難點解析人教版8年級數(shù)學(xué)上冊《全等三角形》專項測試試卷(解析版)_第1頁
難點解析人教版8年級數(shù)學(xué)上冊《全等三角形》專項測試試卷(解析版)_第2頁
難點解析人教版8年級數(shù)學(xué)上冊《全等三角形》專項測試試卷(解析版)_第3頁
難點解析人教版8年級數(shù)學(xué)上冊《全等三角形》專項測試試卷(解析版)_第4頁
難點解析人教版8年級數(shù)學(xué)上冊《全等三角形》專項測試試卷(解析版)_第5頁
已閱讀5頁,還剩20頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

人教版8年級數(shù)學(xué)上冊《全等三角形》專項測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,點E是△ABC的內(nèi)心,過點E作EF∥AB交AC于點F,則EF的長為()A. B. C. D.2、如圖,B,C,E,F(xiàn)四點在一條直線上,下列條件能判定△ABC與△DEF全等的是(

)A.AB∥DE,∠A=∠D,BE=CF B.AB∥DE,AB=DE,AC=DFC.AB∥DE,AC=DF,BE=CF D.AB∥DE,AC∥DF,∠A=∠D3、已知,如圖,在△ABC中,D為BC邊上的一點,延長AD到點E,連接BE、CE,∠ABD+∠3=90°,∠1=∠2=∠3,下列結(jié)論:①△ABD為等腰三角形;②AE=AC;③BE=CE=CD;④CB平分∠ACE.其中正確的結(jié)論個數(shù)有(

)A.1個 B.2個 C.3個 D.4個4、如圖,在中,,D是上一點,于點E,,連接,若,則等于(

)A. B. C. D.5、如圖,在中,,觀察圖中尺規(guī)作圖的痕跡,可知的度數(shù)為()A. B. C. D.第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖所示,在中,∠B=90°,AD平分∠BAC,交BC于點D,DE⊥AC,垂足為點E,若BD=3,則DE的長為________.2、如圖,點B,E,C,F(xiàn)在一條直線上,AB∥DF,AB=DF,若△ABC≌△DFE,則需添加的條件是________.(填一個即可)3、如圖,BE⊥AC,垂足為D,且AD=CD,BD=ED.若∠ABC=54°,則∠E=________°.4、如圖,在Rt△ABC中,∠B=90°,以頂點C為圓心、適當(dāng)長為半徑畫弧,分別交AC、BC于點E、F,再分別以點E、F為圓心,以大于EF的長為半徑畫弧,兩弧交于點P,作射線CP交AB于點D.若BD=4,AC=16,則△ACD的面積是______.5、如圖,PM⊥OA,PN⊥OB,∠BOC=30°,PM=PN,則∠AOB=_________.三、解答題(5小題,每小題10分,共計50分)1、如圖,在△ABC中,∠ABC、∠ACB的平分線交于點D,延長BD交AC于E,G、F分別在BD、BC上,連接DF、GF,其中∠A=2∠BDF,GD=DE.(1)當(dāng)∠A=80°時,求∠EDC的度數(shù);(2)求證:CF=FG+CE.2、如圖,已知,,,求證:.3、如圖,在四邊形ABCD中,已知BD平分∠ABC,∠BAD+∠C=180°,求證:AD=CD.4、中,,,過點作,連接,,為平面內(nèi)一動點.(1)如圖1,點在上,連接,,過點作于點,為中點,連接并延長,交于點.①若,,則;②求證:.(2)如圖2,連接,,過點作于點,且滿足,連接,,過點作于點,若,,,請求出線段的取值范圍.5、如圖,在△ABC中,AD平分∠BAC,∠C=90°,DE⊥AB于點E,點F在AC上,BD=DF.(1)求證:CF=EB;(2)若AB=14,AF=8,求CF的長.-參考答案-一、單選題1、A【解析】【分析】延長FE交BC于點D,作EG⊥AB、作EH⊥AC,由EF∥AC可證四邊形BDEG是矩形,由角平分線可得ED=EH=EG、∠GAE=∠HAE,從而知四邊形BDEG是正方形,再證△GAE≌△HAE、△DCE≌△HCE得AG=AH、CD=CH,設(shè)BD=BG=x,則AG=AH=6-x、CD=CH=8-x,由AC=10可得x=2,即BD=DE=2、AG=4,再證△CDF∽△CBA,可得,據(jù)此得出EF=DF-DE=.【詳解】解:如圖,延長FE交BC于點D,作EG⊥AB于點G,作EH⊥AC于點H,∵EF∥AB、∠ABC=90°,∴FD⊥AB,∵EG⊥BC,∴四邊形BDEG是矩形,∵AE平分∠BAC、CE平分∠ACB,∴ED=EH=EG,∠GAE=∠HAE,∴四邊形BDEG是正方形,在△GAE和△HAE中,∵,∴△GAE≌△HAE(AAS),∴AG=AH,同理△DCE≌△HCE,∴CD=CH,設(shè)BD=BG=x,則AG=AH=6﹣x、CD=CH=8﹣x,∵AC===10,∴6﹣x+8﹣x=10,解得:x=2,∴BD=DE=BG=2,AG=4,∵DF∥AB,∴△DCF∽△BCA,∴,即,解得:,則EF=DF﹣DE=,故選A【考點】本題主要考查相似三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)及正方形的判定與性質(zhì),熟練掌握角平分線的性質(zhì)和正方形的判定與性質(zhì)、相似三角形的判定與性質(zhì)是解題的關(guān)鍵.2、A【解析】【分析】根據(jù)全等三角形的判定條件逐一判斷即可.【詳解】解:A、∵,∴,∵,∴,即在和中∵∴,故A符合題意;B、∵,∴,再由,不可以利用SSA證明兩個三角形全等,故B不符合題意;C、∵,∴,再由,不可以利用SSA證明兩個三角形全等,故C不符合題意;D、∵,∴,,再由,不可以利用AAA證明兩個三角形全等,故D不符合題意;故選A.【考點】本題主要考查了全等三角形的判定,熟知全等三角形的判定條件是解題的關(guān)鍵.3、C【解析】【分析】作AF平分∠BAD.可根據(jù)證△ABF≌△ADF,推出AB=AD,得出△ABD為等腰三角形;可根據(jù)同弦所對的圓周角相等知點A、B、C、E共圓,可判出BE=CE=CD,根據(jù)三角形內(nèi)角和等于180°,可判出AE=AC;求出∠7=90°﹣∠2,根據(jù)∠1=∠4=∠2推出∠4≠∠7,即可得出BC不是∠ACE的平分線.【詳解】解:作AF平分∠BAD,∵∠BAD=∠3,∠ABD+∠3=90°,∴∠BAF=∠3=∠DAF,∴∠ABF+∠BAF=90°∴∠AFB=∠AFD=90°,在△BAF和△DAF中∴△ABF≌△ADF(ASA),∴AB=AD,故①正確;∵AE=AC,∴∠6=∠4+∠7==90°?,∵∠5=∠ADB=∠ABD==90°?,∠1=∠2,∴∠5=∠6=90°?∴CE=CD,∠4=180°?∠5?∠6=180°?2(90°?)=∠1,∵∠1=∠3,∴∠4=∠3,∴BE=CE,∴BE=CE=CD,∴③正確;∵∠6+∠2+∠ACE=180°,∠6=∠5=∠ADB=∠ABD=90°﹣∠2.∴∠ACE=180°﹣∠6﹣∠2=90°﹣∠2,∴∠ACE=∠6,∴AE=CE,故②正確∵∠5=∠2+∠7=90°﹣∠2,∴∠7=90°﹣∠2,∵∠BAD=∠4=∠2,∴∠4≠∠7,故④錯誤;故選C.【考點】本題主要考查了全等三角形的判定和性質(zhì)、同弦所對的圓周角相等、三角形內(nèi)角和的相關(guān)知識,靈活運用所學(xué)知識是解題的關(guān)鍵.4、C【解析】【分析】證明Rt△BCD≌Rt△BED(HL),由全等三角形的性質(zhì)得出CD=DE,則可得出答案.【詳解】解:,,在和中,,,,,cm,cm.故選:C.【考點】本題考查了全等三角形的判定與性質(zhì),熟練掌握全等三角形的判定方法是解題的關(guān)鍵.5、C【解析】【分析】利用等腰三角形的性質(zhì)和基本作圖得到,則平分,利用和三角形內(nèi)角和計算出,從而得到的度數(shù).【詳解】由作法得,∵,∴平分,,∵,∴.故選C.【考點】本題考查了作圖-基本作圖:熟練掌握基本作圖(作一條線段等于已知線段;作一個角等于已知角;作已知線段的垂直平分線;作已知角的角平分線;過一點作已知直線的垂線).也考查了等腰三角形的性質(zhì).二、填空題1、3【解析】【分析】根據(jù)角平分線的性質(zhì),即角平分線上任意一點到角兩邊的距離相等計算即可;【詳解】∵在中,∠B=90°,AD平分∠BAC,DE⊥AC,∴,∵,∴;故答案是3.【考點】本題主要考查了角平分線的性質(zhì)應(yīng)用,準(zhǔn)確計算是解題的關(guān)鍵.2、∠A=∠D或∠ACB=∠DEF或AC∥DE或BC=FE或BE=FC【解析】【分析】先根據(jù)已知條件推得∠B=∠F,加上AB=DF,要證△ABC≌△DFE,只需要根據(jù)全等三角形的判定方法添加適當(dāng)?shù)慕呛瓦吋纯桑驹斀狻拷猓骸逜B∥DF,∴,添加∠A=∠D,在和中,∴;添加∠ACB=∠DEF,在和中,∴;添加AC∥DE,∵AC∥DE,∴∠ACB=∠DEF,在和中,∴;添加BC=FE,在和中,∴;添加BE=FC,∵BE=FC,∴,∴,在和中,∴,綜上可得,添加∠A=∠D或∠ACB=∠DEF或AC∥DE或BC=FE或BE=FC都可得到△ABC≌△DFE.故答案為:∠A=∠D或∠ACB=∠DEF或AC∥DE或BC=FE或BE=FC【考點】本題考查三角形全等的判定方法,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應(yīng)相等時,角必須是兩邊的夾角.3、27【解析】【詳解】∵BE⊥AC,AD=CD,∴AB=CB,即△ABC為等腰三角形,∴BD平分∠ABC,即∠ABE=∠CBE=∠ABC=27°,在△ABD和△CED中,,∴△ABD≌△CED(SAS),∴∠E=∠ABE=27°.故答案是:27.4、32【解析】【分析】過點D作DQ⊥AC,由作法可知CP是角平分線,根據(jù)角平分線的性質(zhì)知DB=DQ=3,再由三角形的面積公式計算即可.【詳解】解:如圖,過點D作DQ⊥AC于點Q,由作圖知CP是∠ACB的平分線,∵∠B=90°,BD=4,∴DB=DQ=4,∵AC=16,∴S△ACD=?AC?DQ=,故答案為32.【考點】本題主要考查作圖-基本作圖,三角形面積,解題的關(guān)鍵是掌握角平分線的尺規(guī)作圖及角平分線的性質(zhì).5、60°或60度【解析】【分析】根據(jù)到角的兩邊距離相等的點在角的平分線上判斷出OC平分∠AOB,再根據(jù)角平分線的定義可得∠AOB=2∠BOC.【詳解】解:∵PM⊥OA,PN⊥OB,PM=PN,∴OC平分∠AOB,∴∠AOB=2∠BOC,又∠BOC=30°,∴∠AOB=60°.故答案為:60°.【考點】本題考查了角平分線的判定,掌握角平分線的判定是解題的關(guān)鍵.三、解答題1、(1)(2)證明見解析【解析】【分析】(1)根據(jù)三角形內(nèi)角和與角平分線定義可得,再根據(jù)外角性質(zhì)即可求出;(2)在線段上取一點,使,連接,證明,得到,利用全等三角形的性質(zhì)與外角性質(zhì)得出,,證明,從而得到,即可證明結(jié)論.(1)解:在△ABC中,∵∠A=80°,∴,∠ABC、∠ACB的平分線交于點D,,,∠EDC=∠DBC+∠DCB;(2)解:在線段上取一點,使,連接,如圖所示:平分,,在和中,,,,,,為的一個外角,,為的一個外角,,平分,,,∠A=2∠BDF,在和中,,,,,.【考點】本題考查三角形綜合,涉及到三角形內(nèi)角和定理的運用、角平分線定義、外角性質(zhì)求角度、三角形全等的判定與性質(zhì)等知識點,正確的做輔助線是解決問題的關(guān)鍵.2、證明見解析.【解析】【分析】利用SSS可證明△ABD≌△ACE,可得∠BAD=∠1,∠ABD=∠2,根據(jù)三角形外角的性質(zhì)即可得∠3=∠BAD+∠ABD,即可得結(jié)論.【詳解】在△ABD和△ACE中,,∴△ABD≌△ACE,∴∠BAD=∠1,∠ABD=∠2,∵∠3=∠BAD+∠ABD,∴∠3=∠1+∠2.【考點】本題考查全等三角形的判定與性質(zhì)及三角形外角性質(zhì),熟練掌握判定定理及外角性質(zhì)是解題關(guān)鍵.3、見解析【解析】【詳解】試題分析:在邊BC上截取BE=BA,連接DE,根據(jù)SAS證△ABD≌△EBD,推出AD=ED,∠A=∠BED,求出∠DEC=∠C即可.試題解析:證明:在邊BC上截取BE=BA,連接DE.∵BD平分∠ABC,∴∠ABD=∠CBD.在△ABD和△EBD中,,∴△ABD≌△EBD(SAS),∴AD=ED,∠A=∠BED.∵∠A+∠C=180°,∠BED+∠CED=180°,∴∠C=∠CED,∴CD=ED,∴AD=CD.點睛:本題考查了等腰三角形的判定,全等三角形的性質(zhì)和判定等知識點的應(yīng)用,解答此題的關(guān)鍵是正確作輔助線,又是難點,解題的思路是把AD和CD放到一個三角形中,根據(jù)等腰三角形的判定進行證明,題型較好,有一定的難度.4、(1)①

4,②見解析;(2)6≤≤12【解析】【分析】(1)①根據(jù)三角形的面積公式計算即可;②先根據(jù)AAS證得△ABF≌△BCM,得出BF=MC,AF=BM,再利用AAS證得△AFD≌△CHD,得出AF=CH,即可得出結(jié)論;(2)連接CM,先利用SAS得出△≌△CBM,得出,再根據(jù)等底同高的三角形的面積相等得出,再利用三角形的面積公式得出EC的長,從而利用三角形的三邊關(guān)系得出的取值范圍;【詳解】解:(1)①∵,,,∴,②∵,,∴∠AFB=∠BMC=∠FMC=90°,∴∠ABF+∠BAF=90°,∵,∴∠ABF+∠CBM=90°,∴∠BAF=∠CBM,∵,∴△ABF≌△BCM,∴BF=MC,AF=BM,∵∠AFB=∠FMC=90°,∴AF//CM,∴∠FAC=∠HCD,∵為中點,∴AD=CD,∵∠FDA=∠HDC,∴△AFD≌△CHD,∴AF=CH,∴BM=CH,∵BF=CM∴BF-BM=CM-CH∴.(2)連接CM,∵,,∴∠ABC=∠=90°,∴∠BA=∠CBM,∵,,∴△≌△CBM,∴,∵,,∴∠ABC+∠BAE=180°,∴AE//BC,∴,∵,,∴,∴EC=9在△ECM中,,則9

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論