




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
青海省德令哈市中考數(shù)學(xué)真題分類(lèi)(勾股定理)匯編專(zhuān)項(xiàng)測(cè)試考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿(mǎn)分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計(jì)14分)1、如圖,正方形的邊長(zhǎng)為10,,,連接,則線段的長(zhǎng)為(
)A. B. C. D.2、在△ABC中,,那么△ABC是(
)A.等腰三角形 B.鈍角三角形 C.直角三角形 D.等腰直角三角形3、在直角三角形中,若勾為3,股為4,則弦為()A.5 B.6 C.7 D.84、《九章算術(shù)》被尊為古代數(shù)學(xué)“群經(jīng)之首”,其卷九勾股定理篇記載:今有圓材埋于壁中,不知大?。凿忎徶?,深一寸,鋸道長(zhǎng)一尺.問(wèn)徑幾何?如圖,大意是,今有一圓柱形木材,埋在墻壁中,不知其大小,用鋸去鋸這個(gè)木材,鋸口深等于1寸,鋸道長(zhǎng)1尺,則圓形木材的直徑是(
)(1尺=10寸)A.12寸 B.13寸 C.24寸 D.26寸5、如圖,在由邊長(zhǎng)為1的7個(gè)正六邊形組成的網(wǎng)格中,點(diǎn)A,B在格點(diǎn)上.若再選擇一個(gè)格點(diǎn)C,使△ABC是直角三角形,且每個(gè)直角三角形邊長(zhǎng)均大于1,則符合條件的格點(diǎn)C的個(gè)數(shù)是(
)A.2 B.4 C.5 D.66、如圖所示,圓柱的高AB=3,底面直徑BC=3,現(xiàn)在有一只螞蟻想要從A處沿圓柱表面爬到對(duì)角C處捕食,則它爬行的最短距離是()A. B. C. D.7、如圖所示,將一根長(zhǎng)為24cm的筷子,置于底面直徑為5cm,高為12cm的圓柱形水杯中,設(shè)筷子露在外面的長(zhǎng)為hcm,則h的取值范圍是()A.0<h≤11 B.11≤h≤12 C.h≥12 D.0<h≤12第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計(jì)16分)1、如圖,在網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)均為1.點(diǎn)A、B,C都在格點(diǎn)上,若BD是△ABC的高,則BD的長(zhǎng)為_(kāi)_________.2、已知,在中,,,,則的面積為_(kāi)_.3、在平面直角坐標(biāo)系中,點(diǎn)(3,﹣2)到原點(diǎn)的距離是_____.4、如圖,分別以此直角三角形的三邊為直徑在三角形的外部畫(huà)半圓,,,則_________.5、把一根長(zhǎng)12厘米的木棒,從一端起順次截下3厘米和5厘米的兩段,用得到的三根木棒首尾依次相接,擺成的三角形形狀是______.6、對(duì)角線互相垂直的四邊形叫做“垂美”四邊形,現(xiàn)有如圖所示的“垂美”四邊形ABCD,對(duì)角線AC、BD交于點(diǎn)O.若AD=3,BC=5,則____________.7、《九章算術(shù)》是我國(guó)古代數(shù)學(xué)名著,書(shū)中有下列問(wèn)題:“今有垣高一丈,倚木于垣,上與垣齊.引木卻行一尺,其木至地,問(wèn)木長(zhǎng)幾何?”其意思為:今有墻高1丈,倚木桿于墻,使木之上端與墻平齊,牽引木桿下端退行1尺,則木桿(從墻上)滑落至地上.問(wèn)木桿是多長(zhǎng)?(1丈=10尺)設(shè)木桿長(zhǎng)為x尺根據(jù)題意,可列方程為_(kāi)_____.8、已知a、b、c是一個(gè)三角形的三邊長(zhǎng),如果滿(mǎn)足,則這個(gè)三角形的形狀是_______.三、解答題(7小題,每小題10分,共計(jì)70分)1、(1)如圖1是一個(gè)重要公式的幾何解釋?zhuān)?qǐng)你寫(xiě)出這個(gè)公式;(2)伽菲爾德(1881年任美國(guó)第20屆總統(tǒng))利用(1)中的公式和圖2證明了勾股定理(1876年4月1日發(fā)表在《新英格蘭教育日志》上),現(xiàn)請(qǐng)你嘗試證明過(guò)程.說(shuō)明:.2、閱讀理解:【問(wèn)題情境】教材中小明用4張全等的直角三角形紙片拼成圖1,利用此圖,可以驗(yàn)證勾股定理嗎?【探索新知】從面積的角度思考,不難發(fā)現(xiàn):大正方形的面積=小正方形的面積+4個(gè)直角三角形的面積.從而得數(shù)學(xué)等式:(a+b)2=c2+4×ab,化簡(jiǎn)證得勾股定理:a2+b2=c2.【初步運(yùn)用】(1)如圖1,若b=2a,則小正方形面積:大正方形面積=;(2)現(xiàn)將圖1中上方的兩直角三角形向內(nèi)折疊,如圖2,若a=4,b=6,此時(shí)空白部分的面積為;(3)如圖3,將這四個(gè)直角三角形緊密地拼接,形成風(fēng)車(chē)狀,已知外圍輪廓(實(shí)線)的周長(zhǎng)為24,OC=3,求該風(fēng)車(chē)狀圖案的面積.(4)如圖4,將八個(gè)全等的直角三角形緊密地拼接,記圖中正方形ABCD,正方形EFGH,正方形MNKT的面積分別為S1,S2,S3,若S1+S2+S3=40,則S2=.【遷移運(yùn)用】如果用三張含60°的全等三角形紙片,能否拼成一個(gè)特殊圖形呢?帶著這個(gè)疑問(wèn),小麗拼出圖5的等邊三角形,你能否仿照勾股定理的驗(yàn)證,發(fā)現(xiàn)含60°的三角形三邊a、b、c之間的關(guān)系,寫(xiě)出此等量關(guān)系式及其推導(dǎo)過(guò)程.3、如圖,高速公路上有A,B兩點(diǎn)相距10km,C,D為兩村莊,已知DA=4km,CB=6km,DA⊥AB于點(diǎn)A,CB⊥AB于B,現(xiàn)要在AB上建一個(gè)服務(wù)站E,使得C,D兩村莊到E站的距離相等,求BE的長(zhǎng).4、如圖,已知等腰△ABC的底邊BC=10cm,D是腰AC上一點(diǎn),且CD=6cm,BD=8cm.(1)判斷△BCD的形狀,并說(shuō)明理由;(2)求△ABC的周長(zhǎng).5、如圖,將一個(gè)長(zhǎng)方形紙片ABCD沿對(duì)角線AC折疊,點(diǎn)B落在點(diǎn)E處,AE交DC于點(diǎn)F,已知AB=4,BC=2,求折疊后重合部分的面積.6、在尋找某墜毀飛機(jī)的過(guò)程中,兩艘搜救艇接到消息,在海面上有疑似漂浮目標(biāo)A、B.于是,一艘搜救艇以16海里/時(shí)的速度離開(kāi)港口O(如圖)沿北偏東40°的方向向目標(biāo)A前進(jìn),同時(shí),另一艘搜救艇也從港口O出發(fā),以12海里/時(shí)的速度向著目標(biāo)B出發(fā),1.5小時(shí)后,他們同時(shí)分別到達(dá)目標(biāo)A、B.此時(shí),他們相距30海里,請(qǐng)問(wèn)第二艘搜救艇的航行方向是北偏西多少度?7、如圖,某海岸線MN的方向?yàn)楸逼珫|75°,甲,乙兩船分別向海島C運(yùn)送物資,甲船從港口A處沿北偏東45°方向航行,乙船從港口B處沿北偏東30°方向航行,已知港口B到海島C的距離為30海里,求港口A到海島C的距離.-參考答案-一、單選題1、B【解析】【分析】延長(zhǎng)DH交AG于點(diǎn)E,利用SSS證出△AGB≌△CHD,然后利用ASA證出△ADE≌△DCH,根據(jù)全等三角形的性質(zhì)求出EG、HE和∠HEG,最后利用勾股定理即可求出HG.【詳解】解:延長(zhǎng)DH交AG于點(diǎn)E∵四邊形ABCD為正方形∴AD=DC=BA=10,∠ADC=∠BAD=90°在△AGB和△CHD中∴△AGB≌△CHD∴∠BAG=∠DCH∵∠BAG+∠DAE=90°∴∠DCH+∠DAE=90°∴CH2+DH2=82+62=100=DC2∴△CHD為直角三角形,∠CHD=90°∴∠DCH+∠CDH=90°∴∠DAE=∠CDH,∵∠CDH+∠ADE=90°∴∠ADE=∠DCH在△ADE和△DCH中∴△ADE≌△DCH∴AE=DH=6,DE=CH=8,∠AED=∠DHC=90°∴EG=AG-AE=2,HE=DE-DH=2,∠GEH=180°-∠AED=90°在Rt△GEH中,GH=故選B.【考點(diǎn)】此題考查是正方形的性質(zhì)、全等三角形的判定及性質(zhì)和勾股定理,掌握正方形的性質(zhì)、全等三角形的判定及性質(zhì)和利用勾股定理解直角三角形是解決此題的關(guān)鍵.2、D【解析】【分析】根據(jù)等腰三角形的判定和勾股定理逆定理得出三角形的形狀即可.【詳解】∵a:b:c=1:1:,∴三角形ABC是等腰三角形.設(shè)三邊長(zhǎng)為a,a,∵,∴三角形ABC是直角三角形.綜上所述:△ABC是等腰直角三角形.故選D.【考點(diǎn)】本題考查了等腰三角形的判定和勾股定理逆定理.此題關(guān)鍵是利用勾股定理的逆定理解答.3、A【解析】【分析】直接根據(jù)勾股定理求解即可.【詳解】解:∵在直角三角形中,勾為3,股為4,∴弦為,故選A.【考點(diǎn)】本題考查了勾股定理,熟練掌握勾股定理是解題的關(guān)鍵.4、D【解析】【分析】連接OA、OC,由垂徑定理得AC=BC=AB=5寸,連接OA,設(shè)圓的半徑為x寸,再在Rt△OAC中,由勾股定理列出方程,解方程可得半徑,進(jìn)而直徑可求.【詳解】解:連接OA、OC,如圖:由題意得:C為AB的中點(diǎn),則O、C、D三點(diǎn)共線,OC⊥AB,∴AC=BC=AB=5(寸),設(shè)圓的半徑為x寸,則OC=(x﹣1)寸.在Rt△OAC中,由勾股定理得:52+(x﹣1)2=x2,解得:x=13.∴圓材直徑為2×13=26(寸).故選:D【考點(diǎn)】本題主要考查了垂徑定理的應(yīng)用,勾股定理的應(yīng)用,熟練掌握垂徑定理,由勾股定理得出方程是解題的關(guān)鍵.5、D【解析】【分析】分三種情況討論,當(dāng)∠A=90°,或∠B=90°,或∠C=90°時(shí),分別畫(huà)出符合條件的圖形,即可解答.【詳解】解:分三種情況討論,當(dāng)∠A=90°,或∠B=90°,或∠C=90°如圖符合條件的格點(diǎn)C的個(gè)數(shù)是6個(gè)故選:D.【考點(diǎn)】本題考查正多邊形和圓的性質(zhì)、直角三角形的判定與性質(zhì)、直徑所對(duì)的圓周角是90°等知識(shí),是基礎(chǔ)考點(diǎn),掌握相關(guān)知識(shí)是解題關(guān)鍵.6、C【解析】【分析】要求最短路徑,首先要把圓柱的側(cè)面展開(kāi),利用兩點(diǎn)之間線段最短,然后利用勾股定理即可求解.【詳解】解:把圓柱側(cè)面展開(kāi),展開(kāi)圖如圖所示,點(diǎn)A、C之間的最短距離為線段AC的長(zhǎng).在Rt△ADC中,∠ADC=90°,CD=AB=3,AD為底面半圓弧長(zhǎng),AD=π,∴AC=,故選C.【考點(diǎn)】本題考查了平面展開(kāi)-最短路徑問(wèn)題,解題的關(guān)鍵是會(huì)將圓柱的側(cè)面展開(kāi),并利用勾股定理解答.7、B【解析】【分析】根據(jù)題意畫(huà)出圖形,先找出h的值為最大和最小時(shí)筷子的位置,再根據(jù)勾股定理解答即可.【詳解】解:當(dāng)筷子與杯底垂直時(shí)h最大,h最大=24﹣12=12cm.當(dāng)筷子與杯底及杯高構(gòu)成直角三角形時(shí)h最小,如圖所示:此時(shí),AB===13cm,∴h=24﹣13=11cm.∴h的取值范圍是11cm≤h≤12cm.故選:B.【考點(diǎn)】本題考查了勾股定理的實(shí)際應(yīng)用問(wèn)題,解答此題的關(guān)鍵是根據(jù)題意畫(huà)出圖形找出何時(shí)h有最大及最小值,同時(shí)注意勾股定理的靈活運(yùn)用,有一定難度.二、填空題1、##【解析】【分析】根據(jù)勾股定理計(jì)算AC的長(zhǎng),利用面積差可得三角形ABC的面積,由三角形的面積公式即可得到結(jié)論.【詳解】】解:由勾股定理得:AC=,∵S△ABC=3×4-×1×2-×3×2-×2×4=4,∴AC?BD=4,∴×2BD=4,∴BD=,故答案為:.【考點(diǎn)】本題考查了勾股定理,三角形的面積的計(jì)算,掌握勾股定理是解題的關(guān)鍵.2、2或14#14或2【解析】【分析】過(guò)點(diǎn)B作AC邊的高BD,Rt△ABD中,∠A=45°,AB=4,得BD=AD=4,在Rt△BDC中,BC=4,得CD==5,①△ABC是鈍角三角形時(shí),②△ABC是銳角三角形時(shí),分別求出AC的長(zhǎng),即可求解.【詳解】解:過(guò)點(diǎn)作邊的高,中,,,,在中,,,①是鈍角三角形時(shí),,;②是銳角三角形時(shí),,,故答案為:2或14.【考點(diǎn)】本題考查了勾股定理,三角形面積求法,解題關(guān)鍵是分類(lèi)討論思想.3、【解析】【分析】根據(jù)兩點(diǎn)的距離公式計(jì)算求解即可.【詳解】解:由題意知點(diǎn)(3,﹣2)到原點(diǎn)的距離為故答案為:.【考點(diǎn)】本題考查了用勾股定理求解兩點(diǎn)的距離公式.解題的關(guān)鍵在于熟練掌握距離公式:、兩點(diǎn)間的距離公式為.4、【解析】【分析】根據(jù)題意設(shè)直角三角形的三邊為,分別表示出,得出,進(jìn)而即可求解.【詳解】解:設(shè)直角三角形的三邊為,如圖,,,,,S1=18π,S3=50π,故答案為:.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,掌握勾股定理是解題的關(guān)鍵.5、直角三角形【解析】【分析】首先計(jì)算出第三條鐵絲的長(zhǎng)度,再利用勾股定理的逆定理可證明擺成的三角形是直角三角形.【詳解】解:12-3-5=4(cm),∵32+42=52,∴這三條鐵絲擺成的三角形是直角三角形,故答案為:直角三角形.【考點(diǎn)】此題主要考查了勾股定理逆定理,關(guān)鍵是掌握如果三角形的三邊長(zhǎng)a,b,c滿(mǎn)足a2+b2=c2,那么這個(gè)三角形就是直角三角形.6、34【解析】【分析】在Rt△COB和Rt△AOB中,根據(jù)勾股定理得BO2+CO2=CB2,OD2+OA2=AD2,進(jìn)一步得BO2+CO2+OD2+OA2=9+25,再根據(jù)AB2=BO2+AO2,CD2=OC2+OD2,最后求得AB2+CD2=34.【詳解】解:∵BD⊥AC,∴∠COB=∠AOB=∠AOD=∠COD=90°,在Rt△COB和Rt△AOB中,根據(jù)勾股定理得,BO2+CO2=CB2,OD2+OA2=AD2,∴BO2+CO2+OD2+OA2=9+25,∵AB2=BO2+AO2,CD2=OC2+OD2,∴AB2+CD2=34;故答案為:34.【考點(diǎn)】本題考查勾股定理的應(yīng)用,熟練掌握勾股定理在實(shí)際問(wèn)題中的應(yīng)用,從題中抽象出勾股定理這一數(shù)學(xué)模型是解題關(guān)鍵.7、102+(x-1)2=x2【解析】【分析】當(dāng)木桿的上端與墻頭平齊時(shí),木桿與墻、地面構(gòu)成直角三角形,設(shè)木桿長(zhǎng)為x尺,則木桿底端離墻有(x-1)尺,根據(jù)勾股定理可列出方程.【詳解】解:如圖,設(shè)木桿AB長(zhǎng)為x尺,則木桿底端B離墻的距離即BC的長(zhǎng)有(x-1)尺,在Rt△ABC中,∵AC2+BC2=AB2,∴102+(x-1)2=x2,故答案為:102+(x-1)2=x2.【考點(diǎn)】此題考查了勾股定理的應(yīng)用,解題的關(guān)鍵是由實(shí)際問(wèn)題抽象出直角三角形,從而運(yùn)用勾股定理解題.8、直角三角形【解析】【分析】根據(jù)絕對(duì)值、完全平方數(shù)和算數(shù)平方根的非負(fù)性,可求解出a、b、c的值,再根據(jù)勾股定理的逆定理判斷即可.【詳解】解:由題意得:,解得:,∵,∴三角形為直角三角形.故答案為直角三角形.【考點(diǎn)】本題主要考查了非負(fù)數(shù)的性質(zhì)和勾股定理的逆定理,運(yùn)用非負(fù)數(shù)的性質(zhì)求出a、b、c的值是解題的關(guān)鍵.三、解答題1、(1);(2)證明見(jiàn)解析.【解析】【分析】(1)根據(jù)正方形面積計(jì)算公式解答;(2)利用面積法證明即可得到結(jié)論.【詳解】(1);(2)如圖,∵Rt△DEC≌Rt△EAB,∴∠DEC=∠EAB,DE=AE,∵,∴,∴△AED為等腰直角三角形,∵,∴,即,∵,∴,∴.【考點(diǎn)】此題考查勾股定理的證明,完全平方公式在幾何圖形中的應(yīng)用,正確理解各部分圖形之間的關(guān)系,正確分析它們之間的面積等量關(guān)系是解題的關(guān)鍵.2、【初步運(yùn)用】(1)5:9;(2)28;(3)24;(4);【遷移運(yùn)用】a2+b2﹣ab=c2,證明見(jiàn)解析【解析】【分析】初步運(yùn)用:(1)如圖1,求出小正方形的面積,大正方形的面積即可;(2)根據(jù)空白部分的面積=小正方形的面積﹣2個(gè)直角三角形的面積計(jì)算即可;(3)可設(shè)AC=x,根據(jù)勾股定理列出方程可求x,再根據(jù)直角三角形面積公式計(jì)算即可求解;(4)根據(jù)圖形的特征得出四邊形MNKT的面積設(shè)為x,將其余八個(gè)全等的三角形面積一個(gè)設(shè)為y,從而用x,y表示出S1,S2,S3,得出答案即可.遷移運(yùn)用:根據(jù)大正三角形面積=三個(gè)全等三角形面積+小正三角形面積,構(gòu)建關(guān)系式即可.【詳解】解:【初步運(yùn)用】(1)由題意:b=2a,c=,∴小正方形面積:大正方形面積=5a2:9a2=5:9,故答案為:5:9;(2)空白部分的面積為=52﹣2××4×6=28,故答案為:28;(3)24÷4=6,設(shè)AC=x,依題意有:(x+3)2+32=(6﹣x)2,解得x=1,∴面積為:×(3+1)×3×4=×4×3×4=24,故該飛鏢狀圖案的面積是24;(4)將四邊形MTKN的面積設(shè)為x,將其余八個(gè)全等的三角形面積一個(gè)設(shè)為y,∵正方形ABCD,正方形EFGH,正方形MNKT的面積分別為S1,S2,S3,S1+S2+S3=40,∴S1=8y+x,S2=4y+x,S3=x,∴S1+S2+S3=3x+12y=40,∴x+4y=,∴S2=x+4y=,故答案為:;[遷移運(yùn)用]結(jié)論:a2+b2﹣ab=c2.理由:由題意:大正三角形面積=三個(gè)全等三角形面積+小正三角形面積,可得:(a+b)×k(a+b)=3××b×ka+×c×ck,∴(a+b)2=3ab+c2,∴a2+b2﹣ab=c2.【考點(diǎn)】本題考查勾股定理的證明和應(yīng)用,根據(jù)圖形得出面積關(guān)系是解題的關(guān)鍵.3、4km【解析】【分析】根據(jù)題意設(shè)出BE的長(zhǎng)為xkm,再由勾股定理列出方程求解即可.【詳解】解:設(shè)BE=xkm,則AE=(10﹣x)km,由勾股定理得:在Rt△ADE中,DE2=AD2+AE2=42+(10﹣x)2,在Rt△BCE中,CE2=BC2+BE2=62+x2,由題意可知:DE=CE,所以:62+x2=42+(10﹣x)2,解得:x=4.所以,EB的長(zhǎng)是4km.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,熟練掌握勾股定理是解本題的關(guān)鍵.4、(1)△BDC為直角三角形,理由見(jiàn)解析;(2)△ABC的周長(zhǎng)為=cm.【解析】【分析】(1)由BC=10cm,CD=8cm,BD=6cm,知道BC2=BD2+CD2,所以△BDC為直角三角形;(2)由此可求出AC的長(zhǎng),周長(zhǎng)即可求出.(1)解:△BDC為直角三角形,理由如下,∵BC=10cm,CD=8cm,BD=6cm,而102=62+82,∴BC2=BD2+CD2.∴△BDC為直角三角形;(2)解:設(shè)AB=xcm,∵等腰△ABC,∴AB=AC=x,則AD=x-6,∵AB2=AD2+BD2,即x2=(x-6)2+82,∴x=,∴△ABC的周長(zhǎng)=2AB+BC=(cm).【考點(diǎn)】本題考查了勾股定理的逆定理,關(guān)鍵是根據(jù)等腰三角形的性質(zhì)、勾股定理以及逆定理的應(yīng)用解答.5、【解析】【分析】先由折疊可知EC=BC=2,進(jìn)而可知AD=CE,通過(guò)全等三角形的角角邊判定定理可證明△ADF≌△CEF,由全等可知FE=DF,設(shè)FC為x,則FE=DF=4-x,根據(jù)直角三角形的勾股定理可列方程,從而計(jì)算出CF的長(zhǎng)度,通過(guò)CF與AD的長(zhǎng)度可計(jì)算出重合部分面積.【詳解】解:∵△AEC是由△ABC沿AC折疊后得到的,∴EC=BC=2,且∠E=∠B=90
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度城市地下綜合管廊建設(shè)與智能交通系統(tǒng)融合合作協(xié)議
- 2025年醫(yī)療救援機(jī)構(gòu)急診醫(yī)護(hù)團(tuán)隊(duì)緊急調(diào)用及聘用合同
- 2025年5G基站建設(shè)及設(shè)備安裝一體化服務(wù)合同
- 2025年綠色建筑BIM技術(shù)實(shí)施與安全評(píng)估全面合作協(xié)議
- 宿舍樓安全出口標(biāo)識(shí)升級(jí)改造及日常維護(hù)管理服務(wù)合同
- 2025年綠色環(huán)保產(chǎn)業(yè)知識(shí)產(chǎn)權(quán)質(zhì)押貸款合作合同
- 2025年再婚夫妻財(cái)產(chǎn)清算及共同債務(wù)分割協(xié)議書(shū)范例
- 2025專(zhuān)業(yè)展覽館工程承包及展覽布局設(shè)計(jì)合同
- 2025年大型企業(yè)全面風(fēng)險(xiǎn)管理體系構(gòu)建與保全服務(wù)契約
- 第135號(hào)廈門(mén)汽車(chē)租賃合同
- 醫(yī)務(wù)人員語(yǔ)言行為規(guī)范
- 云計(jì)算環(huán)境下的數(shù)據(jù)安全與隱私保護(hù)研究
- 松毛嶺戰(zhàn)役課件
- 北京市東城區(qū)2024-2025學(xué)年高一上學(xué)期期末統(tǒng)一檢測(cè) 化學(xué)試卷(解析版)
- 燃?xì)夤艿姥簿€人員管理制度
- 采購(gòu)主管試用期轉(zhuǎn)正工作總結(jié)
- 江蘇保安考試題綱及答案
- 《鎂鋁合金的腐蝕與防護(hù)》課件
- 初中數(shù)學(xué)+認(rèn)識(shí)方程+課件++魯教版(五四制)數(shù)學(xué)六年級(jí)下冊(cè)
- 初高中一體化貫通培養(yǎng)教育管理探索與思考
- 化工設(shè)備基礎(chǔ)知識(shí)培訓(xùn)課件
評(píng)論
0/150
提交評(píng)論