




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
人教版8年級數(shù)學上冊《全等三角形》同步測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,若,則的理由是(
)A.SAS B.AAS C.ASA D.HL2、已知銳角,如圖,(1)在射線上取點,,分別以點為圓心,,長為半徑作弧,交射線于點,;(2)連接,交于點.根據(jù)以上作圖過程及所作圖形,下列結(jié)論錯誤的是(
)A. B.C.若,則 D.點在的平分線上3、下列選項中表示兩個全等圖形的是()A.形狀相同的兩個圖形 B.能夠完全重合的兩個圖形C.面積相等的兩個圖形 D.周長相等的兩個圖形4、如圖,點O是△ABC中∠BCA,∠ABC的平分線的交點,已知△ABC的面積是12,周長是8,則點O到邊BC的距離是(
)A.1 B.2C.3 D.45、如圖,已知,則圖中全等三角形的總對數(shù)是A.3 B.4 C.5 D.6第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,在中,,以點為圓心,任意長為半徑作弧,分別交于和,再分別以點為圓心,大于二分之一為半徑作弧,兩弧交于點,連接并延長交于點,過點作于.若,則的面積為________.2、在△ABC中,AB=5,BC邊上的中線AD=4,則AC的長m的取值范圍是_______.3、如圖,ADBC,,,連接AC,過點D作于E,過點B作于F.(1)若,則∠ADE為___°(2)寫出線段BF、EF、DE三者間的數(shù)量關(guān)系___.4、如圖,在△ABC中,∠B=47°,三角形的外角∠DAC和∠ACF的平分線交于點E,則∠ABE=_____°.5、如圖,在中,按以下步驟作圖:①以點B為圓心,任意長為半徑作弧,分別交AB、BC于點D、E.②分別以點D、E為圓心,大于的同樣長為半徑作弧,兩弧交于點F.③作射線BF交AC于點G.如果,,的面積為18,則的面積為________.三、解答題(5小題,每小題10分,共計50分)1、如圖,已知,,,求證:.2、(1)如圖①,和都是等邊三角形,且點,,在一條直線上,連結(jié)和,直線,相交于點.則線段與的數(shù)量關(guān)系為_____________.與相交構(gòu)成的銳角的度數(shù)為___________.(2)如圖②,點,,不在同一條直線上,其它條件不變,上述的結(jié)論是否還成立.(3)應(yīng)用:如圖③,點,,不在同一條直線上,其它條件依然不變,此時恰好有.設(shè)直線交于點,請把圖形補全.若,則___________.3、如圖,在中,,點在的延長線上,于點,若,求證:.4、小明和小亮在學習探索三角形全等時,碰到如下一題:如圖1,若AC=AD,BC=BD,則△ACB與△ADB有怎樣的關(guān)系?(1)請你幫他們解答,并說明理由.(2)細心的小明在解答的過程中,發(fā)現(xiàn)如果在AB上任取一點E,連接CE、DE,則有CE=DE,你知道為什么嗎?(如圖2)(3)小亮在小明說出理由后,提出如果在AB的延長線上任取一點P,也有第2題類似的結(jié)論.請你幫他畫出圖形,并證明結(jié)論.5、如圖,已知,.求證:.-參考答案-一、單選題1、D【解析】【分析】根據(jù)兩直角三角形全等的判定定理HL推出即可.【詳解】解:∠B=∠C=90°,在Rt△ABD和Rt△ACD中,,∴Rt△ABD≌Rt△ACD(HL),故選:D.【考點】本題考查了全等三角形的判定定理,能熟記全等三角形的判定定理是解此題的關(guān)鍵,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,兩直角三角形全等還有HL.2、C【解析】【分析】根據(jù)題意可知,即可推斷結(jié)論A;先證明,再證明即可證明結(jié)論B;連接OP,可證明可證明結(jié)論D;由此可知答案.【詳解】解:由題意可知,,,故選項A正確,不符合題意;在和中,,,在和中,,,,故選項B正確,不符合題意;連接OP,,,在和中,,,,點在的平分線上,故選項D正確,不符合題意;若,,則,而根據(jù)題意不能證明,故不能證明,故選項C錯誤,符合題意;故選:C.【考點】本題考查角平分線的判定,全等三角形的判定與性質(zhì),明確以某一半徑畫弧時,準確找到相等的線段是解題的關(guān)鍵.3、B【解析】【分析】利用全等圖形的定義分析即可.【詳解】A、形狀相同的兩個圖形,不一定是全等圖形,故此選項錯誤;B、能夠完全重合的兩個圖形,一定是全等圖形,故此選項正確;C、面積相等的兩個圖形,不一定是全等圖形,故此選項錯誤;D、周長相等的兩個圖形,不一定是全等圖形,故此選項錯誤;故選B.【考點】此題主要考查了全等圖形,正確把握全等圖形的定義是解題關(guān)鍵.4、C【解析】【分析】過點O作OE⊥AB于E,OF⊥AC于F,連接OA,根據(jù)角平分線的性質(zhì)得:OE=OF=OD然后根據(jù)△ABC的面積是12,周長是8,即可得出點O到邊BC的距離.【詳解】如圖,過點O作OE⊥AB于E,OF⊥AC于F,連接OA.∵點O是∠ABC,∠ACB平分線的交點,∴OE=OD,OF=OD,即OE=OF=OD∴S△ABC=S△ABO+S△BCO+S△ACO=AB·OE+BC·OD+AC·OF=×OD×(AB+BC+AC)=×OD×8=12OD=3故選:C【考點】此題主要考查了角平分線的性質(zhì)以及三角形面積求法,角的平分線上的點到角的兩邊的距離相等,正確表示出三角形面積是解題關(guān)鍵.5、D【解析】【分析】根據(jù)全等三角形的判定方法進行判斷.全等三角形的5種判定方法中,選用哪一種方法,取決于題目中的已知條件.【詳解】解:∵AB∥DC,AD∥BC,∴∠DAC=∠BCA,∠CDB=∠ABD,∠DCA=∠BAC,∠ADB=∠CBD,又∵BE=DF,∴由∠ADB=∠CBD,DB=BD,∠ABD=∠CDB,可得△ABD≌△CDB;由∠DAC=∠BCA,AC=CA,∠DCA=∠BAC,可得△ACD≌△CAB;∴AO=CO,DO=BO,由∠DAO=∠BCO,AO=CO,∠AOD=∠COB,可得△AOD≌△COB;由∠CDB=∠ABD,∠COD=∠AOB,CO=AO,可得△COD≌△AOB;由∠DCA=∠BAC,∠COF=∠AOE,CO=AO,可得△AOE≌△COF;由∠CDB=∠ABD,∠DOF=∠BOE,DO=BO,可得△DOF≌△BOE;故選D.【考點】本題主要考查了全等三角形的判定與性質(zhì)的運用,解題時注意:若已知兩邊對應(yīng)相等,則找它們的夾角或第三邊;若已知兩角對應(yīng)相等,則必須再找一組對邊對應(yīng)相等,或者是兩角的夾邊,若已知一邊一角,則找另一組角,或找這個角的另一組對應(yīng)鄰邊.二、填空題1、5【解析】【分析】作GM⊥AB于M,先利用基本作圖得到AG平分∠BAC,再根據(jù)角平分線的性質(zhì)得到GM=GH=2,然后根據(jù)三角形面積公式計算.【詳解】解:作GM⊥AB于M,由作法得AG平分∠BAC,而GH⊥AC,GM⊥AB,∴GM=GH=2,∴,故答案為:5.【考點】此題考查了角平分線的性質(zhì)定理:角平分線上的點到這個角的兩邊的距離相等,還考查了角平分線的作圖方法,正確理解題意得到AG平分∠BAC是解題的關(guān)鍵.2、3<m<13【解析】【分析】延長AD至E,使DE=AD=4,連接CE,利用SAS證明△ABD≌△ECD,可得CE=AB,再根據(jù)三角形的三邊的關(guān)系即可解決問題.【詳解】解:如圖,延長AD至E,使DE=AD=4,連接CE,∵AD是BC邊上的中線,∴BD=CD,在△ADB和△CDE中,,∴△ABD≌△ECD(SAS),∴CE=AB,在△ACE中,AE-CE<AC<AE+CE,∵CE=AB=5,AE=8,∴8-5<AC<8+5,∴3<AC<13,∴3<m<13.故答案為:3<m<13.【考點】此題考查了全等三角形的性質(zhì)與判定,三角形的三邊的關(guān)系,解題的關(guān)鍵是利用已知條件構(gòu)造全等三角形,然后利用三角形的三邊的關(guān)系解決問題.3、
30
【解析】【分析】(1)根據(jù)直角三角形兩銳角互余進行倒角即可求解;(2)根據(jù)ASA證明≌,即可求解.【詳解】解:(1)∵,且ADBC,,∴,∴,∴,∴;故答案為:30;(2)在和中,,∴≌,∴,,∵,∴.故答案為:【考點】本題考查直角三角形兩銳角互余、全等三角形的判定與性質(zhì)等內(nèi)容,根據(jù)已知條件進行倒角是解題的關(guān)鍵.4、23.5或【解析】【分析】首先作EM⊥BD、EN⊥BF、EO⊥AC垂足分別為M、N、O,再利用角平分線的性質(zhì)得出BE為∠ABC的角平分線,即可求解.【詳解】解:作EM⊥BD、EN⊥BF、EO⊥AC垂足分別為M、N、O,如圖所示,∵AE、CE是∠DAC和∠ACF的平分線,∴EM=EO,EO=EN,∴EM=EN,∴BE是∠ABC的角平分線,∴∠ABE=∠ABC=23.5°.故答案為:23.5.【考點】此題考查角平分線的性質(zhì):在角的內(nèi)部,到角的兩邊距離相等的點在角的平分線上,反之也是成立的.解題關(guān)鍵是利用角平分線的判定定理.5、27【解析】【分析】由作圖步驟可知BG為∠ABC的角平分線,過G作GH⊥BC,GM⊥AB,可得GM=GH,然后再結(jié)合已知條件和三角形的面積公式求得GH,最后運用三角形的面積公式解答即可.【詳解】解:由作圖作法可知:BG為∠ABC的角平分線過G作GH⊥BC,GM⊥AB∴GM=GH∴,故答案為27.【考點】本題考查了角平分線定理和三角形面積公式的應(yīng)用,通過作法發(fā)現(xiàn)角平分線并靈活應(yīng)用角平分線定理是解答本題的關(guān)鍵.三、解答題1、證明見解析.【解析】【分析】利用SSS可證明△ABD≌△ACE,可得∠BAD=∠1,∠ABD=∠2,根據(jù)三角形外角的性質(zhì)即可得∠3=∠BAD+∠ABD,即可得結(jié)論.【詳解】在△ABD和△ACE中,,∴△ABD≌△ACE,∴∠BAD=∠1,∠ABD=∠2,∵∠3=∠BAD+∠ABD,∴∠3=∠1+∠2.【考點】本題考查全等三角形的判定與性質(zhì)及三角形外角性質(zhì),熟練掌握判定定理及外角性質(zhì)是解題關(guān)鍵.2、(1)相等,;(2)成立,證明見解析;(3)見解析,4.【解析】【分析】(1)證明△BCD≌△ACE,并運用三角形外角和定理和等邊三角形的性質(zhì)求解即可;(2)是第(1)問的變式,只是位置變化,結(jié)論保持不變;(3)根據(jù)∠AEC=30°,判定AE是等邊三角形CDE的高,運用前面的結(jié)論,把條件集中到一個含有30°角的直角三角形中求解即可.【詳解】(1)相等;
.理由如下:∵和都是等邊三角形,∴,,,∴,在和中,∴.∴,.又∵,∴.(2)成立;理由如下:證明:∵和都是等邊三角形,∴,,,∴,在和中,∴.∴,.又∵,∴.(3)補全圖形(如圖),∵△CDE是等邊三角形,∴∠DEC=60°,∵∠AEC=30°,∴∠AEC=∠AED,∴EQ⊥DQ,∴∠DQP=90°,根據(jù)(1)知,∠BDC=∠AEC=30°,∵PQ=2,∴DP=4.故答案為:4.【考點】本題是一道猜想證明題,以兩線段之間的大小關(guān)系為基礎(chǔ),考查了等邊三角形的性質(zhì),三角形的全等,直角三角形的性質(zhì),證明兩個手拉手模型三角形全等是解題的關(guān)鍵.3、證明見解析【解析】【分析】利用AAS證明,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論.【詳解】證明:∵,∴∠ADE=90°,∵,∴∠ACB=∠ADE,在和中,∴,∴AE=AB,AC=AD,∴AE-AC=AB-AD,即EC=BD.【考點】本題考查全等三角形的判定和性質(zhì),解題的關(guān)鍵是熟練掌握基本知識.4、(1),理由見解析;(2)見解析;(3)見解析【解析】【分析】(1)根據(jù)全等三角形的判定定理證得;(2)由(1)中的全等三角形的對應(yīng)角相等證得,則由全等三角形的判定定理證得,則對應(yīng)邊;(3)同(2),利用全等三角
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 門診報銷面試題及答案
- 簡譜旋律考試題及答案
- 黑熱病考試題及答案
- java面試題及答案約瑟夫環(huán)
- 智能駕駛技術(shù)趨勢-1
- 孩子公益意識提升技巧
- 提升孩子專注力技巧
- 家電公司質(zhì)量追溯管理規(guī)定
- 2.5直線與圓的位置關(guān)系(第1課時位置關(guān)系、切線的判定與性質(zhì))(教學課件)數(shù)學蘇科版九年級上冊
- 保安隊列訓(xùn)練培訓(xùn)課件
- 中醫(yī)急癥診療方案(3篇)
- 2025年上海市高考化學試卷(含答案)
- 《人工智能概論-面向通識課程》全套教學課件
- 三區(qū)人才面試題及答案大全
- 物業(yè)服務(wù)禮儀培訓(xùn)大綱
- 2025年舞臺燈光設(shè)備項目市場調(diào)查研究報告
- 防火鋼質(zhì)門、卷簾門項目可行性研究報告-商業(yè)計劃書
- 普查保密協(xié)議書
- 《初學者指南:美術(shù)基礎(chǔ)課件》
- 冶金礦山采礦設(shè)計規(guī)范
- 配送車輛違章管理制度
評論
0/150
提交評論