




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
北師大版9年級數(shù)學上冊期中試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(7小題,每小題2分,共計14分)1、如圖,點E、F、G、H分別是四邊形ABCD的邊AB、BC、CD、DA的中點.則下列說法:①若,則四邊形EFGH為矩形;②若,則四邊形EFGH為菱形;③若AC與BD互相垂直且相等,則四邊形EFGH是正方形;④若四邊形EFGH是平行四邊形,則AC與BD互相平分.其中正確的個數(shù)是(
)A.1 B.2 C.3 D.42、若菱形兩條對角線的長度是方程的兩根,則該菱形的邊長為(
)A. B.4 C. D.53、如圖,兩個轉盤分別自由轉動一次(當指針恰好指在分界線上時重轉),當停止轉動時,兩個轉盤的指針都指向3的概率為(
)A. B. C. D.4、一元二次方程x2-3x+1=0的根的情況是(
).A.沒有實數(shù)根 B.有兩個相等的實數(shù)根C.只有一個實數(shù)根 D.有兩個不相等的實數(shù)根5、若關于x的一元二次方程有實數(shù)根,則字母k的取值范圍是(
)A. B.且 C. D.且6、如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=4.點F為射線CB上一動點,過點C作CM⊥AF于M,交AB于E,D是AB的中點,則DM長度的最小值是()A. B. C. D.7、已知實數(shù)滿足,則代數(shù)式的值是(
)A.7 B.-1 C.7或-1 D.-5或3二、多選題(3小題,每小題2分,共計6分)1、下列關于矩形的說法中錯誤的是()A.矩形的對角線互相垂直且平分 B.矩形的對角線相等且互相平分C.對角線相等的四邊形是矩形 D.對角線互相平分的四邊形是矩形2、已知關于的一元二次方程,下列命題是真命題的有(
)A.若,則方程必有實數(shù)根B.若,,則方程必有兩個不相等的實根C.若是方程的一個根,則一定有成立D.若是一元二次方程的根,則3、下列命題中的真命題是(
)A.矩形的對角線相等 B.對角線相等的四邊形是矩形C.菱形的對角線互相垂直平分 D.對角線互相垂直的四邊形是菱形第Ⅱ卷(非選擇題80分)三、填空題(10小題,每小題2分,共計20分)1、如圖,Rt△ABC中,∠ACB=90°,AB=6,D是AB的中點,則CD=_____.2、如圖,在一塊長為22m,寬為14m的矩形空地內修建三條寬度相等的小路(陰影部分),其余部分種植花草.若花草的種植面積為240m2,則小路的寬為________m.3、從2、6、9三個數(shù)字中任選兩個,用這兩個數(shù)字分別作為十位數(shù)和個位數(shù)組成一個兩位數(shù),在所有得到的兩位數(shù)中隨機抽取一個兩位數(shù),這個兩位數(shù)是4的倍數(shù)的概率是____.4、若m,n是關于x的方程x2-3x-3=0的兩根,則代數(shù)式m2+n2-2mn=_____.5、如圖,正方形ABCD的邊長為6,點E在邊CD上.以點A為中心,把△ADE順時針旋轉90°至△ABF的位置.若DE=2,則FE=___.6、《九章算術》是我國古代的數(shù)學名著,其中“勾股”章有一題,大意是說:已知矩形門的高比寬多尺,門的對角線長尺,那么門的高和寬各是多少?如果設門的寬為尺,根據(jù)題意,那么可列方程___________.7、如圖,在矩形中,點分別在上,.只需添加一個條件即可證明四邊形是菱形,這個條件可以是______________(寫出一個即可).8、設分別為一元二次方程的兩個實數(shù)根,則____.9、如圖,直角三角形ABC中,AC=1,BC=2,P為斜邊AB上一動點.PE⊥BC,PF⊥CA,則線段EF長的最小值為_________.10、“降次”是解一元二次方程的基本思想,用這種思想解高次方程x3-x=0,它的解是_____________.四、解答題(6小題,每小題10分,共計60分)1、已知x1,x2是關于x的一元二次方程x2-4mx+4m2-9=0的兩實數(shù)根.(1)若這個方程有一個根為-1,求m的值;(2)若這個方程的一個根大于-1,另一個根小于-1,求m的取值范圍;(3)已知Rt△ABC的一邊長為7,x1,x2恰好是此三角形的另外兩邊的邊長,求m的值.2、解方程:(1)2x2-5x-3=0;(2)x2-2x=2x-1;(3)x2+3x+2=03、如圖,在四邊形中,AB//DC,,對角線,交于點,平分,過點作交的延長線于點,連接.(1)求證:四邊形是菱形;(2)若,,求的長.4、如圖,在四邊形ABCD中,AD∥BC,AD=12cm,BC=15cm,點P自點A向D以1cm/s的速度運動,到D點即停止.點Q自點C向B以2cm/s的速度運動,到B點即停止,點P,Q同時出發(fā),設運動時間為t(s).(1)用含t的代數(shù)式表示:AP=;DP=;BQ=;CQ=.(2)當t為何值時,四邊形APQB是平行四邊形?(3)當t為何值時,四邊形PDCQ是平行四邊形?5、在正方形ABCD中,對角線BD所在的直線上有兩點E、F滿足BE=DF,連接AE、AF、CE、CF,如圖所示.(1)求證:△ABE≌△ADF;(2)試判斷四邊形AECF的形狀,并說明理由.6、端午節(jié)是我國的傳統(tǒng)節(jié)日,益民食品廠為了解市民對去年銷量較好的花生粽子、水果粽子、豆沙粽子、紅棗粽子(分別用A、B、C、D表示)這四種不同口味的粽子的喜愛情況,對某居民區(qū)的市民進行了抽樣調查,并根據(jù)調查結果繪制了如下兩幅不完整的統(tǒng)計圖.(1)本次參加抽樣調查的居民有多少人?(2)將兩幅統(tǒng)計圖補充完整;(3)小明喜歡吃花生粽子和紅棗粽子,媽媽為他準備了四種粽子各一個,請用“列表法”或“畫樹形圖”的方法,求出小明同時選中花生粽子和紅棗粽子的概率.-參考答案-一、單選題1、A【解析】【分析】先根據(jù)三角形中位線定理證明四邊形EFGH是平行四邊形,然后根據(jù)菱形,矩形,正方形的判定進行逐一判斷即可.【詳解】解:∵點E、F、G、H分別是四邊形ABCD的邊AB、BC、CD、DA的中點,∴EH是△ABD的中位線,∴,,同理,∴EH=GF,GH=EF,∴四邊形EFGH是平行四邊形,①若AC=BD,則EH=GF=GH=EF,則四邊形EFGH是菱形,故①錯誤;②若AC⊥BD,則EF⊥EH,∴平行四邊形EFGH是矩形,故②錯誤;③若AC與BD互相垂直且相等,結合①②的判斷可知四邊形EFGH是正方形,故③正確;④若四邊形EFGH是平行四邊形,并不能推出AC與BD互相平分,故④錯誤,故選A.【考點】本題主要考查了中點四邊形,三角形中位線定理,熟知中點四邊形的知識是解題的關鍵.2、A【解析】【分析】先求出方程的解,即可得出AC=4,BD=2,根據(jù)菱形的性質求出AO和OD,根據(jù)勾股定理求出AD即可.【詳解】解:解方程x2?6x+8=0得:x=4或2,即AC=4,BD=2,∵四邊形ABCD是菱形,∴∠AOD=90°,AO=OC=2,BO=DO=1,由勾股定理得:AD==,故選:A.【考點】本題考查了解一元二次方程和菱形的性質,能求出方程的解是解此題的關鍵.3、A【解析】【分析】首先根據(jù)題意列出表格,然后由表格即可求得所有等可能的結果與都指向3的情況數(shù),繼而求得答案.【詳解】解:列表如下:12341234共有16種等可能的結果,兩個轉盤的指針都指向3的只有1種結果,兩個轉盤的指針都指向3的概率為,故選:A.【考點】此題考查了樹狀圖法與列表法求概率.用到的知識點為:概率所求情況數(shù)與總情況數(shù)之比.4、D【解析】【分析】根據(jù)一元二次方程判別式的性質分析,即可得到答案.【詳解】∵∴x2-3x+1=0有兩個不相等的實數(shù)根故選:D.【考點】本題考查了一元二次方程的知識;解題的關鍵是熟練掌握一元二次方程判別式的性質,從而完成求解.5、D【解析】【分析】利用一元二次方程的定義和根的判別式的意義得到k≠0且△=(-2)2-4k×(-3)≥0,然后求出兩不等式的公共部分即可.【詳解】解:根據(jù)題意得k≠0且△=(-2)2-4k×(-3)≥0,解得且k≠0.故選:D.【考點】本題考查了根的判別式:一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關系:當△>0時,方程有兩個不相等的實數(shù)根;當△=0時,方程有兩個相等的實數(shù)根;當△<0時,方程無實數(shù)根.也考查了一元二次方程的定義.6、C【解析】【分析】如圖,取AC的中點T,連接DT,MT.利用三角形的中位線定理求出DT,利用直角三角形的中線的性質求出MT,再根據(jù)DM≥MT-DT,可得結論.【詳解】解:如圖,取AC的中點T,連接DT,MT.∵AD=DB,AT=TC,∴DT=BC=2,∵CE⊥AF,∴∠AMC=90°,∴TM=AC=3,∴點M的運動軌跡是以T為圓心,TM為半徑的圓,∴DM≥TM-DT=3-2=1,∴DM的最小值為1,故選:C.【考點】本題考查了三角形中位線定理,直角三角形斜邊中線的性質等知識,解題的關鍵是學會添加常用輔助線,構造三角形中位線,直角三角形斜邊中線解決問題.7、A【解析】【分析】將x2-x看作一個整體,然后利用因式分解法解方程求出x2-x的值,再整體代入進行求解即可.【詳解】∵(x2﹣x)2﹣4(x2﹣x)﹣12=0,∴(x2﹣x+2)(x2﹣x﹣6)=0,∴x2﹣x+2=0或x2﹣x﹣6=0,∴x2﹣x=﹣2或x2﹣x=6;當x2﹣x=﹣2時,x2﹣x+2=0,∵b2﹣4ac=1﹣4×1×2=﹣7<0,∴此方程無實數(shù)解;當x2﹣x=6時,x2﹣x+1=7,故選A.【考點】本題考查了用因式分解法解一元二次方程,解本題的關鍵是把x2-x看成一個整體.二、多選題1、ACD【解析】【分析】根據(jù)矩形的性質得到:矩形的對角線相等且互相平分,根據(jù)矩形的判定:對角線相等且互相平分且相等的四邊形是矩形,進行逐一判斷即可.【詳解】A.矩形的對角線互相平分,且相等,但不一定互相垂直,說法錯誤,本選項符合題意;B.矩形的對角線相等且互相平分,說法正確,本選項不符合題意;C.對角線相等的四邊形不一定為矩形,例如等腰梯形對角線相等,但不是矩形,說法錯誤,本選項符合題意;D.對角線互相平分的四邊形為平行四邊形,不一定為矩形,說法錯誤,本選項符合題意;故選ACD.【考點】考查矩形的判定與性質,熟練掌握矩形的判定定理與性質定理是解決問題的關鍵.2、ABD【解析】【分析】A正確,利用判別式判斷即可.B正確,證明Δ>0,即可判斷.C錯誤,c=0時,結論不成立.D正確,利用求根公式,判斷即可.【詳解】解:A、當x=2是,4a+2b+c=0,故x=2是方程的根;則方程ax2+bx+c=0必有實數(shù)根,A正確,B、∵Δ=b2?4ac=(3a+2)2?4a(2a+2)=9a2+12a+4?8a2?8a=a2+4a+4=(a+2)2,∵a>0,∴Δ>0,∴方程有兩個不相等的實數(shù)根,故B正確.C、∵若c是方程ax2+bx+c=0的一個根,∴ac2+bc+c=0,∴c(ac+b+1)=0,∴c=0或ac+b+1=0,故C錯誤.D、∵t是一元二次方程ax2+bx+c=0的根∴t=,∴b2?4ac=(2at+b)2,故D正確,故答案為:A,B,D.【考點】本題考查命題與定理,一元二次方程的根的判別式等知識,解題的關鍵是學會利用參數(shù)解決問題,屬于中考??碱}型.3、AC【解析】【分析】根據(jù)菱形的判定與性質,矩形的判定和性質即可進行判斷.【詳解】解:A、矩形的對角線相等,是真命題,符合題意;B、對角線相等的平行四邊形是矩形,是假命題,不符合題意;C、菱形的對角線互相垂直平分,是真命題,符合題意;D、對角線互相垂直平分的四邊形是菱形,是假命題,不符合題意;故選AC.【考點】本題考查了,矩形的判定,菱形的判定與性質,解題的關鍵是掌握所學的定理.三、填空題1、3【解析】【分析】根據(jù)直角三角形斜邊上的中線等于斜邊的一半解答.【詳解】∵∠ACB=90°,D為AB的中點,∴CD=AB=×6=3.故答案為3.【考點】本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質,熟記性質是解題的關鍵.2、2【解析】【分析】設小路寬為xm,則種植花草部分的面積等同于長(22-x)m,寬(14-x)m的矩形的面積,根據(jù)花草的種植面積為240m2,即可得出關于x的一元二次方程,解之取其符合題意的值即可得出結論.【詳解】解:設小路寬為xm,則種植花草部分的面積等同于長(22-x)m,寬(14-x)m的矩形的面積,依題意得:(22-x)(14-x)=240,整理得:x2-36x+68=0,解得:x1=2,x2=34(不合題意,舍去).故答案為:2.【考點】本題考查了一元二次方程的應用,找準等量關系,正確列出一元二次方程是解題的關鍵.3、【解析】【分析】畫樹狀圖,共有6種等可能的結果,在所有得到的兩位數(shù)中隨機抽取一個兩位數(shù),這個兩位數(shù)是4的倍數(shù)的結果有2種,再由概率公式求解即可.【詳解】解:畫樹狀圖如圖:共有6種等可能的結果,在所有得到的兩位數(shù)中隨機抽取一個兩位數(shù),這個兩位數(shù)是4的倍數(shù)的結果有2種,∴在所有得到的兩位數(shù)中隨機抽取一個兩位數(shù),這個兩位數(shù)是4的倍數(shù)的概率為=,故答案為:.【考點】本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.4、21【解析】【分析】先根據(jù)根與系數(shù)的關系得到m+n=3,mn=﹣3,再根據(jù)完全平方公式變形得到m2+n2﹣2mn=(m+n)2﹣4mn,然后利用整體代入的方法計算.【詳解】解:∵m,n是關于x的方程x2-3x-3=0的兩根,∴m+n=3,mn=﹣3,∴m2+n2﹣2mn=(m+n)2﹣4mn=32﹣4×(﹣3)=21.故答案為:21.【考點】本題考查了根與系數(shù)的關系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根時,x1+x2,x1x2.5、【解析】【分析】由旋轉的性質可得BF=DE=2,∠D=∠ABF=90°,在直角△EFC中,由勾股定理可求解.【詳解】解:∵把△ADE順時針旋轉90°得△ABF,∴BF=DE=2,∠D=∠ABF=90°,∴∠ABC+∠ABF=180°,∴點F,點B,點C共線,在直角△EFC中,EC=6-2=4,CF=BC+BF=8.根據(jù)勾股定理得:EF=,故答案為:.【考點】本題考查了旋轉的性質,正方形的性質,勾股定理,靈活運用這些性質解決問題是本題的關鍵.6、或【解析】【分析】設門的寬為x尺,則門的高為(x+6)尺,利用勾股定理,即可得出關于x的一元二次方程,此題得解.【詳解】解:設門的寬為x尺,則門的高為(x+6)尺,依題意得:即或.故答案為:或.【考點】本題考查了由實際問題抽象出一元二次方程以及勾股定理的應用,找準等量關系,正確列出一元二次方程是解題的關鍵.7、(答案不唯一)【解析】【分析】由題意易得四邊形是平行四邊形,然后根據(jù)菱形的判定定理可進行求解.【詳解】解:∵四邊形是矩形,∴,∵,∴四邊形是平行四邊形,若要添加一個條件使其為菱形,則可添加或AE=CE或CE=CF或AF=CF,理由:一組鄰邊相等的平行四邊形是菱形;故答案為(答案不唯一).【考點】本題主要考查菱形的判定定理、矩形的性質及平行四邊形的判定,熟練掌握菱形的判定定理、矩形的性質及平行四邊形的判定是解題的關鍵.8、2020【解析】【分析】根據(jù)一元二次方程的解結合根與系數(shù)的關系即可得出m2+2m=2022,m+n=?2,將其代入m2+3m+n=m2+2m+(m+n)中即可求出結論.【詳解】解:∵m,n分別為一元二次方程x2+2x?2022=0的兩個實數(shù)根,∴m2+2m=2022,m+n=?2,∴m2+3m+n=m2+2m+(m+n)=2022+(?2)=2020.故答案為:2020.【考點】本題考查了根與系數(shù)的關系以及一元二次方程的解,根據(jù)一元二次方程的解結合根與系數(shù)的關系得出m2+2m=2022,m+n=?2是解題的關鍵.9、.【解析】【分析】先連接PC,判定四邊形ECFP是矩形,得到EF=PC,再根據(jù)當PC最小時,EF也最小,根據(jù)垂線段最短,可得當CP⊥AB時,PC最小,最后根據(jù)面積法,求得CP的長即可得到線段EF長的最小值.【詳解】解:連接PC,∵PE⊥BC,PF⊥CA,∴∠PEC=∠PFC=∠C=90°,∴四邊形ECFP是矩形,∴EF=PC,∴當PC最小時,EF也最小,∵垂線段最短,∴當CP⊥AB時,PC最小,∵AC=1,BC=2,∴AB=,又∵當CP⊥AB時,×AC×BC=×AB×CP,∴.∴線段EF長的最小值為.故答案為:.【考點】本題主要考查了矩形的判定與性質,勾股定理以及垂線段最短的綜合應用,解決問題的關鍵是運用矩形對角線相等的性質進行求解.10、【解析】【分析】先把方程的左邊分解因式,再化為三個一次方程進行降次,再解一次方程即可.【詳解】解:則或或解得:故答案為:【考點】本題考查的是利用因式分解的方法把高次方程轉化為一次方程,掌握“因式分解的方法與應用”是解本題的關鍵.四、解答題1、(1)m的值為1或-2(2)-2<m<1(3)m=或m=【解析】【分析】(1)把x=-1代入方程,列出m的一元二次方程,求出m的值;(2)首先用m表示出方程的兩根,然后列出m的不等式組,求出m的取值范圍;(3)首先用m表示出方程的兩根,分直角△ABC的斜邊長為7或2m+3,根據(jù)勾股定理求出m的值.(1)解:∵x1,x2是一元二次方程x2-4mx+4m2-9=0的兩實數(shù)根,這個方程有一個根為-1,∴將x=-1代入方程x2-4mx+4m2-9=0,得1+4m+4m2-9=0.解得m=1或m=-2.∴m的值為1或-2.(2)解:∵x2-4mx+4m2=9,∴(x-2m)2=9,即x-2m=±3.∴x1=2m+3,x2=2m-3.∵2m+3>2m-3,∴解得-2<m<1.∴m的取值范圍是-2<m<1.(3)解:由(2)可知方程x2-4mx+4m2-9=0的兩根分別為2m+3,2m-3.若Rt△ABC的斜邊長為7,則有49=(2m+3)2+(2m-3)2.解得m=±.∵邊長必須是正數(shù),∴m=.2、(1)x1=-,x2=3(2)x1=2+,x2=2-(3)x1=-1,x2=-2【解析】【分析】(1)直接用公式法求解;(2)用配方法求解;(3)用因式分解法求解.(1)解:∵a=2,b=-5,c=-3,∴b2-4ac=(-5)2-4×2×(-3)=49>0,∴x==,∴x1=-,x2=3;(2)解:移項,得x2-4x=-1,配方,得x2-4x+4=-1+4,即(x-2)2=3,兩邊開平方,得x-2=±,即x-2=或x-2=-,∴x1=2+,x2=2-;(3)解:原方程可變形為(x+1)(x+2)=0,∴x+1=0或x+2=0,∴x1=-1,x2=-2.【考點】本題考查一元二次方程解法,根據(jù)方程的特征,選擇適當方法求解是解題的關鍵.3、(1)證明見解析;(2)OE=2.【解析】【分析】(1)根據(jù)一組對邊相等的平行四邊形是菱形進行判定即可.(2)根據(jù)菱形的性質和勾股定理求出,根據(jù)直角三角形斜邊的中線等于斜邊的一半即可求解.【詳解】(1)證明:∵AB//CD,∴,∵平分,∴,∴,∴,又∵,∴,又∵∥,∴四邊形是平行四邊形,又∵,∴是菱形.(2)解:∵四邊形是菱形,對角線、交于點,∴,,,∴,在Rt△AOB中,,∴,∵,∴,在Rt△AEC中,,為中點,∴.【考點】本題考查了平行四邊形的性質和判定,菱形的判定與性質,直角三角形的性質,勾股定理等,熟練掌握菱形的判定方法以及直角三角形斜邊的中線等于斜邊的一半是解題的關鍵.4、(1)t,12﹣t,15﹣2t,2t(2)t=5s時四邊形APQB是平行四邊形(3)當t=4s時,四邊形PDCQ是平行四邊形【解析】【分析】(1)根據(jù)速度、路程以及時間的關系和線段之間的數(shù)量關系,即可求出AP,DP,BQ,CQ的長;(2)當AP=BQ時,四邊形APQB是平行四邊形,建立關于t的一元一次方程方程,解方程求出符合題意的t值即可;(3)當PD=CQ時,四邊形PDCQ是平行四邊形;建立關于t的一元一次方程方程,解方程求出符合題意的t值即可.【詳解】解:(1)AP=t,DP=12﹣t,BQ=15﹣2t,CQ=2t;(2)根據(jù)題意有AP=t,CQ=2t,PD=12﹣t,BQ=15﹣2t.∵AD∥BC,∴當AP=BQ時,四邊形APQB是平行四邊形,∴t=15﹣2t,解得t=5,∴t=5s時四邊形APQB是平行四邊形;(3)由AP=tcm,CQ=2tcm,∵
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版建筑工程退場管理與協(xié)議書
- 2025年吉林省高校畢業(yè)生“三支一扶”計劃招募(580人)考試備考題庫及答案解析
- 2025云南昭通市政務服務管理局招聘城鎮(zhèn)公益性崗位工作人員2人筆試備考試題及答案解析
- 2025云南省楚雄州武定縣貓街中學教師招考流動(4人)筆試備考試題及答案解析
- 2025內蒙古錫林郭勒盟二連浩特市民政事業(yè)發(fā)展中心招聘4人筆試備考試題及答案解析
- 2025寧夏民族職業(yè)技術學院自主招聘急需緊缺高層次人才4人筆試備考試題及答案解析
- 2025安徽中醫(yī)藥大學第二批次招聘專業(yè)技術人員考試模擬試題及答案解析
- (2025年標準)水電全套承包協(xié)議書
- (2025年標準)婚前婚姻協(xié)議書
- (2025年標準)韓國研修協(xié)議書
- 基于遙感生態(tài)指數(shù)的柴達木盆地生態(tài)環(huán)境質量時空演變分析
- TCPQSXF006-2023消防水帶產品維護更換及售后服務
- QGDW12505-2025電化學儲能電站安全風險評估規(guī)范
- 2025至2030中國螢石市場供給前景預測及發(fā)展戰(zhàn)略規(guī)劃研究報告
- 完工清賬協(xié)議書格式模板
- 小學生地質科普課件
- 2024-2025學年下學期高中化學人教版高二同步經典題精煉之有機物的合成(解答題)
- 《活在課堂里》讀書分享
- 《突破式溝通技巧》培訓課件:高效溝通賦能成長
- TLYCY 3071-2024 森林草原防火無人機監(jiān)測技術規(guī)范
- 《急診科患者氣道管理》課件
評論
0/150
提交評論