(biāo)注的圖像數(shù)據(jù)來學(xué)習(xí)不同類別的特征B.卷積神經(jīng)網(wǎng)絡(luò)(CNN)在圖像分類任務(wù)中表現(xiàn)出色C.模型的訓(xùn)練過程是不斷調(diào)整參數(shù)以最小化預(yù)測誤差的過程D.圖像分類模型一旦訓(xùn)練完成,就無法再對新的類別進(jìn)行學(xué)習(xí)和分類10、在計(jì)算機(jī)視覺的視頻分析中,假設(shè)要對一段監(jiān)控視頻中的異常行為進(jìn)行檢測。以下關(guān)于特征提取的方法,哪一項(xiàng)是不太適合的?()A.提取每一幀圖像的顏色、紋理等低級特征B.利用光流信息來捕捉物體的運(yùn)動特征C.僅分析視頻的音頻信息,忽略圖像內(nèi)容D.結(jié)合時空特征,同時考慮空間和時間維度的信息11、在計(jì)算機(jī)視覺的車牌識別任務(wù)中,需要從車輛圖像中準(zhǔn)確提取車牌號碼。假設(shè)車牌存在傾斜、變形和光照不均等問題。以下哪種車牌識別方法在應(yīng)對這些挑戰(zhàn)時表現(xiàn)更為出色?()A.基于字符分割的車牌識別B.基于模板匹配的車牌識別C.基于深度學(xué)習(xí)的車牌識別D.基于特征提取的車牌識別12、計(jì)算機(jī)視覺中的視覺注意力機(jī)制用于聚焦圖像中的重要區(qū)域。以下關(guān)于視覺注意力機(jī)制的說法,不正確的是()A.視覺注意力機(jī)制可以根據(jù)圖像的特征和任務(wù)需求動態(tài)地選擇關(guān)注的區(qū)域B.注意力機(jī)制能夠提高模型的效率和性能,減少對無關(guān)信息的處理C.視覺注意力機(jī)制在圖像分類、目標(biāo)檢測和圖像生成等任務(wù)中得到了廣泛應(yīng)用D.視覺注意力機(jī)制的引入會增加模型的復(fù)雜度和計(jì)算量,降低模型的訓(xùn)練速度13、在計(jì)算機(jī)視覺的目標(biāo)跟蹤任務(wù)中,需要在連續(xù)的圖像幀中持續(xù)跟蹤一個特定的目標(biāo)。假設(shè)要跟蹤一個在運(yùn)動場上快速移動且形狀變化的運(yùn)動員,同時存在其他相似物體的干擾。以下哪種目標(biāo)跟蹤算法在這種具有挑戰(zhàn)性的場景下表現(xiàn)更佳?()A.基于卡爾曼濾波的跟蹤B.基于粒子濾波的跟蹤C(jī).基于深度學(xué)習(xí)的跟蹤D.基于均值漂移的跟蹤14、計(jì)算機(jī)視覺中的場景理解是對整個圖像場景的語義和結(jié)構(gòu)進(jìn)行分析和理解。以下關(guān)于場景理解的描述,不準(zhǔn)確的是()A.場景理解需要綜合考慮物體、空間關(guān)系、上下文信息等多個方面B.可以通過構(gòu)建場景圖來表示場景中的實(shí)體和關(guān)系,輔助場景理解C.場景理解在智能導(dǎo)航、虛擬環(huán)境構(gòu)建和圖像編輯等領(lǐng)域具有潛在的應(yīng)用價值D.場景理解是一個已經(jīng)完全解決的問題,不存在任何技術(shù)難題15、計(jì)算機(jī)視覺中的醫(yī)學(xué)圖像分析對于疾病的診斷和治療具有重要意義。以下關(guān)于醫(yī)學(xué)圖像分析的描述,不準(zhǔn)確的是()A.可以對X光、CT、MRI等醫(yī)學(xué)圖像進(jìn)行病灶檢測、器官分割和疾病分類B.深度學(xué)習(xí)技術(shù)在醫(yī)學(xué)圖像分析中取得了顯著的成果,但也面臨數(shù)據(jù)標(biāo)注困難和模型泛化能力不足的問題C.醫(yī)學(xué)圖像分析需要遵循嚴(yán)格的醫(yī)學(xué)標(biāo)準(zhǔn)和倫理規(guī)范,確保結(jié)果的準(zhǔn)確性和可靠性D.醫(yī)學(xué)圖像分析完全依賴于計(jì)算機(jī)視覺技術(shù),醫(yī)生的經(jīng)驗(yàn)和專業(yè)知識不再重要16、計(jì)算機(jī)視覺中的特征提取是非常關(guān)鍵的一步。以下關(guān)于特征提取方法的描述,不準(zhǔn)確的是()A.傳統(tǒng)的特征提取方法如SIFT(尺度不變特征變換)和HOG(方向梯度直方圖)在特定場景下仍然有效B.深度學(xué)習(xí)中的自動特征提取能夠?qū)W習(xí)到更具代表性和魯棒性的特征C.特征提取的好壞直接影響后續(xù)的圖像分類、目標(biāo)檢測等任務(wù)的性能D.特征提取只關(guān)注圖像的局部信息,而忽略了全局信息17、在計(jì)算機(jī)視覺的場景理解任務(wù)中,假設(shè)要理解一個室內(nèi)場景的布局和物體關(guān)系。以下關(guān)于利用深度學(xué)習(xí)模型的方法,哪一項(xiàng)是不太恰當(dāng)?shù)模浚ǎ〢.使用卷積神經(jīng)網(wǎng)絡(luò)(CNN)提取圖像特征B.運(yùn)用循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)處理場景的序列信息C.直接使用未經(jīng)訓(xùn)練的神經(jīng)網(wǎng)絡(luò),期望其自動學(xué)習(xí)場景理解D.結(jié)合CNN和RNN,構(gòu)建端到端的場景理解模型18、在計(jì)算機(jī)視覺中,圖像檢索是根據(jù)用戶的需求從圖像數(shù)據(jù)庫中查找相關(guān)的圖像。以下關(guān)于圖像檢索的說法,錯誤的是()A.圖像檢索可以基于圖像的內(nèi)容,如顏色、形狀和紋理等特征B.深度學(xué)習(xí)方法可以學(xué)習(xí)到更具語義的圖像表示,提高圖像檢索的準(zhǔn)確性C.圖像檢索在電子商務(wù)、數(shù)字圖書館和圖像搜索引擎等領(lǐng)域有廣泛的應(yīng)用D.圖像檢索的性能只取決于圖像特征的提取,與數(shù)據(jù)庫的組織和索引無關(guān)19、計(jì)算機(jī)視覺中的圖像配準(zhǔn)任務(wù)是將不同時間、不同視角或不同傳感器獲取的圖像進(jìn)行對齊。假設(shè)要將兩張拍攝角度不同的城市風(fēng)景照片進(jìn)行配準(zhǔn)。以下關(guān)于圖像配準(zhǔn)方法的描述,哪一項(xiàng)是不正確的?()A.可以基于特征點(diǎn)匹配的方法,找到兩張圖像中的對應(yīng)點(diǎn),然后計(jì)算變換矩陣B.基于灰度信息的配準(zhǔn)方法通過比較圖像的像素值來實(shí)現(xiàn)配準(zhǔn)C.深度學(xué)習(xí)中的自監(jiān)督學(xué)習(xí)方法可以用于圖像配準(zhǔn),自動學(xué)習(xí)圖像之間的對應(yīng)關(guān)系D.圖像配準(zhǔn)總是能夠達(dá)到像素級別的精確對齊,不存在任何誤差20、在計(jì)算機(jī)視覺中,圖像增強(qiáng)技術(shù)用于改善圖像的質(zhì)量。以下關(guān)于圖像增強(qiáng)的描述,不正確的是()A.圖像增強(qiáng)可以包括對比度增強(qiáng)、銳化、去噪等操作B.圖像增強(qiáng)的目的是使圖像更適合人類視覺觀察或后續(xù)的處理任務(wù)C.過度的圖像增強(qiáng)可能會導(dǎo)致圖像失真或引入噪聲D.圖像增強(qiáng)只對低質(zhì)量的圖像有效果,對于高質(zhì)量的圖像沒有必要進(jìn)行增強(qiáng)二、簡答題(本大題共5個小題,共25分)1、(本題5分)描述計(jì)算機(jī)視覺在海洋環(huán)境保護(hù)中的應(yīng)用。2、(本題5分)簡述圖像的稀疏表示方法。3、(本題5分)解釋計(jì)算機(jī)視覺中的多視圖幾何原理。4、(本題5分)簡述計(jì)算機(jī)視覺在印刷業(yè)中的色彩管理和缺陷檢測。5、(本題5分)說明計(jì)算機(jī)視覺中特征提取的作用和常見算法。三、分析題(本大題共5個小題,共25分)1、(本題5分)分析某珠寶品牌的線上廣告設(shè)計(jì),研究其如何運(yùn)用視覺語言展示珠寶的品質(zhì)和設(shè)計(jì),吸引消費(fèi)者購買。2、(本題5分)以某化妝品品牌的廣告設(shè)計(jì)為例,分析其美麗的模特、精致的妝容、誘人的色彩如何吸引消費(fèi)者購買產(chǎn)品。3、(本題5分)探討某圖書出版公司的系列圖書封面設(shè)計(jì),分析其如何通過統(tǒng)一的視覺風(fēng)格建立品牌識別,同時突出每本書的獨(dú)特賣點(diǎn)。4、(本

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論