




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
山東省膠州市中考數(shù)學(xué)真題分類(勾股定理)匯編章節(jié)測(cè)評(píng)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計(jì)14分)1、如圖,中,,一同學(xué)利用直尺和圓規(guī)完成如下操作:①以點(diǎn)C為圓心,以CB為半徑畫弧,交AB于點(diǎn)G;分別以點(diǎn)G、B為圓心,以大于的長為半徑畫弧,兩弧交點(diǎn)K,作射線CK;②以點(diǎn)B為圓心,以適當(dāng)?shù)拈L為半徑畫弧,交BC于點(diǎn)M,交AB的延長線于N,分別以M、N為圓心,以大于的長為半徑畫弧,兩弧交于點(diǎn)P,作直線BP交AC的延長線于點(diǎn)D,交射線CK于點(diǎn)E.請(qǐng)你觀察圖形,根據(jù)操作結(jié)果解答下列問題;過點(diǎn)D作交AB的延長線于點(diǎn)F,若,,則CE的長為(
)A.13 B. C. D.2、如圖是一個(gè)三級(jí)臺(tái)階,它的每一級(jí)的長、寬、高分別為20dm、3dm、2dm,A和B是這個(gè)臺(tái)階上兩個(gè)相對(duì)的端點(diǎn),點(diǎn)A處有一只螞蟻,想到點(diǎn)B處去吃可口的食物,則螞蟻沿著臺(tái)階面爬行到點(diǎn)B的最短路程為(
)A.20dm B.25dm C.30dm D.35dm3、如圖所示,圓柱的高AB=3,底面直徑BC=3,現(xiàn)在有一只螞蟻想要從A處沿圓柱表面爬到對(duì)角C處捕食,則它爬行的最短距離是()A. B. C. D.4、觀察“趙爽弦圖”(如圖),若圖中四個(gè)全等的直角三角形的兩直角邊分別為a,b,,根據(jù)圖中圖形面積之間的關(guān)系及勾股定理,可直接得到等式(
)A. B.C. D.5、如圖,正方體盒子的棱長為2,M為BC的中點(diǎn),則一只螞蟻從A點(diǎn)沿盒子的表面爬行到M點(diǎn)的最短距離為(
)A. B.C. D.6、有一個(gè)邊長為1的正方形,以它的一條邊為斜邊,向外作一個(gè)直角三角形,再分別以直角三角形的兩條直角邊為邊,向外各作一個(gè)正方形,稱為第一次“生長”(如圖1);再分別以這兩個(gè)正方形的邊為斜邊,向外各自作一個(gè)直角三角形,然后分別以這兩個(gè)直角三角形的直角邊為邊,向外各作一個(gè)正方形,稱為第二次“生長”(如圖2)……如果繼續(xù)“生長”下去,它將變得“枝繁葉茂”,請(qǐng)你算出“生長”了2021次后形成的圖形中所有的正方形的面積和是(
)A.1 B.2020 C.2021 D.20227、如圖,點(diǎn),在直線的同側(cè),到的距離,到的距離,已知,是直線上的一個(gè)動(dòng)點(diǎn),記的最小值為,的最大值為,則的值為(
)A.160 B.150 C.140 D.130第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計(jì)16分)1、如圖,該圖形是由直角三角形和正方形構(gòu)成,其中最大正方形的邊長為7,則正方形A、B、C、D的面積之和為__________.2、如圖,AB⊥CD于B,△ABD和△BCE都是等腰直角三角形,如果CD=17,BE=5,那么AC的長為_______3、附加題:觀察以下幾組勾股數(shù),并尋找規(guī)律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…請(qǐng)你寫出有以上規(guī)律的第⑤組勾股數(shù):________.4、我國古代有這樣一道數(shù)學(xué)問題:“枯木一根直立地上,高二丈,周三尺,有葛藤自根纏繞而上,五周而達(dá)其頂,問葛藤之長幾何?”題意是:如圖所示,把枯木看作一個(gè)圓柱體,因一丈是十尺,則該圓柱的高為20尺,底面周長為3尺,有葛藤自點(diǎn)A處纏繞而上,繞五周后其末端恰好到達(dá)點(diǎn)B處,則問題中葛藤的最短長度是_______尺.
5、某小區(qū)兩面直立的墻壁之間為安全通道,一架梯子斜靠在左墻DE時(shí),梯子A到左墻的距離AE為0.7m,梯子頂端D到地面的是樣子離DE為2.4m,若梯子底端A保持不動(dòng),將梯子斜塞在右墻BC上,梯子頂端C到地面的距離CB為1.5m,則這兩面直立墻壁之間的安全道的寬BE為__________m.6、如圖,矩形ABCD中,AD=6,AB=8.點(diǎn)E為邊DC上的一個(gè)動(dòng)點(diǎn),△AD'E與△ADE關(guān)于直線AE對(duì)稱,當(dāng)△CD'E為直角三角形時(shí),DE的長為__.7、《九章算術(shù)》中有一道“引葭赴岸”問題:“今有池一丈,葭生其中央,出水一尺,引葭赴岸,適與岸齊.問水深,葭長各幾何?”題意是:有一個(gè)池塘,其底面是邊長為10尺的正方形,一棵蘆葦AB生長在它的中央,高出水面部分BC為1尺.如果把該蘆葦沿與水池邊垂直的方向拉向岸邊,那么蘆葦?shù)捻敳緽恰好碰到岸邊的B'(如圖).則蘆葦長_____尺.8、在繼承和發(fā)揚(yáng)紅色學(xué)校光榮傳統(tǒng),與時(shí)俱進(jìn),把育英學(xué)校建成一所文明的、受社會(huì)尊敬的學(xué)校升旗儀式上,如圖所示,一根旗桿的升旗的繩垂直落地后還剩余1米,若將繩子拉直,則繩端離旗桿底端的距離有5米.則旗桿的高度______.三、解答題(7小題,每小題10分,共計(jì)70分)1、在一條東西走向河的一側(cè)有一村莊C,河邊原有兩個(gè)取水點(diǎn)A,B,其中AB=AC,由于種種原因,由C到A的路現(xiàn)在已經(jīng)不通了,某村為方便村民取水決定在河邊新建一個(gè)取水點(diǎn)H(A,H,B在一條直線上),并新修一條路CH,測(cè)得CB=3千米,CH=2.4千米,HB=1.8千米.(1)問CH是不是從村莊C到河邊的最近路,請(qǐng)通過計(jì)算加以說明;(2)求原來的路線AC的長.2、我方偵查員小王在距離東西向公路400米處偵查,發(fā)現(xiàn)一輛敵方汽車在公路上疾駛.他趕緊拿出紅外線測(cè)距儀,測(cè)得汽車與他相距400米,10秒后,汽車與他相距500米,你能幫小王計(jì)算敵方汽車的速度嗎?3、如圖所示,在中,,,,為邊上的中點(diǎn).(1)求、的長度;(2)將折疊,使與重合,得折痕;求、的長度.4、小明爸爸給小明出了一道題:如圖,修公路遇到一座山,于是要修一條隧道.已知A,B,C在同一條直線上,為了在小山的兩側(cè)B,C同時(shí)施工,過點(diǎn)B作一直線m(在山的旁邊經(jīng)過),過點(diǎn)C作一直線l與m相交于D點(diǎn),經(jīng)測(cè)量,,米,米.若施工隊(duì)每天挖100米,求施工隊(duì)幾天能挖完?5、《算法統(tǒng)宗》是中國古代數(shù)學(xué)名著,作者是我國明代數(shù)學(xué)家程大位.在《算法統(tǒng)宗》中有一道“蕩秋千”的問題:“平地秋千未起,踏板一尺離地.送行二步與人齊,五尺人高曾記.仕女佳人爭(zhēng)蹴,終朝笑語歡嬉.良工高士素好奇,算出索長有幾.”(注:1步=5尺)譯文:“有一架秋千,當(dāng)它靜止時(shí),踏板離地1尺,將它往前推送10尺(水平距離)時(shí),秋千的踏板就和人一樣高,這個(gè)人的身高為5尺,秋千的繩索始終拉得很直,問繩索有多長.”6、已知,如圖,,C為上一點(diǎn),與相交于點(diǎn)F,連接.,.(1)求證:;(2)已知,,,求的長度.7、在△ABC中,AB=15,BC=14,AC=13,求△ABC的面積.某學(xué)習(xí)小組經(jīng)過合作交流,給出了下面的解題思路,請(qǐng)你按照他們的解題思路完成解答過程.-參考答案-一、單選題1、D【解析】【分析】先證明CE=CD=DF,BC=BF=5,利用勾股定理求出AB,設(shè)CE=CD=DF=x,在Rt△ADF中,利用勾股定理構(gòu)建方程求解即可.【詳解】解:由作圖知CE⊥AB,BD平分∠CBF,∴∠1=∠2=∠3,∵∠CEB+∠3=∠2+∠CDE=90°,∴∠CEB=∠CDE,∴CD=CE,在△DBC和△DBF中,,∴△BDC≌△BDF(AAS),∴CD=DF,BC=BF=5,∵∠ACB=90°,AC=12,BC=5,∴AB=,設(shè)EC=CD=DF=x,在Rt△ADF中,則有(12+x)2=x2+182,∴x=,∴CE=,故選D.【考點(diǎn)】本題考查作圖-復(fù)雜作圖,全等三角形的判定和性質(zhì),等腰三角形的判定,以及勾股定理等知識(shí),解題的關(guān)鍵是學(xué)會(huì)構(gòu)建方程解決問題,屬于中考??碱}型.2、B【解析】【分析】先將圖形平面展開,再用勾股定理根據(jù)兩點(diǎn)之間線段最短進(jìn)行解答.【詳解】三級(jí)臺(tái)階平面展開圖為長方形,長為20dm,寬為(2+3)×3dm,則螞蟻沿臺(tái)階面爬行到B點(diǎn)最短路程是此長方形的對(duì)角線長.可設(shè)螞蟻沿臺(tái)階面爬行到B點(diǎn)最短路程為xdm,由勾股定理得:x2=202+[(2+3)×3]2=252,解得x=25.故選B.【考點(diǎn)】本題考查了平面展開——最短路徑問題,用到臺(tái)階的平面展開圖,只要根據(jù)題意判斷出長方形的長和寬即可解答.3、C【解析】【分析】要求最短路徑,首先要把圓柱的側(cè)面展開,利用兩點(diǎn)之間線段最短,然后利用勾股定理即可求解.【詳解】解:把圓柱側(cè)面展開,展開圖如圖所示,點(diǎn)A、C之間的最短距離為線段AC的長.在Rt△ADC中,∠ADC=90°,CD=AB=3,AD為底面半圓弧長,AD=π,∴AC=,故選C.【考點(diǎn)】本題考查了平面展開-最短路徑問題,解題的關(guān)鍵是會(huì)將圓柱的側(cè)面展開,并利用勾股定理解答.4、C【解析】【分析】根據(jù)小正方形的面積等于大正方形的面積減去4個(gè)直角三角形的面積可得問題的答案.【詳解】標(biāo)記如下:∵,∴(a﹣b)2=a2+b2﹣4=a2﹣2ab+b2.故選:C.【考點(diǎn)】此題考查的是利用勾股定理的證明,可以完全平方公式進(jìn)行證明,掌握面積差得算式是解決此題關(guān)鍵.5、B【解析】【分析】先利用展開圖確定最短路線,再利用勾股定理求解即可.【詳解】解:如圖,螞蟻沿路線AM爬行時(shí)距離最短;∵正方體盒子棱長為2,M為BC的中點(diǎn),∴,∴,故選:B.【考點(diǎn)】本題考查了螞蟻爬行的最短路徑為題,涉及到了正方形的性質(zhì)、正方體的展開圖、勾股定理、兩點(diǎn)之間線段最短等知識(shí),解題關(guān)鍵是牢記相關(guān)概念與靈活應(yīng)用.6、D【解析】【分析】根據(jù)題意可得每“生長”一次,面積和增加1,據(jù)此即可求得“生長”了2021次后形成的圖形中所有的正方形的面積和.【詳解】解:如圖,由題意得:SA=1,由勾股定理得:SB+SC=1,則“生長”了1次后形成的圖形中所有的正方形的面積和為2,同理可得:“生長”了2次后形成的圖形中所有的正方形面積和為3,“生長”了3次后形成的圖形中所有正方形的面積和為4,……“生長”了2021次后形成的圖形中所有的正方形的面積和是2022,故選:D【考點(diǎn)】本題考查了勾股數(shù)規(guī)律問題,找到規(guī)律是解題的關(guān)鍵.7、A【解析】【分析】作點(diǎn)A關(guān)于直線MN的對(duì)稱點(diǎn),連接交直線MN于點(diǎn)P,則點(diǎn)P即為所求點(diǎn),過點(diǎn)作直線,在根據(jù)勾股定理求出線段的長,即為PA+PB的最小值,延長AB交MN于點(diǎn),此時(shí),由三角形三邊關(guān)系可知,故當(dāng)點(diǎn)P運(yùn)動(dòng)到時(shí)最大,過點(diǎn)B作由勾股定理求出AB的長就是的最大值,代入計(jì)算即可得.【詳解】解:如圖所示,作點(diǎn)A關(guān)于直線MN的對(duì)稱點(diǎn),連接交直線MN于點(diǎn)P,則點(diǎn)P即為所求點(diǎn),過點(diǎn)作直線,∵,,,∴,,,在中,根據(jù)勾股定理得,∴,即PA+PB的最小值是;如圖所示,延長AB交MN于點(diǎn),∵,,∴當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)時(shí),最大,過點(diǎn)B作,則,∴,在中,根據(jù)勾股定理得,,∴,即,∴,故選A.【考點(diǎn)】本題考查了最短線路問題和勾股定理,解題的關(guān)鍵是熟知兩點(diǎn)之間線段最短及三角形的三邊關(guān)系.二、填空題1、49【解析】【分析】根據(jù)正方形A,B,C,D的面積和等于最大的正方形的面積,求解即可求出答案.【詳解】如圖對(duì)所給圖形進(jìn)行標(biāo)注:因?yàn)樗械娜切味际侵苯侨切危械乃倪呅味际钦叫?,所以正方形A的面積,正方形B的面積,正方形C的面積,正方形D的面積.因?yàn)?,,所以正方形A,B,C,D的面積和.故答案為:49.【考點(diǎn)】本題主要考查了勾股定理、正方形的性質(zhì),面積的計(jì)算,掌握勾股定理是解本題的關(guān)鍵.2、13【解析】【分析】先根據(jù)△BCE等腰直角三角形得出BC的長,進(jìn)而可得出BD的長,根據(jù)△ABD是等腰直角三角形可知AB=BD.在Rt△ABC中利用勾股定理即可求出AC的長.【詳解】∵△BCE等腰直角三角形,BE=5,∴BC=5.∵CD=17,∴DB=CD﹣BE=17﹣5=12.∵△ABD是等腰直角三角形,∴AB=BD=12.在Rt△ABC中,∵AB=12,BC=5,∴AC13.故答案為13.【考點(diǎn)】本題考查了等腰直角三角形的性質(zhì)及勾股定理,熟知等腰三角形兩腰相等的性質(zhì)是解答此題的關(guān)鍵.3、11,60,61【解析】【分析】由所給勾股數(shù)發(fā)現(xiàn)第一個(gè)數(shù)是奇數(shù),且逐步遞增2,知第5組第一個(gè)數(shù)是11,第二、第三個(gè)數(shù)相差為1,設(shè)第二個(gè)數(shù)為x,則第三個(gè)數(shù)為,由勾股定理得:,計(jì)算求解即可.【詳解】解:由所給勾股數(shù)發(fā)現(xiàn)第一個(gè)數(shù)是奇數(shù),且逐步遞增2,∴知第5組第一個(gè)數(shù)是11,第二、第三個(gè)數(shù)相差為1,設(shè)第二個(gè)數(shù)為x,則第三個(gè)數(shù)為,由勾股定理得:,解得x=60,∴第5組數(shù)是:11、60、61故答案為:11、60、61.【考點(diǎn)】本題考查了數(shù)字類規(guī)律,勾股定理等知識(shí).解題的關(guān)鍵在于推導(dǎo)規(guī)律.4、25.【解析】【詳解】解:這種立體圖形求最短路徑問題,可以展開成為平面內(nèi)的問題解決,展開后可轉(zhuǎn)化下圖,所以是直角三角形求斜邊的問題.根據(jù)勾股定理可求出葛藤長為(尺).故答案為:25.5、2.7【解析】【分析】先根據(jù)勾股定理求出AD的長,同理可得出AB的長,進(jìn)而可得出結(jié)論.【詳解】在Rt△ACB中,∵∠ACB=90°,AE=0.7米,DE=2.4米,∴AD2=0.72+2.42=6.25.在Rt△A′BD中,∵∠ABC=90°,BC=1.5米,AB2+BC2=AC2,∴AB2+1.52=6.25,∴AB2=4.∵AB>0,∴AB=2米.∴BE=AE+AB=0.7+2=2.7米.故答案為2.7.【考點(diǎn)】本題考查的是勾股定理的應(yīng)用,在應(yīng)用勾股定理解決實(shí)際問題時(shí),勾股定理與方程的結(jié)合是解決實(shí)際問題常用的方法,關(guān)鍵是從題中抽象出勾股定理這一數(shù)學(xué)模型,畫出準(zhǔn)確的示意圖.領(lǐng)會(huì)數(shù)形結(jié)合的思想的應(yīng)用.6、3或6【解析】【分析】分兩種情況分別求解,(1)當(dāng)∠CED′=90°時(shí),如圖(1),根據(jù)軸對(duì)稱的性質(zhì)得∠AED=∠AED′=45′,得DE=AD=6;(2)當(dāng)∠ED′A=90°時(shí),如圖(2),根據(jù)軸對(duì)稱的性質(zhì)得∠AD′E=∠D,AD′=AD,DE=D′E,得A、D′、C在同一直線上,根據(jù)勾股定理得AC=10,設(shè)DE=D′E=x,則EC=CD?DE=8?x,根據(jù)勾股定理得,D′E2+D′C2=EC2,代入相關(guān)的值,計(jì)算即可.【詳解】解:當(dāng)∠CED′=90°時(shí),如圖(1),∵∠CED′=90°,根據(jù)軸對(duì)稱的性質(zhì)得∠AED=∠AED′=×90°=45°,∵∠D=90°,∴△ADE是等腰直角三角形,∴DE=AD=6;(2)當(dāng)∠ED′A=90°時(shí),如圖(2),根據(jù)軸對(duì)稱的性質(zhì)得∠AD′E=∠D=90°,AD′=AD,DE=D′E,△CD′E為直角三角形,即∠CD′E=90°,∴∠AD′E+∠CD′E=180°,∴A、D′、C在同一直線上,根據(jù)勾股定理得,∴CD′=10?6=4,設(shè)DE=D′E=x,則EC=CD?DE=8?x,在Rt△D′EC中,D′E2+D′C2=EC2,即x2+16=(8?x)2,解得x=3,即DE=3;綜上所述:DE的長為3或6;故答案為:3或6.【考點(diǎn)】本題考查了矩形的性質(zhì)、勾股定理、軸對(duì)稱的性質(zhì),熟練掌握矩形的性質(zhì)、勾股定理、軸對(duì)稱的性質(zhì)的綜合應(yīng)用,分情況討論,作出圖形是解題關(guān)鍵.7、13【解析】【分析】將其轉(zhuǎn)化為數(shù)學(xué)幾何圖形,如圖所示,根據(jù)題意,可知B'C=5尺,設(shè)水深A(yù)C=x尺,則蘆葦長(x+1)尺,根據(jù)勾股定理建立方程,求出的方程的解即可得到蘆葦?shù)拈L和水深.【詳解】解:設(shè)水深x尺,則蘆葦長(x+1)尺,在Rt△CAB′中,AC2+B′C2=AB′2,即x2+52=(x+1)2,解得:x=12,∴x+1=13,故蘆葦長13尺,故答案為:13【考點(diǎn)】本題考查勾股定理,和列方程解決實(shí)際問題,能夠在實(shí)際問題中找到直角三角形并應(yīng)用勾股定理是解決本題的關(guān)鍵.8、12米【解析】【分析】設(shè)旗桿的高度是x米,繩子長為(x+1)米,旗桿,拉直的繩子和BC構(gòu)成直角三角形,根據(jù)勾股定理可求出x的值,從而求出旗桿的高度.【詳解】解:設(shè)旗桿的高度為米,根據(jù)題意可得:,解得:,答:旗桿的高度為12米.故答案為:12米.【考點(diǎn)】本題考查勾股定理的應(yīng)用,關(guān)鍵看到旗桿,拉直的繩子和BC構(gòu)成直角三角形,根據(jù)勾股定理可求解.三、解答題1、(1)是,理由見解析;(2)2.5米.【解析】【分析】(1)先根據(jù)勾股定理逆定理證得Rt△CHB是直角三角形,然后根據(jù)點(diǎn)到直線的距離中,垂線段最短即可解答;(2)設(shè)AC=AB=x,則AH=x-1.8,在Rt△ACH中,根據(jù)勾股定理列方程求得x即可.【詳解】(1)∵,即,∴Rt△CHB是直角三角形,即CH⊥BH,∴CH是從村莊C到河邊的最近路(點(diǎn)到直線的距離中,垂線段最短);(2)設(shè)AC=AB=x,則AH=x-1.8,∵在Rt△ACH,∴,即,解得x=2.5,∴原來的路線AC的長為2.5米.【考點(diǎn)】本題主要考查了勾股定理的應(yīng)用,靈活應(yīng)用勾股定理的逆定理和定理是解答本題的關(guān)鍵.2、速度為30米每秒【解析】【分析】根據(jù)勾股定理求得的長度,再根據(jù)速度等于路程除以時(shí)間即可求得敵方汽車的速度.【詳解】,,米每秒,答:敵方汽車的速度為30米每秒.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,掌握勾股定理是解題的關(guān)鍵.3、(1)BD=2,;(2),【解析】【分析】(1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 惠民社區(qū)消防知識(shí)培訓(xùn)課件
- 情緒理論課件
- 2026屆內(nèi)蒙古包頭市高三化學(xué)第一學(xué)期期末統(tǒng)考試題含解析
- 2026屆福建省南平市邵武市四中化學(xué)高一上期中監(jiān)測(cè)試題含解析
- 社會(huì)女性測(cè)試題及答案
- 象棋學(xué)徒面試題及答案
- 旭輝集團(tuán)面試題及答案
- 家電公司審計(jì)流程執(zhí)行制度
- 加班管理面試題及答案
- 財(cái)務(wù)人員面試題及答案
- 《QC小組培訓(xùn)》課件
- 2024年海南省中考道德與法治試題卷(含答案解析)
- 糖尿病健康宣教五架馬車
- 【標(biāo)準(zhǔn)】城市森林碳匯計(jì)量監(jiān)測(cè)技術(shù)規(guī)程
- 超市貨架油漆翻新協(xié)議樣本
- 江西省吉安市2024-2025學(xué)年高二地理下學(xué)期期末考試試題
- 頑童變成小書迷(2023年吉林長春中考語文試卷記敘文閱讀題及答案)
- 兔眼動(dòng)物模型在眼科研究中的價(jià)值
- GB/T 44230-2024政務(wù)信息系統(tǒng)基本要求
- DL-T 1160-2021 電站鍋爐受熱面電弧噴涂施工及驗(yàn)收規(guī)范
- 中國吸管機(jī)行業(yè)市場(chǎng)現(xiàn)狀分析及競(jìng)爭(zhēng)格局與投資發(fā)展研究報(bào)告2024-2034版
評(píng)論
0/150
提交評(píng)論