




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
四川內(nèi)江市第六中學(xué)7年級數(shù)學(xué)下冊第四章三角形單元測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計20分)1、下列敘述正確的是()A.三角形的外角大于它的內(nèi)角 B.三角形的外角都比銳角大C.三角形的內(nèi)角沒有小于60°的 D.三角形中可以有三個內(nèi)角都是銳角2、在下列長度的四根木棒中,能與3cm,9cm的兩根木棒首尾順次相接釘成一個三角形的是()A.3cm B.6cm C.10cm D.12cm3、如圖,,,,,垂足分別為、,且,,則的長是()A.2 B.3 C.5 D.74、如圖,在△ABC中,BC邊上的高為()A.AD B.BE C.BF D.CG5、如圖,一扇窗戶打開后,用窗鉤AB可將其固定()A.三角形的穩(wěn)定性B.兩點(diǎn)之間線段最短C.四邊形的不穩(wěn)定性D.三角形兩邊之和大于第三邊6、已知三角形的兩邊長分別為2cm和3cm,則第三邊長可能是()A.6cm B.5cm C.3cm D.1cm7、下列各組線段中,能構(gòu)成三角形的是()A.2、4、7 B.4、5、9 C.5、8、10 D.1、3、68、如圖,點(diǎn),在線段上,與全等,其中點(diǎn)與點(diǎn),點(diǎn)與點(diǎn)是對應(yīng)頂點(diǎn),與交于點(diǎn),則等于()A. B. C. D.9、已知三角形的兩邊長分別為和,則下列長度的四條線段中能作為第三邊的是()A. B. C. D.10、以下列各組線段為邊,能組成三角形的是()A.3cm,3cm,6cm B.2cm,5cm,8cmC.25cm,24cm,7cm D.1cm,2cm,3cm第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計20分)1、如圖,△ABC是一個等腰直角三角形,∠BAC=90°,BC分別與AF、AG相交于點(diǎn)D、E.不添加輔助線,使△ACE與△ABD全等,你所添加的條件是____.(填一個即可)2、如圖,點(diǎn)E,F(xiàn)分別為線段BC,DB上的動點(diǎn),BE=DF.要使AE+AF最小值,若用作圖方式確定E,F(xiàn),則步驟是_____.3、如圖,中,已知點(diǎn)D、E、F分別為BC、AD、CE的中點(diǎn),設(shè)的面積為,的面積為,則______.4、如圖,在長方形ABCD中,,.延長BC到點(diǎn)E,使,連結(jié)DE,動點(diǎn)P從點(diǎn)B出發(fā),以每秒2個單位長度的速度沿向終點(diǎn)A運(yùn)動.設(shè)點(diǎn)P的運(yùn)動時間為t秒,當(dāng)t的值為______________時,和全等.5、如圖,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于點(diǎn)E,AD⊥CE于點(diǎn)D,己知DE=4,AD=6,則BE的長為___.6、圖①是將木條用釘子釘成的四邊形和三角形木架,拉動木架,觀察圖②中的變動情況,說一說,其中所蘊(yùn)含的數(shù)學(xué)原理是_____.7、如圖,三角形ABC的面積為1,,E為AC的中點(diǎn),AD與BE相交于P,那么四邊形PDCE的面積為______.8、如圖,已知AB=12m,CA⊥AB于點(diǎn)A,DB⊥AB于點(diǎn)B,且AC=4m,點(diǎn)P從點(diǎn)B向點(diǎn)A運(yùn)動,每分鐘走1m,點(diǎn)Q從點(diǎn)B向點(diǎn)D運(yùn)動,每分鐘走2m.若P,Q兩點(diǎn)同時出發(fā),運(yùn)動_____分鐘后,△CAP與△PQB全等.9、如圖,∠ACD是△ABC的外角,∠ABC的平分線與∠ACD的平分線交于點(diǎn)A1,設(shè)∠A=.則∠A1=_______(用含的式子表示).10、如圖,正三角形△ABC和△CDE,A,C,E在同一直線上,AD與BE交于點(diǎn)O,AD與BC交于點(diǎn)P,BE與CD交于點(diǎn)Q,連接PQ.①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.成立的結(jié)論有_____.(填序號)三、解答題(6小題,每小題10分,共計60分)1、如圖,已知點(diǎn)A,C,D在同一直線上,BC與AF交于點(diǎn)E,AF=AC,AB=DF,AD=BC.(1)求證:∠ACE=∠EAC;(2)若∠B=50°,∠F=110°,求∠BCD的度數(shù).2、如圖1,AM為△ABC的BC邊的中線,點(diǎn)P為AM上一點(diǎn),連接PB.(1)若P為線段AM的中點(diǎn).①設(shè)△ABP的面積為S1,△ABC的面積為S,求的值;②已知AB=5,AC=3,設(shè)AP=x,求x的取值范圍.(2)如圖2,若AC=BP,求證:∠BPM=∠CAM.3、如圖,已知在△ABC中,AB=AC=10cm,∠B=∠C,BC=8cm,D為AB的中點(diǎn).點(diǎn)P在線段BC上以3cm/s的速度由點(diǎn)B向點(diǎn)C運(yùn)動,同時,點(diǎn)Q在線段CA上由點(diǎn)C向點(diǎn)A運(yùn)動.(1)若點(diǎn)Q的運(yùn)動速度與點(diǎn)P的運(yùn)動速度相等,經(jīng)過1s后,△BPD與△CQP是否全等?請說明理由.(2)若點(diǎn)Q的運(yùn)動速度與點(diǎn)P的運(yùn)動速度不相等,當(dāng)點(diǎn)Q的運(yùn)動速度為多少時,能夠使△BPD與△CQP全等?4、如圖,BM、CN都是?ABC的高,且BP﹦AC,CQ﹦AB,請?zhí)骄緼P與AQ的數(shù)量關(guān)系,并說明理由.5、已知:如圖,線段BE、DC交于點(diǎn)O,點(diǎn)D在線段AB上,點(diǎn)E在線段AC上,AB=AC,AD=AE.求證:∠B=∠C.6、如圖1,在長方形ABCD中,AB=CD=6cm,BC=10cm,點(diǎn)P從點(diǎn)B出發(fā),以2cm/s的速度沿BC向點(diǎn)C運(yùn)動,設(shè)點(diǎn)P的運(yùn)動時間為ts,且t≤5(1)PC=cm(用含t的代數(shù)式表示)(2)如圖2,當(dāng)點(diǎn)P從點(diǎn)B開始運(yùn)動時,點(diǎn)Q從點(diǎn)C出發(fā),以cm/s的速度沿CD向點(diǎn)D運(yùn)動,是否存在這樣的v值,使得以A﹑B﹑P為頂點(diǎn)的三角形與以P﹑Q﹑C為頂點(diǎn)的三角形全等?若存在,請求出的值;若不存在,請說明理由.-參考答案-一、單選題1、D【分析】結(jié)合直角三角形,鈍角三角形,銳角三角形的內(nèi)角與外角的含義與大小逐一分析即可.【詳解】解:三角形的外角不一定大于它的內(nèi)角,銳角三角形的任何一個外角都大于內(nèi)角,故A不符合題意;三角形的外角可以是銳角,不一定比銳角大,故B不符合題意;三角形的內(nèi)角可以小于60°,一個三角形的三個角可以為:故C不符合題意;三角形中可以有三個內(nèi)角都是銳角,這是個銳角三角形,故D符合題意;故選D【點(diǎn)睛】本題考查的是三角形的的內(nèi)角與外角的含義與大小,掌握“直角三角形,鈍角三角形,銳角三角形的內(nèi)角與外角”是解本題的關(guān)鍵.2、C【分析】設(shè)第三根木棒的長度為cm,再確定三角形第三邊的范圍,再逐一分析各選項即可得到答案.【詳解】解:設(shè)第三根木棒的長度為cm,則所以A,B,D不符合題意,C符合題意,故選C【點(diǎn)睛】本題考查的是三角形的三邊的關(guān)系,掌握“利用三角形的三邊關(guān)系確定第三邊的范圍”是解本題的關(guān)鍵.3、B【分析】根據(jù),,可得∠AEC=∠BDC=90°,∠CAE+∠ACE=90°,再由∠BCD=∠CAE,從而證得△ACE≌△CBD,進(jìn)而得到CE=BD,AE=CD,即可求解.【詳解】解:∵,,∴∠AEC=∠BDC=90°,∠CAE+∠ACE=90°,∵,∴∠BCD+∠ACE=90°,∴∠BCD=∠CAE,∵,∴△ACE≌△CBD,∴CE=BD,AE=CD,∵,,∴DE=CD-CE=AE-BD=5-2=3.故選:B【點(diǎn)睛】本題主要考查了全等三角形的判定和性質(zhì),熟練掌握全等三角形的判定方法是解題的關(guān)鍵.4、A【分析】根據(jù)三角形的高線的定義解答.【詳解】解:根據(jù)三角形的高的定義,AD為△ABC中BC邊上的高.故選:A.【點(diǎn)睛】本題主要考查了三角形的高的定義:從三角形的一個頂點(diǎn)向它的對邊作垂線,垂足與頂點(diǎn)之間的線段叫做三角形的高,熟記概念是解題的關(guān)鍵.5、A【分析】由三角形的穩(wěn)定性即可得出答案.【詳解】一扇窗戶打開后,用窗鉤AB可將其固定,故選:A.【點(diǎn)睛】本題考查了三角形的穩(wěn)定性,加上窗鉤AB構(gòu)成了△AOB,而三角形具有穩(wěn)定性是解題的關(guān)鍵.6、C【分析】根據(jù)在三角形中任意兩邊之和大于第三邊,任意兩邊之差小于第三邊.即可求解.【詳解】解:設(shè)第三邊長為xcm,根據(jù)三角形的三邊關(guān)系可得:3-2<x<3+2,解得:1<x<5,只有C選項在范圍內(nèi).故選:C.【點(diǎn)睛】本題考查了三角形的三邊關(guān)系,關(guān)鍵是掌握第三邊的范圍是:大于已知的兩邊的差,而小于兩邊的和.7、C【分析】根據(jù)三角形的三邊關(guān)系定理逐項判斷即可得.【詳解】解:三角形的三邊關(guān)系定理:任意兩邊之和大于第三邊.A、,不能構(gòu)成三角形,此項不符題意;B、,不能構(gòu)成三角形,此項不符題意;C、,能構(gòu)成三角形,此項符合題意;D、,不能構(gòu)成三角形,此項不符題意;故選:C.【點(diǎn)睛】本題考查了三角形的三邊關(guān)系定理,熟練掌握三角形的三邊關(guān)系定理是解題關(guān)鍵.8、D【分析】根據(jù)點(diǎn)與點(diǎn),點(diǎn)與點(diǎn)是對應(yīng)頂點(diǎn),得到,根據(jù)全等三角形的性質(zhì)解答.【詳解】解:與全等,點(diǎn)與點(diǎn),點(diǎn)與點(diǎn)是對應(yīng)頂點(diǎn),,.故選:D【點(diǎn)睛】本題主要考查了全等三角形的性質(zhì),熟練掌握全等三角形的對應(yīng)邊相等,對應(yīng)角相等是解題的關(guān)鍵.9、C【分析】根據(jù)三角形的三邊關(guān)系可得,再解不等式可得答案.【詳解】解:設(shè)三角形的第三邊為,由題意可得:,即,故選:C.【點(diǎn)睛】本題主要考查了三角形的三邊關(guān)系,解題的關(guān)鍵是掌握三角形兩邊之和大于第三邊;三角形的兩邊差小于第三邊.10、C【分析】根據(jù)三角形三邊關(guān)系求解即可.【詳解】解:A、∵,∴3cm,3cm,6cm不能組成三角形,故選項錯誤,不符合題意;B、∵,∴2cm,5cm,8cm不能組成三角形,故選項錯誤,不符合題意;C、∵,∴25cm,24cm,7cm能組成三角形,故選項正確,符合題意;D、∵,∴1cm,2cm,3cm不能組成三角形,故選項錯誤,不符合題意.故選:C.【點(diǎn)睛】此題考查了三角形三邊關(guān)系,解題的關(guān)鍵是熟練掌握三角形三邊關(guān)系.三角形兩邊之和大于第三邊,兩邊之差小于第三邊.二、填空題1、CD=BE(答案不唯一)【分析】△ABC是一個等腰直角三角形,可知,,使△ACE與△ABD全等,只需填加一組對應(yīng)角相等或的另一組邊相等即可.【詳解】解:①若所添加的條件是CD=BE,∵CD=BE,∴,∵△ABC是一個等腰直角三角形,∴,,在△ACE和△ABD中,,∴(SAS)故答案為:CD=BE,(答案不唯一)【點(diǎn)睛】本題主要考查了全等三角形的判定,掌握全等三角形判定方法并靈活運(yùn)用是解題關(guān)鍵.2、①連接,作;②以點(diǎn)為圓心、長為半徑畫弧,交于點(diǎn);③連接交于點(diǎn);④以點(diǎn)為圓心、長為半徑畫弧,交于點(diǎn)【分析】按照①連接,作;②以點(diǎn)為圓心、長為半徑畫弧,交于點(diǎn);③連接交于點(diǎn);④以點(diǎn)為圓心、長為半徑畫弧,交于點(diǎn)的步驟作圖即可得.【詳解】解:步驟是①連接,作;②以點(diǎn)為圓心、長為半徑畫弧,交于點(diǎn);③連接交于點(diǎn);④以點(diǎn)為圓心、長為半徑畫弧,交于點(diǎn);如圖,點(diǎn)即為所求.故答案為:①連接,作;②以點(diǎn)為圓心、長為半徑畫弧,交于點(diǎn);③連接交于點(diǎn);④以點(diǎn)為圓心、長為半徑畫弧,交于點(diǎn).【點(diǎn)睛】本題考查了作一個角等于已知角、兩點(diǎn)之間線段最短、作線段、全等三角形的判定與性質(zhì)等知識點(diǎn),熟練掌握尺規(guī)作圖的方法是解題關(guān)鍵.3、4【分析】利用三角形的中線的性質(zhì)證明再證明從而可得答案.【詳解】解:點(diǎn)F為CE的中點(diǎn),點(diǎn)E為AD的中點(diǎn),故答案為:【點(diǎn)睛】本題考查的是與三角形的中線有關(guān)的面積的計算,掌握“三角形的中線把一個三角形的面積分為相等的兩部分”是解本題的關(guān)鍵.4、1或7【分析】分兩種情況進(jìn)行討論,根據(jù)題意得出BP=2t=2或AP=16-2t=2即可求得結(jié)果.【詳解】解:當(dāng)點(diǎn)P在BC上時,∵AB=CD,∴當(dāng)△ABP≌△DCE,得到BP=CE,由題意得:BP=2t=2,∴t=1,當(dāng)P在AD上時,∵AB=CD,∴當(dāng)△BAP≌△DCE,得到AP=CE,由題意得:AP=6+6-4﹣2t=2,解得t=7.∴當(dāng)t的值為1或7秒時.△ABP和△DCE全等.故答案為:1或7.【點(diǎn)睛】本題考查了全等三角形的判定,解題的關(guān)鍵在于能夠利用分類討論的思想進(jìn)行求解.5、2【分析】根據(jù)AAS證明△ACD≌△CBE,再利用其性質(zhì)解答即可.【詳解】解:∵∠ACB=90°,∴∠BCE+∠ACD=90°,∵AD⊥CE,BE⊥CE,∴∠ADC=∠CEB=90°,∠CAD+∠ACD=90°,∴∠BCE=∠CAD,在△ACD與△CBE中,,∴△ACD≌△CBE,∴BE=CD,CE=AD,∴BE=CD=CE?DE=AD?DE=6?4=2.故答案為:2.【點(diǎn)睛】本題考查三角形全等的判定和性質(zhì),要根據(jù)AAS證明△ACD≌△CBE是解題的關(guān)鍵.6、三角形具有穩(wěn)定性,四邊形具有不穩(wěn)定性【分析】根據(jù)三角形的穩(wěn)定性和四邊形的不穩(wěn)定性解答.【詳解】由圖示知,四邊形變形了,而三角形沒有變形,其中所蘊(yùn)含的數(shù)學(xué)原理是三角形具有穩(wěn)定性,四邊形具有不穩(wěn)定性.故答案是:三角形具有穩(wěn)定性,四邊形具有不穩(wěn)定性.【點(diǎn)睛】本題考查了三角形的穩(wěn)定性和四邊形具有不穩(wěn)定性,關(guān)鍵抓住圖中圖形是否變形,從而判斷是否具有穩(wěn)定性.7、【分析】連接CP.設(shè)△CPE的面積是x,△CDP的面積是y.根據(jù)BD:DC=2:1,E為AC的中點(diǎn),得△BDP的面積是2y,△APE的面積是x,進(jìn)而得到△ABP的面積是4x.再根據(jù)△ABE的面積是△BCE的面積相等,得4x+x=2y+x+y,解得,再根據(jù)△ABC的面積是1即可求得x、y的值,從而求解.【詳解】解:連接CP,設(shè)△CPE的面積是x,△CDP的面積是y.∵BD:DC=2:1,E為AC的中點(diǎn),∴△BDP的面積是2y,△APE的面積是x,∵BD:DC=2:1,CE:AC=1:2,∴△ABP的面積是4x.∴4x+x=2y+x+y,解得.又∵4x+x=,解得:x=,則則四邊形PDCE的面積為x+y=.故答案為:.【點(diǎn)睛】本題能夠根據(jù)三角形的面積公式求得三角形的面積之間的關(guān)系.等高的兩個三角形的面積比等于它們的底的比;等底的兩個三角形的面積比等于它們的高的比.8、4【分析】根據(jù)題意CA⊥AB,DB⊥AB,則,則分或兩種情況討論,根據(jù)路程等于速度乘以時間求得的長,根據(jù)全等列出一元一次方程解方程求解即可【詳解】解:CA⊥AB,DB⊥AB,點(diǎn)P從點(diǎn)B向點(diǎn)A運(yùn)動,每分鐘走1m,點(diǎn)Q從點(diǎn)B向點(diǎn)D運(yùn)動,每分鐘走2m,設(shè)運(yùn)動時間為,且AC=4m,,當(dāng)時則,即,解得當(dāng)時,則,即,解得且不符合題意,故舍去綜上所述即分鐘后,△CAP與△PQB全等.故答案為:【點(diǎn)睛】本題考查了三角形全等的性質(zhì),根據(jù)全等的性質(zhì)列出方程是解題的關(guān)鍵.9、【分析】根據(jù)角平分線的定義、三角形的外角的性質(zhì)計算即可.【詳解】∵∠ABC與∠ACD的平分線交于A1點(diǎn),∴∠A1BC=∠ABC,∠A1CD=∠ACD,∵∠A=∠ACD-∠ABC=∴∠A1=∠A1CD-∠A1BC=(∠ACD-∠ABC)=∠A=,故答案為:.【點(diǎn)睛】本題考查的是三角形的外角的性質(zhì),掌握三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和是解題的關(guān)鍵.10、①②③⑤【分析】①由于△ABC和△CDE是等邊三角形,可知AC=BC,CD=CE,∠ACB=∠DCE=60°,從而證出△ACD≌△BCE,可推知AD=BE;③由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△ACP≌△BCQ(ASA),所以AP=BQ;故③正確;②根據(jù)③△CQB≌△CPA(ASA),再根據(jù)∠PCQ=60°推出△PCQ為等邊三角形,又由∠PQC=∠DCE,根據(jù)內(nèi)錯角相等,兩直線平行,可知②正確;④根據(jù)∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,可知∠DQE≠∠CDE,可知④錯誤;⑤利用等邊三角形的性質(zhì),BC∥DE,再根據(jù)平行線的性質(zhì)得到∠CBE=∠DEO,于是∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,可知⑤正確.【詳解】解:①∵等邊△ABC和等邊△DCE,∴BC=AC,DE=DC=CE,∠DEC=∠BCA=∠DCE=60°,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE;故①正確;③∵△ACD≌△BCE(已證),∴∠CAD=∠CBE,∵∠ACB=∠ECD=60°(已證),∴∠BCQ=180°﹣60°×2=60°,∴∠ACB=∠BCQ=60°,在△ACP與△BCQ中,,∴△ACP≌△BCQ(ASA),∴AP=BQ;故③正確;②∵△ACP≌△BCQ,∴PC=QC,∴△PCQ是等邊三角形,∴∠CPQ=60°,∴∠ACB=∠CPQ,∴PQ∥AE;故②正確;④∵AD=BE,AP=BQ,∴AD﹣AP=BE﹣BQ,即DP=QE,∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,∴∠DQE≠∠CDE,∴DE≠Q(mào)E,∴DP≠DE;故④錯誤;⑤∵∠ACB=∠DCE=60°,∴∠BCD=60°,∵等邊△DCE,∠EDC=60°=∠BCD,∴BC∥DE,∴∠CBE=∠DEO,∴∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°.故⑤正確;綜上所述,正確的結(jié)論有:①②③⑤.故答案為:①②③⑤.【點(diǎn)睛】本題綜合考查等邊三角形判定與性質(zhì)、全等三角形的判定與性質(zhì)、平行線的判定與性質(zhì)等知識點(diǎn)的運(yùn)用.要求學(xué)生具備運(yùn)用這些定理進(jìn)行推理的能力.三、解答題1、(1)見解析;(2)160°【分析】(1)根據(jù)SSS定理判定△ABC≌△FDA即可得出結(jié)論.(2)由△ABC≌△FDA可知∠BAC=∠F=110°,再根據(jù)∠BCD是△ABC的外角得到∠BCD=∠B+∠BAC即可求出答案.【詳解】(1)證明:在△ABC和△FDA中,,∴△ABC≌△FDA(SSS),∴∠ACB=∠FAC即∠ACE=∠EAC.(2)解∵△ABC≌△FDA,∠F=110°,∴∠BAC=∠F=110°,又∵∠BCD是△ABC的外角,∠B=50°,∴∠BCD=∠B+∠BAC=160°.【點(diǎn)評】本題考查了全等三角形的判定和性質(zhì),熟練掌握三角形全等的判定定理是解決問題的關(guān)鍵.2、(1)①,②;(2)證明見解析【分析】(1)①由中線定義即可得,故②過C點(diǎn)作AB平行線,過B點(diǎn)作AC平行線,相交于點(diǎn)N,連接ME,可得,AB=CE,則在中,有兩邊之和大于第三邊,兩邊之和小于第三邊,即可求出AE的取值范圍,即,又因?yàn)镻為線段AM,故.(2)延長PM到點(diǎn)D使PM=DM,連接DC,由邊角邊可證明,則對應(yīng)邊BP=CD相等,由等角對等邊即可求得∠BPM=∠CDM,同理可得∠CAM=∠CDM,所以∠BPM=∠CAM.【詳解】(1)①由AM為△ABC的BC邊的中線可知由P為線段AM的中點(diǎn)可知則,故②過C點(diǎn)作AB平行線,過B點(diǎn)作AC平行線,相交于點(diǎn)N,連接ME∵AB//CE∴∠ABC=∠BCE,∠BAE=∠AEC,BM=MC∴(AAS)∴AB=CE在中有即得即∵P為線段AM的中點(diǎn)∴AM=2AP,∴即.(2)延長PM到點(diǎn)D使PM=DM,連接DC,∵PM=DM,∠BMP=∠CMD,BM=CM∴(SAS)∴BP=CD,∠BPM=∠CDM又∵AC=BP∴AC=CD∴∠CAM=∠CDM∴∠BPM=∠CAM【點(diǎn)睛】本題考查了三角形的綜合問題,其中三角形的一條中線把原三角形分成兩個等底同高的三角形,因此分得的兩個三角形面積相等,利用這一特點(diǎn)可以求解有關(guān)的面積問題;三角形三邊的關(guān)系:任意兩邊的和都大于第三邊;任意兩邊之和都要小于第三邊等性質(zhì)是解題的關(guān)鍵.3、(1)△BPD與△CQP全等,理由見解析;(2)當(dāng)點(diǎn)Q的運(yùn)動速度為cm/s時,能夠使△BPD與△CQP全等.【分析】(1)經(jīng)過1秒后,PB=3cm,PC=5cm,CQ=3cm,由已知可得BD=PC,BP=CQ,∠ABC=∠ACB,即據(jù)SAS可證得△BPD≌△CQP;(2)可設(shè)點(diǎn)Q的運(yùn)動速度為x(x≠3)cm/s,經(jīng)過ts△BPD與△CQP全等,則可知PB=3tcm,PC=8-3tcm,CQ=xtcm,據(jù)(1)同理可得當(dāng)BD=PC,BP=CQ或BD=CQ,BP=PC時兩三角形全等,求x的解即可.【詳解】解:(1)經(jīng)過1秒后,PB=3cm,PC=5cm,CQ=3cm,∵△ABC是等邊三角形,D為AB的中點(diǎn).∴∠ABC=∠ACB=60°,BD=PC=5cm,在△BPD和△CQP中,,∴△BPD≌△CQP(SAS);(2)設(shè)點(diǎn)Q的運(yùn)動速度為x(x≠3)cm/s,經(jīng)過ts△BPD與△CQP全等;則可知PB=3tcm,PC=(8-3t)cm,CQ=xtcm,∵AB=AC,∴∠B=∠C,根據(jù)全等三角形的判定定理SAS可知,有兩種情況:①當(dāng)BD=PC且BP=CQ時,△BPD≌△CQP(SAS),則8-3t=5且3t=xt,解得x=3,∵x≠3,∴舍去此情況;②BD=CQ,BP=PC時,△BPD≌△CPQ(SAS),則5=xt且3t=8-3t,解得:x=;故若點(diǎn)Q的運(yùn)動速度與點(diǎn)P的運(yùn)動速度不相等,當(dāng)點(diǎn)Q的運(yùn)動速度為cm/s時,能夠
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 生活藥學(xué)考試題及答案
- 中交安全考試試題及答案
- 2025年國家電投集團(tuán)福建核電招聘考試筆試試題(含答案)
- 北京知識型直播培訓(xùn)課件
- 2025年甘肅煙草公司招聘考試筆試試題(含答案)
- 2025年恩施州鶴峰縣縣直教育單位選調(diào)教師考試筆試試題(含答案)
- 2024年云南省社區(qū)《網(wǎng)格員》考前沖刺訓(xùn)練(含答案)
- 干燥綜合征及護(hù)理試題(含答案)
- 消防工程師模擬題(含答案)
- 衛(wèi)生院醫(yī)院感染相關(guān)知識考試試題(附答案)
- 慢性疾病管理與健康指導(dǎo)手冊
- 直播帶貨平臺合作協(xié)議范本
- 2025年高中音樂教師招聘考試測試題及參考答案
- 主持人基礎(chǔ)知識培訓(xùn)課件
- 建筑施工員職業(yè)技能培訓(xùn)教材
- 2025年儲能運(yùn)維面試題及答案
- 2025年安徽演藝集團(tuán)有限責(zé)任公司招聘20人筆試備考題庫及答案詳解(名師系列)
- 遼寧省大連市2024-2025學(xué)年高一下學(xué)期期末考試數(shù)學(xué)試卷(原卷版)
- 2025年事業(yè)單位考試醫(yī)學(xué)基礎(chǔ)知識真題及答案解析(醫(yī)療衛(wèi)生系統(tǒng))
- 2025年公路交通運(yùn)輸技能考試-巡游出租車駕駛員從業(yè)資格考試歷年參考題庫含答案解析(5卷一百題單選合輯)
- 建筑工地基孔肯雅熱防控和應(yīng)急方案
評論
0/150
提交評論