




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
滬科版9年級下冊期末試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、如圖,在中,,,,將繞原點O逆時針旋轉90°,則旋轉后點A的對應點的坐標是()A. B. C. D.2、同時拋擲兩枚質地均勻的硬幣,兩枚硬幣全部正面向上的概率是()A. B. C. D.3、下列圖形中,是中心對稱圖形,但不是軸對稱圖形的是()A. B. C. D.4、一個不透明的盒子里裝有a個除顏色外完全相同的球,其中有6個白球,每次將球充分攪勻后,任意摸出1個球記下顏色然后再放回盒子里,通過如此大量重復試驗,發(fā)現(xiàn)摸到白球的頻率穩(wěn)定在0.4左右,則a的值約為()A.10 B.12 C.15 D.185、如圖圖案中,不是中心對稱圖形的是()A. B. C. D.6、已知菱形ABCD的對角線交于原點O,點A的坐標為,點B的坐標為,則點D的坐標是()A. B. C. D.7、等邊三角形、等腰三角形、矩形、菱形中既是軸對稱圖形,又是中心對稱圖形的個數(shù)是()A.2個 B.3個 C.4個 D.5個8、如圖,是△ABC的外接圓,已知,則的大小為()A.55° B.60° C.65° D.75°第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、如圖,是由繞點O順時針旋轉30°后得到的圖形,若點D恰好落在AB上,且的度數(shù)為100°,則的度數(shù)是______.2、圓錐的底面直徑是80cm,母線長90cm.它的側面展開圖的圓心角和圓錐的全面積依次是______.3、如圖,將半徑為的圓形紙片沿一條弦折疊,折疊后弧的中點與圓心重疊,則弦的長度為________.4、從﹣2,1兩個數(shù)中隨機選取一個數(shù)記為m,再從﹣1,0,2三個數(shù)中隨機選取一個數(shù)記為n,則m、n的取值使得一元二次方程x2﹣mx+n=0有兩個不相等的實數(shù)根的概率是_____.5、在同一平面上,外有一點P到圓上的最大距離是8cm,最小距離為2cm,則的半徑為______cm.6、如圖,在中,,分別以、、邊為直徑作半圓,圖中陰影部分在數(shù)學史上稱為“希波克拉底月牙”.當,時,則陰影部分的面積為__________.7、如圖,PA,PB是的切線,切點分別為A,B.若,,則AB的長為______.三、解答題(7小題,每小題0分,共計0分)1、在中,,,點E在射線CB上運動.連接AE,將線段AE繞點E順時針旋轉90°得到EF,連接CF.(1)如圖1,點E在點B的左側運動.①當,時,則___________°;②猜想線段CA,CF與CE之間的數(shù)量關系為____________.(2)如圖2,點E在線段CB上運動時,第(1)問中線段CA,CF與CE之間的數(shù)量關系是否仍然成立?如果成立,請說明理由;如果不成立,請求出它們之間新的數(shù)量關系.2、如圖1,圖2,圖3的網格均由邊長為1的小正方形組成,圖1是三國時期吳國的數(shù)學家趙爽所繪制的“弦圖”,它由四個形狀、大小完全相同的直角三角形組成,趙爽利用這個“弦圖”對勾股定理作出了證明,是中國古代數(shù)學的一項重要成就,請根據下列要求解答問題.(1)圖1中的“弦圖”的四個直角三角形組成的圖形是對稱圖形(填“軸”或“中心”).(2)請將“弦圖”中的四個直角三角形通過你所學過的圖形變換,在圖2,3的方格紙中設計另外兩個不同的圖案,畫圖要求:①每個直角三角形的頂點均在方格紙的格點上,且四個三角形互不重疊,不必涂陰影;②圖2中所設計的圖案(不含方格紙)必須是軸對稱圖形而不是中心對稱圖形;圖3中所設計的圖案(不含方格紙)必須既是軸對稱圖形,又是中心對稱圖形.3、元元同學在數(shù)學課上遇到這樣一個問題:如圖1,在平面直角坐標系xOy中,OA經過坐標原點O,并與兩坐標軸分別交于B、C兩點,點B的坐標為,點D在上,且,求OA的半徑和圓心A的坐標.元元的做法如下,請你幫忙補全解題過程:解:如圖2,連接BC.作AELOB于E、AF⊥OC于F.∴、(依據是①)∵,∴(依據是②).∵,.∴BC是的直徑(依據是③).∴∵,∴A的坐標為(④)的半徑為⑤4、從2021年開始,重慶市新高考采用“”模式:“3”指全國統(tǒng)考科目,即:語文、數(shù)學、外語三個學科為必選科目;“1”為首選科目,即:物理、歷史這2個學科中任選1科,且必須選1科;“2”為再選科目,即:化學、生物、思想政治、地理這4個學科中任選2科,且必須選2科.小紅在高一上期期末結束后,需要選擇高考科目.(1)小紅在“首選科目”中,選擇歷史學科的概率是___________.(2)用列表法或畫樹狀圖法,求小紅在“再選科目”中選擇思想政治和地理這兩門學科的概率.5、小宇和小偉玩“石頭、剪刀、布”的游戲.這個游戲的規(guī)則是:“剪刀”勝“布”,“布”勝“石頭”,“石頭”勝“剪刀”,手勢相同不分勝負.如果二人同時隨機出手(分別出三種手勢中的一種手勢)一次,那么小宇獲勝的概率是多少?6、小明每天騎自行車.上學,都要通過安裝有紅、綠燈的4個十字路口.假設每個路口紅燈和綠燈亮的時間相同.(1)小明從家到學校,求通過前2個十字路口時都是綠燈的概率.(請用“畫樹狀圖”或“列表”或“列舉”等方法給出分析過程)(2)小明從家到學校,通過這4個十字路口時至少有2個綠燈的概率為.(請直接寫出答案)7、如圖,在6×6的方格紙中,每個小正方形的頂點稱為格點,每個小正方形的邊長均為1,A,B兩點均在格點上.請按要求在圖①,圖②,圖③中畫圖:(1)在圖①中,畫等腰△ABC,使AB為腰,點C在格點上.(2)在圖②中,畫面積為8的四邊形ABCD,使其為中心對稱圖形,但不是軸對稱圖形,C,D兩點均在格點上.(3)在圖③中,畫△ABC,使∠ACB=90°,面積為5,點C在格點上.-參考答案-一、單選題1、C【分析】過點A作AC⊥x軸于點C,設,則,根據勾股定理,可得,從而得到,進而得到∴,可得到點,再根據旋轉的性質,即可求解.【詳解】解:如圖,過點A作AC⊥x軸于點C,設,則,∵,,∴,∵,,∴,解得:,∴,∴,∴點,∴將繞原點O順時針旋轉90°,則旋轉后點A的對應點的坐標是,∴將繞原點O逆時針旋轉90°,則旋轉后點A的對應點的坐標是.故選:C【點睛】本題考查坐標與圖形變化一旋轉,解直角三角形等知識,解題的關鍵是求出點A的坐標,屬于中考??碱}型.2、A【分析】首先利用列舉法可得所有等可能的結果有:正正,正反,反正,反反,然后利用概率公式求解即可求得答案.【詳解】解:∵拋擲兩枚質地均勻的硬幣,兩枚硬幣落地后的所有等可能的結果有:正正,正反,反正,反反,∴正面都朝上的概率是:
.故選A.【點睛】本題考查了列舉法求概率的知識.此題比較簡單,注意在利用列舉法求解時,要做到不重不漏,注意概率=所求情況數(shù)與總情況數(shù)之比.3、B【分析】根據“把一個圖形繞著某一個點旋轉180°,如果旋轉后的圖形能夠與原來的圖形重合,那么這個圖形叫做中心對稱圖形”及“如果一個平面圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形”,由此問題可求解.【詳解】解:A、既不是軸對稱圖形也不是中心對稱圖形,故不符合題意;B、是中心對稱圖形但不是軸對稱圖形,故符合題意;C、既不是軸對稱圖形也不是中心對稱圖形,故不符合題意;D、是軸對稱圖形但不是中心對稱圖形,故不符合題意;故選B.【點睛】本題主要考查中心對稱圖形及軸對稱圖形的識別,熟練掌握中心對稱圖形及軸對稱圖形的定義是解題的關鍵.4、C【分析】在同樣條件下,大量反復試驗時,隨機事件發(fā)生的頻率逐漸穩(wěn)定在概率附近,可以從摸到白球的頻率穩(wěn)定在0.4左右得到比例關系,列出方程求解即可.【詳解】解:由題意可得,,解得,a=15.經檢驗,a=15是原方程的解故選:C.【點睛】本題利用了用大量試驗得到的頻率可以估計事件的概率.關鍵是根據白球的頻率得到相應的等量關系.5、C【分析】根據中心對稱圖形的概念:把一個圖形繞某一點旋轉180°,如果旋轉后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形,這個點叫做對稱中心求解.【詳解】解:A、是中心對稱圖形,故A選項不合題意;B、是中心對稱圖形,故B選項不合題意;C、不是中心對稱圖形,故C選項符合題意;D、是中心對稱圖形,故D選項不合題意;故選:C.【點睛】本題考查了中心對稱圖形的知識,解題的關鍵是掌握中心對稱圖形的概念.中心對稱圖形是要尋找對稱中心,旋轉180°后重合.6、A【分析】根據菱形是中心對稱圖形,菱形ABCD的對角線交于原點O,則點與點關于原點中心對稱,根據中心對稱的點的坐標特征進行求解即可【詳解】解:∵菱形是中心對稱圖形,菱形ABCD的對角線交于原點O,∴與點關于原點中心對稱,點B的坐標為,點D的坐標是故選A【點睛】本題考查了菱形的性質,求關于原點中心對稱的點的坐標,掌握菱形的性質是解題的關鍵.7、A【分析】根據軸對稱圖形與中心對稱圖形的概念進行判斷.【詳解】解:矩形,菱形既是軸對稱圖形,也是中心對稱圖形,符合題意;等邊三角形、等腰三角形是軸對稱圖形,不是中心對稱圖形,不符合題意;共2個既是軸對稱圖形又是中心對稱圖形.故選:A.【點睛】此題主要考查了中心對稱圖形與軸對稱圖形的概念.(1)如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形,這條直線叫做對稱軸.(2)如果一個圖形繞某一點旋轉180°后能夠與自身重合,那么這個圖形就叫做中心對稱圖形,這個點叫做對稱中心.8、C【分析】由OA=OB,,求出∠AOB=130°,根據圓周角定理求出的度數(shù).【詳解】解:∵OA=OB,,∴∠BAO=.∴∠AOB=130°.∴=∠AOB=65°.故選:C.【點睛】此題考查了同圓中半徑相等的性質,圓周角定理:同弧所對的圓周角等于圓心角的一半.二、填空題1、35°【分析】根據旋轉的性質可得∠AOD=∠BOC=30°,AO=DO,再求出∠BOD,∠ADO,然后利用三角形的一個外角等于與它不相鄰的兩個內角的和列式計算即可得解.【詳解】解:∵△COD是△AOB繞點O順時針旋轉30°后得到的圖形,∴∠AOD=∠BOC=30°,AO=DO,∵∠AOC=100°,∴∠BOD=100°?30°×2=40°,∠ADO=∠A=(180°?∠AOD)=(180°?30°)=75°,由三角形的外角性質得,∠B=∠ADO?∠BOD=75°?40°=35°.故答案為:35°.【點睛】本題考查了旋轉的性質,等腰三角形的性質,三角形的一個外角等于與它不相鄰的兩個內角的和的性質,熟記各性質并準確識圖是解題的關鍵.2、160°,5200【分析】由題意知,圓錐的展開圖扇形的r半徑為90cm,弧長l為.代入扇形弧長公式求解圓心角;代入扇形面積公式求出圓錐側面積,然后加上底面面積即可求出全面積.【詳解】解:圓錐的展開圖扇形的r半徑為90cm,弧長l為∵∴解得∵∴故答案為:160°,.【點睛】本題考查了扇形的圓心角與面積.解題的關鍵在于運用扇形的弧長與面積公式進行求解.難點在于求出公式中的未知量.3、【分析】連接OC交AB于點D,再連接OA.根據軸對稱的性質確定,OD=CD;再根據垂徑定理確定AD=BD;再根據勾股定理求出AD的長度,進而即可求出AB的長度.【詳解】解:如下圖所示,連接OC交AB于點D,再連接OA.∵折疊后弧的中點與圓心重疊,∴,OD=CD.∴AD=BD.∵圓形紙片的半徑為10cm,∴OA=OC=10cm.∴OD=5cm.∴cm.∴BD=cm.∴cm.故答案為:.【點睛】本題考查軸對稱的性質,垂徑定理,勾股定理,綜合應用這些知識點是解題關鍵.4、【分析】先畫樹狀圖列出所有等可能結果,從中找到使方程有兩個不相等的實數(shù)根,即m>n的結果數(shù),再根據概率公式求解可得.【詳解】解:畫樹狀圖如下:由樹狀圖知,共有12種等可能結果,其中能使方程x2-mx+n=0有兩個不相等的實數(shù)根,即m2-4n>0,m2>4n的結果有4種結果,∴關于x的一元二次方程x2-mx+n=0有兩個不相等的實數(shù)根的概率是,故答案為:.【點睛】本題是概率與一元二次方程的根的判別式相結合的題目.正確理解列舉法求概率的條件以及一元二次方程有根的條件是關鍵.5、5或3【分析】分點P在圓內或圓外進行討論.【詳解】解:①當點P在圓內時,⊙O的直徑長為8+2=10(cm),半徑為5cm;②當點P在圓外時,⊙O的直徑長為8-2=6(cm),半徑為3cm;綜上所述:⊙O的半徑長為5cm或3cm.故答案為:5或3.【點睛】本題考查了點與圓的位置關系:點的位置可以確定該點到圓心距離與半徑的關系,反過來已知點到圓心距離與半徑的關系可以確定該點與圓的位置關系.6、【分析】根據陰影部分面積等于以為直徑的2個半圓的面積加上減去為半徑的半圓面積即.【詳解】解:在中,,,.故答案為:【點睛】本題考查了勾股定理,求扇形面積,直徑所對的圓周角是直角,掌握圓周角定理是解題的關鍵.7、3【分析】由切線長定理和,可得為等邊三角形,則.【詳解】解:連接,如下圖:,分別為的切線,,為等腰三角形,,,為等邊三角形,,,.故答案為:3.【點睛】本題考查了等邊三角形的判定和切線長定理,解題的關鍵是作出相應輔助線.三、解答題1、(1)①;②(2)不成立,【分析】(1)①由直角三角形的性質可得出答案;②過點E作ME⊥EC交CA的延長線于M,由旋轉的性質得出AE=EF,∠AEF=90°,得出∠AEM=∠CEF,證明△FEC≌△AEM(SAS),由全等三角形的性質得出CF=AM,由等腰直角三角形的性質可得出結論;(2)過點F作FH⊥BC交BC的延長線于點H.證明△ABE≌△EHF(AAS),由全等三角形的性質得出FH=BE,EH=AB=BC,由等腰直角三角形的性質可得出結論;(1)①∵,,,∴,∵sin∠EAB=∴,故答案為:30°;②.如圖1,過點E作交CA的延長線于M,∵,,∴,∴,∴,∴,∵將線段AE繞點E順時針旋轉90°得到EF,∴,,∴,在△FEC和△AEM中,∴,∴,∴,∵為等腰直角三角形,∴,∴;故答案為:;(2)不成立.如圖2,過點F作交BC的延長線于點H.∴,,∵,∴,在△FEC和△AEM中,∴,∴,,∴,∴為等腰直角三角形,∴.又∵,即.【點睛】本題考查了旋轉的性質,解直角三角形,等腰直角三角形的判定與性質,全等三角形的判定與性質,三角形的面積,熟練掌握旋轉的性質是解題的關鍵.2、(1)中心(2)見解析【分析】(1)利用中心對稱圖形的意義得到答案即可;(2)①每個直角三角形的頂點均在方格紙的格點上,且四個三角形不重疊,是軸對稱圖形;②所設計的圖案(不含方格紙)必須是中心對稱圖形或軸對稱圖形.(1)圖1中的“弦圖”的四個直角三角形組成的圖形是中心對稱圖形,故答案為:中心;(2)如圖2是軸對稱圖形而不是中心對稱圖形;圖3既是軸對稱圖形,又是中心對稱圖形.【點睛】本題考查利用旋轉或軸對稱設計方案,關鍵是理解旋轉和軸對稱的概念,按要求作圖即可.3、垂徑定理,圓周角定理,圓周角定理,(1,),2【分析】根據垂徑定理,圓周角定理依次分析解答.【詳解】解:如圖2,連接BC.作AE⊥OB于E、AF⊥OC于F.∴、(依據是垂徑定理)∵,∴(依據是圓周角定理).∵,.∴BC是的直徑(依據是圓周角定理).∴,∵,∴A的坐標為(1,),的半徑為2,故答案為:垂徑定理,圓周角定理,圓周角定理,(1,),2.【點睛】此題考查了圓的知識,垂徑定理、圓周角定理,熟記各定理知識并綜合應用是解題的關鍵.4、(1)(2)【分析】(1)根據概率的公式計算可得答案;(2)畫樹狀圖,共有12個等可能的結果,該同學恰好選中思想政治和地理化兩科的結果有2個,再由概率公式求解即可.(1)解:選擇物理、歷史共有2中等可能結果,選擇歷史學科的結果有1種,所以選擇歷史學科的概率是;(2)假設A表示化學、B表示生物、C表示思想政治、D表示地理,畫樹狀圖如下圖:共有12個等可能的結果,該同學恰好選中思想政治和地理的結果有2個,所以該同學恰好選中思想政治和地理的概率為.【點睛】此題考查了概率的求法,利用如果一個
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年導游資格證考試押題卷 導游業(yè)務與政策法規(guī)深度解析
- 地磚施工課件
- 明星公益活動整合方案協(xié)議
- 2025年法律職業(yè)資格考試(試卷二)綜合試題及答案
- 2025年村級殘疾人康復站社工招聘面試預測題及答案
- 地理小知識培訓課件
- 2025年高等數(shù)學基礎知識審核考試試卷及答案
- 地球運動的一般特征
- 2025年甘肅省機關事業(yè)單位工勤崗位中高級《管道工》考題庫(附答案)
- 日記在游樂場500字10篇范文
- 給藥錯誤PDCA課件
- 醫(yī)美注射培訓
- 白內障護理課件
- 香菇多糖生產工藝創(chuàng)新-洞察分析
- 箱泵一體化泵站設計圖集
- 三上10《公共場所文明言行》道德法治教學設計
- 《電器火災的防范》課件
- 路燈CJJ檢驗批范表
- 農村廁所改造合同書完整版
- 建筑工程安全管理提升方案
- 對新員工保密基本培訓
評論
0/150
提交評論