




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
烏魯木齊第四中學(xué)7年級(jí)數(shù)學(xué)下冊(cè)第四章三角形定向練習(xí)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計(jì)20分)1、如圖,AB=AC,點(diǎn)D、E分別在AB、AC上,補(bǔ)充一個(gè)條件后,仍不能判定△ABE≌△ACD的是()A.∠B=∠C B.AD=AE C.BE=CD D.∠AEB=∠ADC2、已知線段AB=9cm,AC=5cm,下面有四個(gè)說法:①線段BC長可能為4cm;②線段BC長可能為14cm;③線段BC長不可能為3cm;④線段BC長可能為9cm.所有正確說法的序號(hào)是()A.①② B.③④ C.①②④ D.①②③④3、以下列長度的三條線段為邊,能組成三角形的是()A. B. C. D.4、滿足下列條件的兩個(gè)三角形不一定全等的是()A.周長相等的兩個(gè)三角形 B.有一腰和底邊對(duì)應(yīng)相等的兩個(gè)等腰三角形C.三邊都對(duì)應(yīng)相等的兩個(gè)三角形 D.兩條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形5、下列長度的三條線段能組成三角形的是()A.348 B.4410 C.5610 D.56116、如圖,已知△ABC中,AB=AC,∠A=72°,D為BC上一點(diǎn),在AB上取BF=CD,AC上取CE=BD,則∠FDE的度數(shù)為()A.54° B.56° C.64° D.66°7、有一個(gè)三角形的兩邊長分別為2和5,則第三邊的長可能是()A.2 B.2.5 C.3 D.58、下列長度的三條線段能組成三角形的是()A.2,3,6 B.2,4,7 C.3,3,5 D.3,3,79、如圖,AC=DC,∠BCE=∠DCA,要使△ABC≌△DEC,不能添加下列選項(xiàng)中的()A.∠A=∠D B.BC=ECC.AB=DE D.∠B=∠E10、如圖,和全等,且,對(duì)應(yīng).若,,,則的長為()A.4 B.5 C.6 D.無法確定第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計(jì)20分)1、如圖,點(diǎn)B、E、C、F在一條直線上,AB=DE,BE=CF,請(qǐng)?zhí)砑右粋€(gè)條件______,使△ABC≌△DEF.2、兩角和它們的夾邊分別相等的兩個(gè)三角形全等(可以簡寫成_____).3、如圖,Rt△ABC中,∠ACB=90°,AB=5,BC=3,將斜邊AB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°至AB′,連接B'C,則△AB′C的面積為_____.4、如圖,AC,BD相交于點(diǎn)O,若使,則還需添加的一個(gè)條件是_____________.(只要填一個(gè)即可)5、如圖,點(diǎn)E,F(xiàn)分別為線段BC,DB上的動(dòng)點(diǎn),BE=DF.要使AE+AF最小值,若用作圖方式確定E,F(xiàn),則步驟是_____.6、如圖,∠C=∠D=90°,AC=AD,請(qǐng)寫出一個(gè)正確的結(jié)論________.7、如圖,點(diǎn),在直線上,且,且,過,,分別作,,,若,,,則的面積是______.8、如圖,AE是△ABC的中線,BF是△ABE的中線,若△ABC的面積是20cm2,則S△ABF=_____cm2.9、如圖,在△ABC中,點(diǎn)D為BC邊延長線上一點(diǎn),若∠ACD=75°,∠A=45°,則∠B的度數(shù)為__________.10、如圖,△PBC的面積為5cm2,BP平分∠ABC,AP⊥BP于點(diǎn)P,則△ABC的面積為_____cm2.三、解答題(6小題,每小題10分,共計(jì)60分)1、如圖1,AM為△ABC的BC邊的中線,點(diǎn)P為AM上一點(diǎn),連接PB.(1)若P為線段AM的中點(diǎn).①設(shè)△ABP的面積為S1,△ABC的面積為S,求的值;②已知AB=5,AC=3,設(shè)AP=x,求x的取值范圍.(2)如圖2,若AC=BP,求證:∠BPM=∠CAM.2、已知AMCN,點(diǎn)B在直線AM、CN之間,AB⊥BC于點(diǎn)B.(1)如圖1,請(qǐng)直接寫出∠A和∠C之間的數(shù)量關(guān)系:.(2)如圖2,∠A和∠C滿足怎樣的數(shù)量關(guān)系?請(qǐng)說明理由.(3)如圖3,AE平分∠MAB,CH平分∠NCB,AE與CH交于點(diǎn)G,則∠AGH的度數(shù)為.3、如圖,已知點(diǎn)A,E,F(xiàn),C在同一條直線上,AE=CF,AB∥CD,∠B=∠D.請(qǐng)問線段AB與CD相等嗎?說明理由.4、如圖,在長方形ABCD中,AD=3,DC=5,動(dòng)點(diǎn)M從A點(diǎn)出發(fā)沿線段AD—DC以每秒1個(gè)單位長度的速度向終點(diǎn)C運(yùn)動(dòng);動(dòng)點(diǎn)N同時(shí)從C點(diǎn)出發(fā)沿線段CD—DA以每秒3個(gè)單位長度的速度向終點(diǎn)A運(yùn)動(dòng).ME⊥PQ于點(diǎn)E,NF⊥PQ于點(diǎn)F,設(shè)運(yùn)動(dòng)的時(shí)間為秒.(1)在運(yùn)動(dòng)過程中當(dāng)M、N兩點(diǎn)相遇時(shí),求t的值.(2)在整個(gè)運(yùn)動(dòng)過程中,求DM的長.(用含t的代數(shù)式表示)(3)當(dāng)DEM與DFN全等時(shí),請(qǐng)直接寫出所有滿足條件的DN的長.5、如圖,點(diǎn)A,B,C,D在同一條直線上,CEDF,EC=BD,AC=FD.求證:AE=FB.6、如圖,點(diǎn)B、F、C、E在同一條直線上,∠B=∠E,AB=DE,BF=CE.求證:AC=DF.-參考答案-一、單選題1、C【分析】根據(jù)全等三角形的判定定理進(jìn)行判斷即可.【詳解】解:根據(jù)題意可知:AB=AC,,若,則根據(jù)可以證明△ABE≌△ACD,故A不符合題意;若AD=AE,則根據(jù)可以證明△ABE≌△ACD,故B不符合題意;若BE=CD,則根據(jù)不可以證明△ABE≌△ACD,故C符合題意;若∠AEB=∠ADC,則根據(jù)可以證明△ABE≌△ACD,故D不符合題意;故選:C.【點(diǎn)睛】本題考查了全等三角形的判定,熟練掌握全等三角形的判定定理是解本題的關(guān)鍵.2、D【分析】分三種情況:C在線段AB上,C在線段BA的延長線上以及C不在直線AB上結(jié)合線段的和差以及三角形三邊的關(guān)系分別求解即可.【詳解】解:∵線段AB=9cm,AC=5cm,∴如圖1,A,B,C在一條直線上,∴BC=AB?AC=9?5=4(cm),故①正確;如圖2,當(dāng)A,B,C在一條直線上,∴BC=AB+AC=9+5=14(cm),故②正確;如圖3,當(dāng)A,B,C不在一條直線上,9?5=4cm<BC<9+5=14cm,故線段BC可能為9cm,不可能為3cm,故③,④正確.故選D.【點(diǎn)睛】此題主要考查了三角形三邊關(guān)系,線段之間的關(guān)系,正確分類討論是解題關(guān)鍵.3、D【分析】根據(jù)三角形的三邊關(guān)系,即可求解.【詳解】解:A、因?yàn)?,所以不能?gòu)成三角形,故本選項(xiàng)不符合題意;B、因?yàn)?,所以不能?gòu)成三角形,故本選項(xiàng)不符合題意;C、因?yàn)?,所以不能?gòu)成三角形,故本選項(xiàng)不符合題意;D、因?yàn)?,所以能?gòu)成三角形,故本選項(xiàng)符合題意;故選:D【點(diǎn)睛】本題主要考查了三角形的三邊關(guān)系,熟練掌握三角形的兩邊之和大于第三邊,兩邊之差小于第三邊是解題的關(guān)鍵.4、A【分析】根據(jù)全等三角形的判定方法求解即可.判定三角形全等的方法有:SSS,SAS對(duì)各選項(xiàng)進(jìn)行一一判斷即可.【詳解】解:A、周長相等的兩個(gè)三角形不一定全等,符合題意;B、有一腰和底邊對(duì)應(yīng)相等的兩個(gè)等腰三角形根據(jù)三邊對(duì)應(yīng)相等判定定理可判定全等,不符合題意;C、三邊都對(duì)應(yīng)相等的兩個(gè)三角形根據(jù)三邊對(duì)應(yīng)相等判定定理可判定全等,不符合題意;D、兩條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形根據(jù)SAS判定定理可判定全等,不符合題意.故選:A.【點(diǎn)睛】此題考查了全等三角形的判定方法,解題的關(guān)鍵是熟練掌握全等三角形的判定方法.判定三角形全等的方法有:SSS,SAS,AAS,ASA,HL(直角三角形).5、C【分析】根據(jù)三角形的任意兩邊之和大于第三邊對(duì)各選項(xiàng)分析判斷求解即可.【詳解】解:A.∵3+4<8,∴不能組成三角形,故本選項(xiàng)不符合題意;B.∵4+4<10,∴不能組成三角形,故本選項(xiàng)不符合題意;C.∵5+6>10,∴能組成三角形,故本選項(xiàng)符合題意;D.∵5+6=11,∴不能組成三角形,故本選項(xiàng)不符合題意;故選:C.【點(diǎn)睛】本題考查了三角形的三邊關(guān)系,熟記三角形的任意兩邊之和大于第三邊是解決問題的關(guān)鍵.6、A【分析】由“SAS”可證△BDF≌△CED,可得∠BFD=∠CDE,由外角的性質(zhì)可求解.【詳解】解答:解:∵AB=AC,∠A=72°,∴∠B=∠C=54°,在△BDF和△CED中,,∴△BDF≌△CED(SAS),∴∠BFD=∠CDE,∵∠FDC=∠B+∠BFD=∠CDE+∠FDE,∴∠FDE=∠B=54°,故選:A.【點(diǎn)睛】本題考查全等三角形的判定與性質(zhì),掌握全等三角形的判定定理與性質(zhì)是解題的關(guān)鍵.7、D【分析】根據(jù)三角形三邊關(guān)系,兩邊之和第三邊,兩邊之差小于第三邊即可判斷.【詳解】解:設(shè)第三邊為x,則5?2<x<5+2,即3<x<7,所以選項(xiàng)D符合題意.故選:D.【點(diǎn)睛】本題考查三角形三邊關(guān)系定理,記住兩邊之和第三邊,兩邊之差小于第三邊,屬于基礎(chǔ)題,中考常考題型.8、C【分析】根據(jù)三角形的三邊關(guān)系,逐項(xiàng)判斷即可求解.【詳解】解:A、因?yàn)?,所以不能組成三角形,故本選項(xiàng)不符合題意;B、因?yàn)?,所以不能組成三角形,故本選項(xiàng)不符合題意;C、因?yàn)椋阅芙M成三角形,故本選項(xiàng)符合題意;D、因?yàn)?,所以不能組成三角形,故本選項(xiàng)不符合題意;故選:C【點(diǎn)睛】本題主要考查了三角形的三邊關(guān)系,熟練掌握三角形的兩邊之和大于第三邊,兩邊之差小于第三邊是解題的關(guān)鍵.9、C【分析】根據(jù)全等三角形的判定定理進(jìn)行分析即可;【詳解】根據(jù)已知條件可得,即,∵AC=DC,∴已知三角形一角和角的一邊,根據(jù)全等條件可得:A.∠A=∠D,可根據(jù)ASA證明,A正確;B.BC=EC,可根據(jù)SAS證明,B正確;C.AB=DE,不能證明,C故錯(cuò)誤;D.∠B=∠E,根據(jù)AAS證明,D正確;故選:C.【點(diǎn)睛】本題主要考查了全等三角形的判定定理,掌握全等三角形的判定方法是解題的關(guān)鍵.10、A【分析】全等三角形對(duì)應(yīng)邊相等,對(duì)應(yīng)角相等,根據(jù)題中信息得出對(duì)應(yīng)關(guān)系即可.【詳解】∵和全等,,對(duì)應(yīng)∴∴AB=DF=4故選:A.【點(diǎn)睛】本題考查了全等三角形的概念及性質(zhì),應(yīng)注意①對(duì)應(yīng)邊、對(duì)應(yīng)角是對(duì)兩個(gè)三角形而言的,指兩條邊、兩個(gè)角的關(guān)系,而對(duì)邊、對(duì)角是指同一個(gè)三角形的邊和角的位置關(guān)系②可以進(jìn)一步推廣到全等三角形對(duì)應(yīng)邊上的高相等,對(duì)應(yīng)角的平分線相等,對(duì)應(yīng)邊上的中線相等,周長及面積相等③全等三角形有傳遞性.二、填空題1、(答案不唯一)【分析】添加條件AC=DF,即可利用SSS證明△ABC≌△DEF.【詳解】解:添加條件AC=DF,∵BE=CF,∴BE+EC=CF+EC,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS),故答案為:AC=DF(答案不唯一).【點(diǎn)睛】本題主要考查了全等三角形的判定,解題的關(guān)鍵在于能夠熟練掌握全等三角形的判定條件.2、角邊角或【分析】根據(jù)全等三角形的判定定理得出即可.【詳解】解答:解:兩角和它們的夾邊分別相等的兩個(gè)三角形全等,簡寫成角邊角或ASA,故答案為:角邊角或ASA.【點(diǎn)睛】本題考查了全等三角形的判定定理,掌握全等三角形的判定定理是解題的關(guān)鍵.3、【分析】根據(jù)題意過點(diǎn)B'作B'H⊥AC于H,由全等三角形的判定得出△ACB≌△B'HA(AAS),得AC=B'H=4,則有S△AB'C=AC?B′H即可求得答案.【詳解】解:過點(diǎn)B'作B'H⊥AC于H,∴∠AHB'=90°,∠BAB'=90°,∴∠HAB'+∠HB'A=90°,∠BAC+∠CAB'=90°,∴∠HB'A=∠CAB,在△ACB和△B'HA中,,∴△ACB≌△B'HA(AAS),∴AC=B'H,∵∠ACB=90°,AB=5,BC=3,∴AC===4,∴AC=B'H=4,∴S△AB'C=AC?B′H=×4×4=8.故答案為:8.【點(diǎn)睛】本題主要考查三角形全等的判定與性質(zhì)和旋轉(zhuǎn)的性質(zhì)以及勾股定理,根據(jù)題意利用全等三角形的判定證明△ACB≌△B'HA是解決問題的關(guān)鍵.4、OA=OD或AB=CD或OB=OC【分析】添加條件是,根據(jù)推出兩三角形全等即可.【詳解】解:,理由是:在和中,,理由是:在和中,,理由是:在和中,故答案為:OA=OD或AB=CD或OB=OC.【點(diǎn)睛】本題主要考查了全等三角形的判定,解題的關(guān)鍵是掌握全等三角形的5種判定方法中,選用哪一種方法,取決于題目中的已知條件,若已知兩邊對(duì)應(yīng)相等,則找它們的夾角或第三邊;若已知兩角對(duì)應(yīng)相等,則必須再找一組對(duì)邊對(duì)應(yīng)相等,且要是兩角的夾邊,若已知一邊一角,則找另一組角,或找這個(gè)角的另一組對(duì)應(yīng)鄰邊.5、①連接,作;②以點(diǎn)為圓心、長為半徑畫弧,交于點(diǎn);③連接交于點(diǎn);④以點(diǎn)為圓心、長為半徑畫弧,交于點(diǎn)【分析】按照①連接,作;②以點(diǎn)為圓心、長為半徑畫弧,交于點(diǎn);③連接交于點(diǎn);④以點(diǎn)為圓心、長為半徑畫弧,交于點(diǎn)的步驟作圖即可得.【詳解】解:步驟是①連接,作;②以點(diǎn)為圓心、長為半徑畫弧,交于點(diǎn);③連接交于點(diǎn);④以點(diǎn)為圓心、長為半徑畫弧,交于點(diǎn);如圖,點(diǎn)即為所求.故答案為:①連接,作;②以點(diǎn)為圓心、長為半徑畫弧,交于點(diǎn);③連接交于點(diǎn);④以點(diǎn)為圓心、長為半徑畫弧,交于點(diǎn).【點(diǎn)睛】本題考查了作一個(gè)角等于已知角、兩點(diǎn)之間線段最短、作線段、全等三角形的判定與性質(zhì)等知識(shí)點(diǎn),熟練掌握尺規(guī)作圖的方法是解題關(guān)鍵.6、BC=BD【分析】根據(jù)HL證明△ACB和△ADB全等解答即可.【詳解】解:在Rt△ACB和Rt△ADB中,,∴△ACB≌△ADB(HL),∴BC=BD,故答案為:BC=BD(答案不唯一).【點(diǎn)睛】此題考查全等三角形的判定和性質(zhì),關(guān)鍵是根據(jù)HL證明△ACB和△ADB全等解答.7、15【分析】根據(jù)AAS證明△EFA≌△AGB,△BGC≌△CHD,再根據(jù)全等三角形的性質(zhì)以及三角形的面積公式求解即可.【詳解】解:(1)∵EF⊥FG,BG⊥FG,∴∠EFA=∠AGB=90°,∴∠AEF+∠EAF=90°,又∵AE⊥AB,即∠EAB=90°,∴∠BAG+∠EAF=90°,∴∠AEF=∠BAG,在△AEC和△CDB中,,∴△EFA≌△AGB(AAS);同理可證△BGC≌△CHD(AAS),∴AG=EF=6,CG=DH=4,∴S△ABC=ACBG=(AG+GC)BG=(6+4)3=15.故答案為:15.【點(diǎn)睛】本題考查了三角形全等的性質(zhì)和判定,解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問題.8、5【分析】利用三角形的中線把三角形分成面積相等的兩個(gè)三角形進(jìn)行解答.【詳解】解:∵AE是△ABC的中線,BF是△ABE的中線,∴S△ABF=S△ABC=×20=5cm2.故答案為:5.【點(diǎn)睛】本題考查了三角形的面積,能夠利用三角形的中線把三角形分成面積相等的兩個(gè)三角形的性質(zhì)求解是解題的關(guān)鍵.9、30°【分析】根據(jù)三角形的外角的性質(zhì),即可求解.【詳解】解:∵,∴,∵∠ACD=75°,∠A=45°,∴.故答案為:30°【點(diǎn)睛】本題主要考查了三角形的外角性質(zhì),熟練掌握三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和是解題的關(guān)鍵.10、10【分析】根據(jù)已知條件證得△ABP≌△EBP,根據(jù)全等三角形的性質(zhì)得到AP=PE,得出S△ABP=S△EBP,S△ACP=S△ECP,推出S△ABC=2S△PBC,代入求出即可.【詳解】解:延長AP交BC于E,∵BP平分∠ABC,∴∠ABP=∠EBP,∵AP⊥BP,∴∠APB=∠EPB=90°,在△ABP和△EBP中,,∴△ABP≌△EBP(ASA),∴AP=PE,∴S△ABP=S△EBP,S△ACP=S△ECP,∴S△ABC=2S陰影=10(cm2),故答案為:10.【點(diǎn)睛】本題考查了全等三角形的性質(zhì)和判定,三角形的面積的應(yīng)用,注意:等底等高的三角形的面積相等.三、解答題1、(1)①,②;(2)證明見解析【分析】(1)①由中線定義即可得,故②過C點(diǎn)作AB平行線,過B點(diǎn)作AC平行線,相交于點(diǎn)N,連接ME,可得,AB=CE,則在中,有兩邊之和大于第三邊,兩邊之和小于第三邊,即可求出AE的取值范圍,即,又因?yàn)镻為線段AM,故.(2)延長PM到點(diǎn)D使PM=DM,連接DC,由邊角邊可證明,則對(duì)應(yīng)邊BP=CD相等,由等角對(duì)等邊即可求得∠BPM=∠CDM,同理可得∠CAM=∠CDM,所以∠BPM=∠CAM.【詳解】(1)①由AM為△ABC的BC邊的中線可知由P為線段AM的中點(diǎn)可知?jiǎng)t,故②過C點(diǎn)作AB平行線,過B點(diǎn)作AC平行線,相交于點(diǎn)N,連接ME∵AB//CE∴∠ABC=∠BCE,∠BAE=∠AEC,BM=MC∴(AAS)∴AB=CE在中有即得即∵P為線段AM的中點(diǎn)∴AM=2AP,∴即.(2)延長PM到點(diǎn)D使PM=DM,連接DC,∵PM=DM,∠BMP=∠CMD,BM=CM∴(SAS)∴BP=CD,∠BPM=∠CDM又∵AC=BP∴AC=CD∴∠CAM=∠CDM∴∠BPM=∠CAM【點(diǎn)睛】本題考查了三角形的綜合問題,其中三角形的一條中線把原三角形分成兩個(gè)等底同高的三角形,因此分得的兩個(gè)三角形面積相等,利用這一特點(diǎn)可以求解有關(guān)的面積問題;三角形三邊的關(guān)系:任意兩邊的和都大于第三邊;任意兩邊之和都要小于第三邊等性質(zhì)是解題的關(guān)鍵.2、(1)∠A+∠C=90°;(2)∠C﹣∠A=90°,見解析;(3)45°【分析】(1)過點(diǎn)B作BE∥AM,利用平行線的性質(zhì)即可求得結(jié)論;(2)過點(diǎn)B作BE∥AM,利用平行線的性質(zhì)即可求得結(jié)論;(3)利用(2)的結(jié)論和三角形的外角等于和它不相鄰的兩個(gè)內(nèi)角的和即可求得結(jié)論.【詳解】(1)過點(diǎn)B作BE∥AM,如圖,∵BE∥AM,∴∠A=∠ABE,∵BE∥AM,AM∥CN,∴BE∥CN,∴∠C=∠CBE,∵AB⊥BC,∴∠ABC=90°,∴∠A+∠C=∠ABE+∠CBE=∠ABC=90°.故答案為:∠A+∠C=90°;(2)∠A和∠C滿足:∠C﹣∠A=90°.理由:過點(diǎn)B作BE∥AM,如圖,∵BE∥AM,∴∠A=∠ABE,∵BE∥AM,AM∥CN,∴BE∥CN,∴∠C+∠CBE=180°,∴∠CBE=180°﹣∠C,∵AB⊥BC,∴∠ABC=90°,∴∠ABE+∠CBE=90°,∴∠A+180°﹣∠C=90°,∴∠C﹣∠A=90°;(3)設(shè)CH與AB交于點(diǎn)F,如圖,∵AE平分∠MAB,∴∠GAF=∠MAB,∵CH平分∠NCB,∴∠BCF=∠BCN,∵∠B=90°,∴∠BFC=90°﹣∠BCF,∵∠AFG=∠BFC,∴∠AFG=90°﹣∠BCF.∵∠AGH=∠GAF+∠AFG,∴∠AGH=∠MAB+90°﹣∠BCN=90°﹣(∠BCN﹣∠MAB).由(2)知:∠BCN﹣∠MAB=90°,∴∠AGH=90°﹣45°=45°.故答案為:45°.【點(diǎn)睛】本題考查平行線的性質(zhì)以及三角形外角的性質(zhì),由題作出輔助線是解題的關(guān)鍵.3、AB=CD,理由見解析.【分析】由平行線的性質(zhì)得出∠A=∠C,證明△ABF≌△CDE(AAS),由全等三角形的性質(zhì)得出AB=CD.【詳解】解:AB=CD.理由如下:∵AB∥CD,∴∠A=∠C,∵AE=CF,∴AE+EF=CF+EF,∴AF=CE,在△ABF和△CDE中,,∴△ABF≌△CDE(AAS),∴AB=CD.【點(diǎn)睛】本題考查了全等三角形的判定與性質(zhì),解題關(guān)鍵是熟練運(yùn)用全等三角形的判定定理證明三角形全等.4、(1)2;(2)當(dāng)0≤t≤3時(shí),DM=3-t,當(dāng)3<t≤8時(shí),DM=t
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 惠州車燈基本知識(shí)培訓(xùn)課件店
- 情緒溫度計(jì)課件
- 情感編舞基礎(chǔ)知識(shí)培訓(xùn)
- 懸浮的雞蛋課件教學(xué)
- 患者合法權(quán)益
- 數(shù)學(xué)教育活動(dòng)方案
- 網(wǎng)絡(luò)促銷策劃方案
- 五一節(jié)日的策劃方案
- 心功能衰竭管理的臨床應(yīng)用
- 家電公司檔案保管管理規(guī)定
- 2025年海南省警務(wù)輔助人員招聘考試(公共基礎(chǔ)知識(shí))歷年參考題庫含答案詳解(5套)
- 2025年醫(yī)學(xué)檢驗(yàn)在編考試題庫
- 2025年四川省高考化學(xué)試卷真題
- 高考3500詞匯表(完整版)
- 《建筑施工安全檢查標(biāo)準(zhǔn)》JGJ59-20248
- 1931CIE標(biāo)準(zhǔn)色度三刺激值
- 阻生牙拔除術(shù)PPT
- 框架柱豎筋機(jī)械連接不合格處理綜合措施
- 2022國家基層糖尿病防治管理指南(完整版)
- DBJ∕T 15-199-2020 裝配式混凝土結(jié)構(gòu)檢測(cè)技術(shù)標(biāo)準(zhǔn)
- DBJ∕T 13-233-2016 混凝土結(jié)構(gòu)加固修復(fù)用聚合物水泥砂漿施工及驗(yàn)收規(guī)程
評(píng)論
0/150
提交評(píng)論