




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
人教版8年級數學上冊《全等三角形》專項練習考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖:∠B=∠C=90°,E是BC的中點,DE平分∠ADC,則下列說法正確的有幾個(
)(1)AE平分∠DAB;(2)△EBA≌△DCE;(3)AB+CD=AD;
(4)AE⊥DE.(5)DE=AEA.2個 B.3個 C.4個 D.52、如圖,△ABC≌△ADE,∠B=80°,∠C=30°,∠DAC=35°,則∠EAC的度數為()A.40° B.30° C.35° D.25°3、如圖,矩形ABCD中,對角線AC的垂直平分線EF分別交BC,AD于點E,F,若BE=3,AF=5,則AC的長為(
)A. B. C.10 D.84、如圖,已知是的角平分線,是的垂直平分線,,,則的長為(
)A.6 B.5 C.4 D.5、作平分線的作圖過程如下:作法:(1)在和上分別截取、,使.(2)分別以,為圓心,大于的長為半徑作弧,兩弧交于點.(3)作射線,則就是的平分線.用下面的三角形全等的判定解釋作圖原理,最為恰當的是(
)A. B. C. D.第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,在和中,,,,,以點為頂點作,兩邊分別交,于點,,連接,則的周長為______.2、如圖,在中,,以點為圓心,任意長為半徑作弧,分別交于和,再分別以點為圓心,大于二分之一為半徑作弧,兩弧交于點,連接并延長交于點,過點作于.若,則的面積為________.3、如圖,點B,F,C,E在一條直線上,,,請?zhí)砑右粋€條件,使≌,這個添加的條件可以是______(只需寫一個,不添加輔助線).4、如圖,在△ABC中,∠B=47°,三角形的外角∠DAC和∠ACF的平分線交于點E,則∠ABE=_____°.5、如圖,△ABC中,BD平分∠ABC,AD⊥BD,△BCD的面積為10,△ACD的面積為6,則△ABD的面積是_________.三、解答題(5小題,每小題10分,共計50分)1、如圖,在△ABC中,∠ABC、∠ACB的平分線交于點D,延長BD交AC于E,G、F分別在BD、BC上,連接DF、GF,其中∠A=2∠BDF,GD=DE.(1)當∠A=80°時,求∠EDC的度數;(2)求證:CF=FG+CE.2、如圖,在四邊形ABCD中,已知BD平分∠ABC,∠BAD+∠C=180°,求證:AD=CD.3、如圖,在△ABC中,AB=AC,D是BC的中點,E,F分別是AB,AC上的點,且AE=AF.求證:DE=DF.4、如圖,AB=AD=BC=DC,∠C=∠D=∠ABE=∠BAD=90°,點E、F分別在邊BC、CD上,∠EAF=45°,過點A作∠GAB=∠FAD,且點G在CB的延長線上.(1)△GAB與△FAD全等嗎?為什么?(2)若DF=2,BE=3,求EF的長.5、如圖,PA=PB,∠PAM+∠PBN=180°,求證:OP平分∠AOB.-參考答案-一、單選題1、B【解析】【分析】過點E作EF⊥AD垂足為點F,證明△DEF≌△DEC(AAS);得出CE=EF,DC=DF,∠CED=∠FED,證明Rt△AFE≌Rt△ABE(HL);得出AF=AB,∠FAE=∠BAE,∠AEF=∠AEB,即可得出答案.【詳解】解:如圖,過點E作EF⊥AD,垂足為點F,可得∠DFE=90°,則∠DFE=∠C,∵DE平分∠ADC,∴∠FDE=∠CDE,在△DCE和△DFE中,,∴△DEF≌△DEC(AAS);∴CE=EF,DC=DF,∠CED=∠FED,∵E是BC的中點,∴CE=EB,∴EF=EB,在Rt△ABE和Rt△AFE中,,∴Rt△AFE≌Rt△ABE(HL);∴AF=AB,∠FAE=∠BAE,∠AEF=∠AEB,∴AE平分∠DAB,故結論(1)正確,則AD=AF+DF=AB+CD,故結論(3)正確;可得∠AED=∠FED+AEF=∠FEC+∠BEF=90°,即AE⊥DE故結論(4)正確.∵AB≠CD,AE≠DE,(5)錯誤,∴△EBA≌△DCE不可能成立,故結論(2)錯誤.綜上所知正確的結論有3個.故答案為:B.【考點】本題考查全等三角形的判定與性質、平行線的判定等內容,作出輔助線是解題的關鍵.2、C【解析】【分析】根據三角形的內角和定理列式求出∠BAC,再根據全等三角形對應角相等可得∠DAE=∠BAC,然后根據∠EAC=∠DAE-∠DAC代入數據進行計算即可得解.【詳解】解:∵∠B=80°,∠C=30°,∴∠BAC=180°-80°-30°=70°,∵△ABC≌△ADE,∴∠DAE=∠BAC=70°,∴∠EAC=∠DAE-∠DAC,=70°-35°,=35°.故選C.【考點】本題考查了全等三角形對應角相等的性質,熟記性質并準確識圖是解題的關鍵.3、A【解析】【分析】連接AE,由線段垂直平分線的性質得出OA=OC,AE=CE,證明△AOF≌△COE得出AF=CE=5,得出AE=CE=5,BC=BE+CE=8,由勾股定理求出AB=4,再由勾股定理求出AC即可.【詳解】解:如圖,連結AE,設AC交EF于O,依題意,有AO=OC,∠AOF=∠COE,∠OAF=∠OCE,所以,△OAF≌△OCE(ASA),所以,EC=AF=5,因為EF為線段AC的中垂線,所以,EA=EC=5,又BE=3,由勾股定理,得:AB=4,所以,AC=【考點】本題考查了全等三角形的判定、勾股定理,熟練掌握是解題的關鍵.4、D【解析】【分析】根據ED是BC的垂直平分線、BD是角平分線以及∠A=90°可求得∠C=∠DBC=∠ABD=30°,從而可得CD=BD=2AD=6,然后利用三角函數的知識進行解答即可得.【詳解】∵ED是BC的垂直平分線,∴DB=DC,∴∠C=∠DBC,∵BD是△ABC的角平分線,∴∠ABD=∠DBC,∵∠A=90°,∴∠C+∠ABD+∠DBC=90°,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CD=6,∴CE=3,故選D.【考點】本題考查了線段垂直平分線的性質,三角形內角和定理,含30度角的直角三角形的性質,余弦等,結合圖形熟練應用相關的性質及定理是解題的關鍵.5、A【解析】【分析】根據作圖過程可得OD=OE,CE=CD,根據OC為公共邊,利用SSS即可證明△OCE≌△OCD,即可得答案.【詳解】∵分別以,為圓心,大于的長為半徑作弧,兩弧交于點;∴CE=CD,在△OCE和△OCD中,,∴△OCE≌△OCD(SSS),故選:A.【考點】本題考查全等三角形的判定,正確找出相等的線段并熟練掌握全等三角形的判定定理是解題關鍵.二、填空題1、4【解析】【分析】延長AC至E,使CE=BM,連接DE.證明△BDM≌△CDE(SAS),得出MD=ED,∠MDB=∠EDC,證明△MDN≌△EDN(SAS),得出MN=EN=CN+CE,進而得出答案.【詳解】延長AC至E,使CE=BM,連接DE.∵BD=CD,且∠BDC=140°,∴∠DBC=∠DCB=20°,∵∠A=40°,AB=AC=2,∴∠ABC=∠ACB=70°,∴∠MBD=∠ABC+∠DBC=90°,同理可得∠NCD=90°,∴∠ECD=∠NCD=∠MBD=90°,在△BDM和△CDE中,,∴△BDM≌△CDE(SAS),∴MD=ED,∠MDB=∠EDC,∴∠MDE=∠BDC=140°,∵∠MDN=70°,∴∠EDN=70°=∠MDN,在△MDN和△EDN中,,∴△MDN≌△EDN(SAS),∴MN=EN=CN+CE,∴△AMN的周長=AM+MN+AN=AM+CN+CE+AN=AM+AN+CN+BM=AB+AC=4;故答案為:4.【考點】本題考查了全等三角形的判定與性質、等腰三角形的性質等知識;構造輔助線證明三角形全等是解題的關鍵.2、5【解析】【分析】作GM⊥AB于M,先利用基本作圖得到AG平分∠BAC,再根據角平分線的性質得到GM=GH=2,然后根據三角形面積公式計算.【詳解】解:作GM⊥AB于M,由作法得AG平分∠BAC,而GH⊥AC,GM⊥AB,∴GM=GH=2,∴,故答案為:5.【考點】此題考查了角平分線的性質定理:角平分線上的點到這個角的兩邊的距離相等,還考查了角平分線的作圖方法,正確理解題意得到AG平分∠BAC是解題的關鍵.3、(還可以添加∠A=∠D或∠ACB=∠EFD或AC∥DF,答案不唯一)【解析】【分析】根據等式的性質可得BC=EF,再添加AB=DE,可利用SAS判定△ABC≌△DEF.【詳解】添加的條件是,∵,∴,即.∵在中中,.故答案為:.(還可以添加或或,答案不唯一)【考點】本題主要考查了三角形全等的判定,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應相等時,角必須是兩邊的夾角.4、23.5或【解析】【分析】首先作EM⊥BD、EN⊥BF、EO⊥AC垂足分別為M、N、O,再利用角平分線的性質得出BE為∠ABC的角平分線,即可求解.【詳解】解:作EM⊥BD、EN⊥BF、EO⊥AC垂足分別為M、N、O,如圖所示,∵AE、CE是∠DAC和∠ACF的平分線,∴EM=EO,EO=EN,∴EM=EN,∴BE是∠ABC的角平分線,∴∠ABE=∠ABC=23.5°.故答案為:23.5.【考點】此題考查角平分線的性質:在角的內部,到角的兩邊距離相等的點在角的平分線上,反之也是成立的.解題關鍵是利用角平分線的判定定理.5、16【解析】【分析】延長交于,由證明,得出,得出,進而得出,即可得出結果.【詳解】如圖所示,延長、交于,∵平分,,∴,,在和中,,∴,∴,∴,,∴.故答案為:16.【考點】此題考查全等三角形的判定與性質,三角形面積的計算,證明三角形全等得出是解題關鍵.三、解答題1、(1)(2)證明見解析【解析】【分析】(1)根據三角形內角和與角平分線定義可得,再根據外角性質即可求出;(2)在線段上取一點,使,連接,證明,得到,利用全等三角形的性質與外角性質得出,,證明,從而得到,即可證明結論.(1)解:在△ABC中,∵∠A=80°,∴,∠ABC、∠ACB的平分線交于點D,,,∠EDC=∠DBC+∠DCB;(2)解:在線段上取一點,使,連接,如圖所示:平分,,在和中,,,,,,為的一個外角,,為的一個外角,,平分,,,∠A=2∠BDF,在和中,,,,,.【考點】本題考查三角形綜合,涉及到三角形內角和定理的運用、角平分線定義、外角性質求角度、三角形全等的判定與性質等知識點,正確的做輔助線是解決問題的關鍵.2、見解析【解析】【詳解】試題分析:在邊BC上截取BE=BA,連接DE,根據SAS證△ABD≌△EBD,推出AD=ED,∠A=∠BED,求出∠DEC=∠C即可.試題解析:證明:在邊BC上截取BE=BA,連接DE.∵BD平分∠ABC,∴∠ABD=∠CBD.在△ABD和△EBD中,,∴△ABD≌△EBD(SAS),∴AD=ED,∠A=∠BED.∵∠A+∠C=180°,∠BED+∠CED=180°,∴∠C=∠CED,∴CD=ED,∴AD=CD.點睛:本題考查了等腰三角形的判定,全等三角形的性質和判定等知識點的應用,解答此題的關鍵是正確作輔助線,又是難點,解題的思路是把AD和CD放到一個三角形中,根據等腰三角形的判定進行證明,題型較好,有一定的難度.3、見解析【解析】【分析】首先連接AD,由AB=AC,D是BC的中點,根據三線合一的性質,可得∠EAD=∠FAD,又由SAS,可判定△AED≌△AFD,繼而證得DE=DF.【詳解】如圖,連結AD∵AB=AC,D是BC的中點,∴∠EAD=∠FAD.在△AED和△AFD中,∵AE=AF,∠EAD=∠FAD,AD=AD,∴△AED≌△AFD(SAS),∴DE=DF.【考點】本題考查了等腰三角形的性質及全等三角形的判定與性質;利用等腰三角形三線合一的性質是解答本題的關鍵.4、(1)全等,理由詳見解析;(2)5【解析】【分析】(1)由題意易得∠ABG=90°=∠D,然后問題可求證;(2)由(1)及題意易得△GAE≌△FAE,GB=DF,進而問題可求解.【詳解】解:(1)全等.理由如下∵∠D=∠ABE=90°,∴∠ABG=90°=∠D,在△ABG和△ADF中,,∴△GAB≌△FAD(ASA);(2)∵∠BAD=90°,∠EAF=45°,∴∠DAF+∠BAE=45°,∵△GAB≌△FAD,∴∠GAB=∠FAD,AG=AF,∴∠GAB+∠BAE=45°,∴∠GAE=45°,∴∠GAE=∠EAF,在△GAE和△FAE中,,∴△GAE≌△FAE(SAS)∴EF=GE∵△GAB≌△FAD,∴GB=DF,∴EF=GE=GB+BE=FD+BE=2+3=5.【考點】本題主要考查全等三角形的性質與判定,熟練掌握全等三角形的性質與判定是解題的關鍵.5、詳見解析【解析】【分析】過點P分別作PE⊥OM,PF⊥ON,垂足分別為E,F,根據等角的補角相等可得出∠PAE=∠PBF
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年天津事業(yè)單位招聘考試教師崗位歷史學科專業(yè)知識試卷
- 2025年探傷工(二級)考試重點解析試卷
- 2025年網絡編輯師考試網絡編輯內容審核與風險控制試題卷
- 未來辦公室的趨勢AI教師在提高效率中的角色
- 教學策略與學生內在動機的激發(fā)關系探討
- 寧波海創(chuàng)集團有限公司招聘筆試真題2024
- 嘉興市秀洲區(qū)人民醫(yī)院招聘筆試真題2024
- 2025年環(huán)境保護法相關知識考試試卷及答案
- 2025年公衛(wèi)培訓(老年人、高血壓、糖尿病)試題(附答案)
- 福州會計考試題庫及答案
- 龍游縣氣象局龍游X波段雙偏振多普勒天氣雷達系統(tǒng)建設項目環(huán)境影響報告表
- 層次分析法在“基礎工程”課程成績評定中的應用實踐
- 護士長進修學習成果匯報與經驗分享
- SL631水利水電工程單元工程施工質量驗收標準第3部分:地基處理與基礎工程
- 2025年地方政府房屋買賣合同范本
- 2025年醫(yī)學臨床三基訓練醫(yī)師必考題庫及答案(共460題)
- 數學分析1試題及答案
- 廚房安全培訓
- 2025年上半年遼寧省沈陽市總工會“特邀審計專家”招聘3人重點基礎提升(共500題)附帶答案詳解
- 《人工智能技術應用導論(第2版)》高職全套教學課件
- IT技術支持與服務響應機制建設指南
評論
0/150
提交評論