難點解析京改版數(shù)學9年級上冊期中測試卷含答案詳解_第1頁
難點解析京改版數(shù)學9年級上冊期中測試卷含答案詳解_第2頁
難點解析京改版數(shù)學9年級上冊期中測試卷含答案詳解_第3頁
難點解析京改版數(shù)學9年級上冊期中測試卷含答案詳解_第4頁
難點解析京改版數(shù)學9年級上冊期中測試卷含答案詳解_第5頁
已閱讀5頁,還剩31頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

京改版數(shù)學9年級上冊期中測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題26分)一、單選題(6小題,每小題2分,共計12分)1、關于函數(shù),下列說法:①函數(shù)的最小值為1;②函數(shù)圖象的對稱軸為直線x=3;③當x≥0時,y隨x的增大而增大;④當x≤0時,y隨x的增大而減小,其中正確的有()個.A.1 B.2 C.3 D.42、已知二次函數(shù)y=ax2+bx+c與自變量x的部分對應值如表,下列說法錯誤的是()x…﹣1013…y…﹣3131…A.a(chǎn)<0B.方程ax2+bx+c=﹣2的正根在4與5之間C.2a+b>0D.若點(5,y1)、(﹣,y2)都在函數(shù)圖象上,則y1<y23、點P(2,﹣2)在反比例函數(shù)的圖象上,則下列各點在該函數(shù)圖象上的是(

)A.(﹣4,1) B.(1,4) C.(﹣2,﹣2) D.(4,)4、下表中列出的是一個二次函數(shù)的自變量x與函數(shù)y的幾組對應值:…-2013……6-4-6-4…下列各選項中,正確的是A.這個函數(shù)的圖象開口向下B.這個函數(shù)的圖象與x軸無交點C.這個函數(shù)的最小值小于-6D.當時,y的值隨x值的增大而增大5、如圖,四邊形OABC是平行四邊形,點A的坐標為A(3,0),∠COA=60°,D為邊AB的中點,反比例函數(shù)y=(x>0)的圖象經(jīng)過C,D兩點,直線CD與y軸相交于點E,則點E的坐標為(

)A.(0,2) B.(0,3) C.(0,5) D.(0,6)6、把拋物線的圖象向左平移1個單位,再向上平移2個單位,所得的拋物線的函數(shù)關系式是(

)A. B.C. D.二、多選題(7小題,每小題2分,共計14分)1、△ABC和△A′B′C′符合下列條件,其中使△ABC和△A′B′C′相似的是(

)A.∠A=∠A′=45°,∠B=26°,∠B′=109°B.AB=1,AC=1.5,BC=2,A′B′=4,A′C′=2,B′C′=3C.∠A=∠B′,AB=2,AC=2.4,A′B′=3.6,B′C′=3D.AB=3,AC=5,BC=7,A′B′=,A′C′=,B′C′=2、已知拋物線上部分點的橫坐標x與縱坐標y的對應值如表所示,對于下列結論:x…-10123…y…30-1m3…①拋物線開口向下;②拋物線的對稱軸為直線;③方程的兩根為0和2;④當時,x的取值范圍是或.正確的是(

)A.① B.② C.③ D.④3、如圖,點P在函數(shù)(x>0,k>2,k為常數(shù))的圖象上,PC⊥x軸交的圖象于點A,PD⊥y軸于點D,交,當點P在(x>0,k>2,k為常數(shù))的圖象上運動時(

)A.ODB與OCA的面積相等 B.四邊形PAOB的面積不會發(fā)生變化C.PA與PB始終相等 D.4、如圖,已知正方形的邊長為4,點,分別在邊,上,且,,交于點.下列結論正確的有(

)A. B.C. D.S四邊形BEOF5、如圖,已知拋物線.將該拋物線在x軸及x軸下方的部分記作C1,將C1沿x軸翻折構成的圖形記作C2,將C1和C2構成的圖形記作C3.關于圖形C3,給出的下列四個結論,正確的是(

)A.圖形C3恰好經(jīng)過4個整點(橫、縱坐標均為整數(shù)的點)B.圖形C3上任意一點到原點的最大距離是1C.圖形C3的周長大于2πD.圖形C3所圍成區(qū)域的面積大于2且小于π6、對于二次函數(shù),下列說法不正確的是(

)A.圖像開口向下B.圖像的對稱軸是直線C.函數(shù)最大值為0D.隨的增大而增大7、和符合下列條件,其中使與相似的是(

)A.B.C.D.第Ⅱ卷(非選擇題74分)三、填空題(7小題,每小題2分,共計14分)1、若某二次函數(shù)圖象的形狀與拋物線y=3x2相同,且頂點坐標為(0,-2),則它的表達式為________.2、如圖,已知P是函數(shù)y1圖象上的動點,當點P在x軸上方時,作PH⊥x軸于點H,連接PO.小華用幾何畫板軟件對PO,PH的數(shù)量關系進行了探討,發(fā)現(xiàn)PO﹣PH是個定值,則這個定值為_____.3、在平面直角坐標系中,點O為坐標原點,點A的坐標為(3,4),點B的坐標為(7,0),D,E分別是線段AO,AB上的點,以DE所在直線為對稱軸,把△ADE作軸對稱變換得△A′DE,點A′恰好在x軸上,若△OA′D與△OAB相似,則OA′的長為________.(結果保留2個有效數(shù)字)4、《九章算術》是中國古代的數(shù)學專著,是“算經(jīng)十書”(漢唐之間出現(xiàn)的十部古算書)中最重要的一種.中有下列問題:“今有邑方不知大小,各中開門.出北門八十步有木,出西門二百四十五步見木.問邑方有幾何?”意思是:如圖,點M、點N分別是正方形ABCD的邊AD、AB的中點,,,EF過點A,且步,步,已知每步約40厘米,則正方形的邊長約為__________米.5、如圖,某建筑物BC直立于水平地面,AC=9m,要建造階梯AB,使每階高不超過20cm,則此階梯最少要建_____階.(最后一階的高度不足20cm時,按一階算,取1.732)6、如果A為銳角,且則_____.7、圖1是一輛吊車的實物圖,圖2是其工作示意圖,AC是可以伸縮的起重臂,其轉動點A離地面BD的高度AH為3.4m.當起重臂AC長度為9m,張角∠HAC為118°時,操作平臺C離地面的高度為_______米.(結果保留小數(shù)點后一位:參考數(shù)據(jù):sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)四、解答題(6小題,每小題10分,共計60分)1、(1)計算×cos45°﹣()﹣1+20180;(2)解方程組2、為了測量大樓頂上(居中)避雷針BC的長度,在地面上點A處測得避雷針底部B和頂部C的仰角分別為55°58′和57°,已知點A與樓底中間部位D的距離約為80米,求避雷針BC的長度.(參考數(shù)據(jù):sin55°58′≈0.83,cos55°58′≈0.56,tan55°58′≈1.48,sin57°≈0.84,tan57°≈1.54)3、如圖所示,AD、BC為兩路燈,身高相同的小明、小亮站在兩路燈桿之間,兩人相距6.5m,小明站在P處,小亮站在Q處,小明在路燈C下的影長為2m,已知小明身高1.8m,路燈BC高9m.①計算小亮在路燈D下的影長;②計算建筑物AD的高.4、如圖所示,直線y=x+2與坐標軸交于A、B兩點,與反比例函數(shù)y=(x>0)交于點C,已知AC=2AB.(1)求反比例函數(shù)解析式;(2)若在點C的右側有一平行于y軸的直線,分別交一次函數(shù)圖象與反比例函數(shù)圖象于D、E兩點,若CD=CE,求點D坐標.5、如圖,在△ABC和△ADB中,∠ABC=∠ADB=90°,AC=5,AB=4,當BD的長是多少時,圖中的兩個直角三角形相似?6、頂點為D的拋物線y=﹣x2+bx+c交x軸于A、B(3,0),交y軸于點C,直線y=﹣x+m經(jīng)過點C,交x軸于E(4,0).(1)求出拋物線的解析式;(2)如圖1,點M為線段BD上不與B、D重合的一個動點,過點M作x軸的垂線,垂足為N,設點M的橫坐標為x,四邊形OCMN的面積為S,求S與x之間的函數(shù)關系式,并求S的最大值;(3)點P為x軸的正半軸上一個動點,過P作x軸的垂線,交直線y=﹣x+m于G,交拋物線于H,連接CH,將△CGH沿CH翻折,若點G的對應點F恰好落在y軸上時,請直接寫出點P的坐標.-參考答案-一、單選題1、B【解析】【分析】根據(jù)所給函數(shù)的頂點式得出函數(shù)圖象的性質從而判斷選項的正確性.【詳解】解:∵,∴該函數(shù)圖象開口向上,有最小值1,故①正確;函數(shù)圖象的對稱軸為直線,故②錯誤;當x≥0時,y隨x的增大而增大,故③正確;當x≤﹣3時,y隨x的增大而減小,當﹣3≤x≤0時,y隨x的增大而增大,故④錯誤.故選:B.【考點】本題考查二次函數(shù)的性質,解題的關鍵是能夠根據(jù)函數(shù)解析式分析出函數(shù)圖象的性質.2、B【解析】【分析】利用表中函數(shù)值的變換情況可判斷拋物線的開口方向,則可對A進行判斷;利用拋物線的對稱性可得x=﹣1和x=4的函數(shù)值相等,則可對B進行判斷;利用x=0和x=3時函數(shù)值相等可得到拋物線的對稱軸方程,則可對C進行判斷;利用二次函數(shù)的性質則可對D進行判斷.【詳解】解:∵二次函數(shù)值先由小變大,再由大變小,∴拋物線的開口向下,∴a<0,故A正確;∵x=﹣1時,y=﹣3,∴x=4時,y=﹣3,∴二次函數(shù)y=ax2+bx+c的函數(shù)值為﹣2時,﹣1<x<0或3<x<4,即方程ax2+bx+c=﹣2的負根在﹣1與0之間,正根在3與4之間,故B錯誤;∵拋物線過點(0,1)和(3,1),∴拋物線的對稱軸為直線x=,∴﹣=>1,∴2a+b>0,故C正確;∵(﹣,y2)關于直線x=的對稱點為(,y2),∵<5,∴y1<y2,故D正確;故選:B.【考點】本題主要考查了一元二次方程根與系數(shù)的關系、拋物線與x軸的交點、圖象法求一元二次方程的近似根、根的判別式、二次函數(shù)圖象與系數(shù)的關系,準確計算是解題的關鍵.3、A【解析】【分析】根據(jù)點(2,-2)在反比例函數(shù)的圖象上,可以求得的值,從而可以判斷各個選項中的點是否在該函數(shù)的圖象上,本題得以解決.【詳解】解:∵點P(2,﹣2)在反比例函數(shù)的圖象上,∴A.(﹣4,1),,故該選項正確,符合題意,

B.(1,4),,故該選項不符合題意,C.(﹣2,﹣2),,故該選項不符合題意,

D.(4,),,故該選項不符合題意,故選A【考點】本題考查了反比例函數(shù)圖象上點的坐標特征,解題的關鍵是求出反比例系數(shù),解決該題型題目時,結合點的坐標利用反比例函數(shù)圖象上點的坐標特征求出值是關鍵.4、C【解析】【分析】利用表中的數(shù)據(jù),求得二次函數(shù)的解析式,再配成頂點式,根據(jù)二次函數(shù)的性質逐一分析即可判斷.【詳解】解:設二次函數(shù)的解析式為,依題意得:,解得:,∴二次函數(shù)的解析式為=,∵,∴這個函數(shù)的圖象開口向上,故A選項不符合題意;∵,∴這個函數(shù)的圖象與x軸有兩個不同的交點,故B選項不符合題意;∵,∴當時,這個函數(shù)有最小值,故C選項符合題意;∵這個函數(shù)的圖象的頂點坐標為(,),∴當時,y的值隨x值的增大而增大,故D選項不符合題意;故選:C.【考點】本題主要考查了待定系數(shù)法求二次函數(shù)的解析式以及二次函數(shù)的性質,利用二次函數(shù)的性質解答是解題關鍵.5、B【解析】【分析】作CE⊥x軸于點E,過B作BF⊥x軸于F,過D作DM⊥x軸于M,設C的坐標為(x,x),表示出D的坐標,將C、D兩點坐標代入反比例函數(shù)的解析式,解關于x的方程求出x即可得到點C、D的坐標,進而求得直線CD的解析式,最后計算該直線與y軸交點坐標即可得出結果.【詳解】解:作CE⊥x軸于點E,則∠CEO=90°,過B作BF⊥x軸于F,過D作DM⊥x軸于M,則BF=CE,DM∥BF,BF=CE,∵D為AB的中點,∴AM=FM,∴DM=BF,∵∠COA=60°,∴∠OCE=30°,∴OC=2OE,CE=OE,∴設C的坐標為(x,x),∴AF=OE=x,CE=BF=x,OE=AF=x,DM=x,∵四邊形OABC是平行四邊形,A(3,0),∴OF=3+x,OM=3+x,即D點的坐標為(3+x,),把C、D的坐標代入y=得:k=x?x=(3+x)?,解得:x1=2,x2=0(舍去),∴C(2,2),D(4,),設直線CD解析式為:y=ax+b,則,解得,∴直線CD解析式為:,∴當x=0時,,∴點E的坐標為(0,).故選:B.【考點】本題主要考查了平行四邊形的性質、運用待定系數(shù)法求函數(shù)的解析式以及含度角的直角三角形的性質.根據(jù)反比例函數(shù)圖象經(jīng)過C、D兩點,得出關于x的方程是解決問題的關鍵.6、A【解析】【分析】求出原拋物線的頂點坐標,再根據(jù)向左平移橫坐標減,向上平移縱坐標加求出平移后的拋物線的頂點坐標,然后利用頂點式解析式寫出即可.【詳解】解:∵拋物線的頂點坐標為(2,1),∴向左平移1個單位,再向上平移2個單位后的頂點坐標是(1,3)∴所得拋物線解析式是.故選:A.【考點】本題考查了二次函數(shù)圖象的平移,利用頂點的變化確定拋物線解析式的變化更簡便.二、多選題1、ABC【解析】【分析】根據(jù)三角形相似的判定定理逐項排查即可.【詳解】解:A:∵∠A=∠A′=45°,∠B=26°,∠B′=109°,∴∠C=109°,∠C′=26°,∴∠B=∠C,∴△ABC∽△A′C′B′,B:∵AB=1,AC=1.5,BC=2,A′B′=4,A′C′=2,B′C′=3,∴,∴△ABC∽△C′A′B′;C:∵∠A=∠B′,AB=2,AC=2.4,A′B′=3.6,B′C′=3,∴AB:B′C′=AC:A′B′=2:3,∴△ABC∽△B′C′A′;D:∵AB=3,AC=5,BC=7,A′B′=,A′C′=

B′C′=,∴,∴不相似.故選ABC.【考點】本題主要考查了相似三角形的判定,相似三角形的判定方法主要有:①有兩個對應角相等的三角形相似;②有兩個對應邊的比相等,且其夾角相等,則兩個三角形相似;③三組對應邊的比相等,則兩個三角形相似.2、CD【解析】【分析】根據(jù)表格可知直線x=1是拋物線對稱軸,此時有最小值,與x軸交點坐標為(0,0)(2,0)據(jù)此可判斷①②③,根據(jù)與x軸交點坐標結合開口方向可判斷④.【詳解】解:從表格可以看出,函數(shù)的對稱軸是直線x=1,頂點坐標為(1,﹣1),此時有最小值∴函數(shù)與x軸的交點為(0,0)、(2,0),∴拋物線y=ax2+bx+c的開口向上故①錯誤;拋物線y=ax2+bx+c的對稱軸為直線x=1故②錯誤;方程ax2+bx+c=0的根為0和2故③正確;當y>0時,x的取值范圍是x<0或x>2故④正確;故選CD.【考點】本題考查了二次函數(shù)的圖象和性質.解題的關鍵在于根據(jù)表格獲取正確的信息.3、AB【解析】【分析】由反比例函數(shù)k的幾何意義可判斷出各個結論的正誤.【詳解】解:A.∵點A,B在函數(shù)的圖象上,∴,故選項A正確;B.∵矩形OCPD、三角形ODB、三角形OCA為定值,則四邊形PAOB的面積不會發(fā)生變化;故此選項正確.C.PA與PB不一定相等,只有當四邊形OCPD是正方形時滿足PA=PB,故此選項不正確;D.∵A、B在上,∴S△AOC=S△BOE,∴?OC?AC=?OD?BD,∴OC?AC=OD?BD,∵OC=PD,OD=PC,∴PD?AC=DB?PC,∴.故此選項不正確.故選AB【考點】此題是反比例函數(shù)綜合題,主要考查了反比例函數(shù)(k≠0)中k的幾何意義,即過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積為|k|,是經(jīng)常考查的一個知識點;這里體現(xiàn)了數(shù)形結合的思想,做此類題一定要正確理解k的幾何意義.4、ACD【解析】【分析】根據(jù)正方形的性質證明≌,再根據(jù)全等三角形的性質、線段垂直平分線的的性質及正切的定義逐項判斷即可.【詳解】∵正方形ABCD的邊長為4,∴BC=CD=4,∠B=∠DCF=90°,∵AE=BF=1,∴BE=CF=4-1=3,∴≌,∴∠CFD=∠BEC,∴∠BCE+∠BEC=∠BCE+∠CFD=90°,∴∠DOC=90°,故A正確;如圖,連接DE,若OC=OE,∵DF⊥EC,∴CD=DE,∵CD=AD<DE(矛盾),故B錯誤;∵∠DOC=90°,∠DCF=90°,∴∠OCD+∠CDF=90°,∠CDF+∠DFC=90°,∴∠OCD=∠DFC,∴,故C正確;∵≌,∴S△EBC=S△FCD,∴S△EBC-S△FOC=S△FCD-S△FOC,即S四邊形BEOF=S△ODC,故D正確.故選:ACD.【考點】本題考查了正方形的性質,全等三角形的判定與性質,線段垂直平分線的性質,反證法,角的正切值,明確正切的定義,熟練掌握各性質與判定定理是解題的關鍵.5、ABD【解析】【分析】畫出圖象C3,以及以O為圓心,以1為半徑的圓,再作出⊙O內接正方形,根據(jù)圖象即可判斷.【詳解】解:如圖所示,A.圖形C3恰好經(jīng)過(1,0)、(﹣1,0)、(0,1)、(0,﹣1)4個整點,故正確;B.由圖象可知,圖形C3上任意一點到原點的距離都不超過1,故正確;C.圖形C3的周長小于⊙O的周長,所以圖形C3的周長小于2π,故錯誤;D.圖形C3所圍成的區(qū)域的面積小于⊙O的面積,大于⊙O內接正方形的面積,所以圖形C3所圍成的區(qū)域的面積大于2且小于π,故正確;故選:ABD.【考點】本題考查了二次函數(shù)的圖象與幾何變換,數(shù)形結合是解題的關鍵.6、ACD【解析】【分析】根據(jù)題目中的函數(shù)解析式,可以判斷各個選項中的說法是否正確.【詳解】解:二次函數(shù),a=2>0,∴該函數(shù)的圖象開口向上,故選項A錯誤,圖象的對稱軸是直線x=1,故選項B正確,函數(shù)的最小值是y=0,故選項C錯誤,當x>1時隨的增大而增大,故選項D錯誤,故選:A,C,D.【考點】本題考查二次函數(shù)的性質、二次函數(shù)的最值,解答本題的關鍵是明確題意,利用二次函數(shù)的性質解答.7、ABC【解析】【分析】本題主要應用兩三角形相似的判定定理解題即可.【詳解】解:選項A:∵∠A=∠A′=45°,∠B=26°,∠B′=109°,∴∠C=109°,∠C′=26°∴∠B=∠C′,∴△ABC∽△A′C′B′選項B:∵AB=1,AC=1.5,BC=2,A′B′=4,A′C′=2,B′C′=3,∴,∴△ABC∽△C′A′B′;選項C:∵∴AB:AC=B′C′:A′B′=7:5,∴△ABC∽△B′C′A′;選項D:∵∴∴不相似.故選ABC.【考點】此題考查了相似三角形的判定,①有兩個對應角相等的三角形相似;②有兩個對應邊的比相等,且其夾角相等,則兩個三角形相似;③三組對應邊的比相等,則兩個三角形相似.三、填空題1、y=3x2-2或y=-3x2-2【解析】【分析】根據(jù)二次函數(shù)的圖象特點即可分類求解.【詳解】二次函數(shù)的圖象與拋物線y=3x2的形狀相同,說明它們的二次項系數(shù)的絕對值相等,故本題有兩種可能,即y=3x2-2或y=-3x2-2.故答案為y=3x2-2或y=-3x2-2.【考點】此題主要考查二次函數(shù)的圖象,解題的關鍵是熟知二次函數(shù)形狀相同,二次項系數(shù)的絕對值相等.2、2【解析】【分析】設p(x,x2-1),則OH=|x|,PH=|x2-1|,因點P在x軸上方,所以x2-1>0,由勾股定理求得OP=x2+1,即可求得OP-PH=2,得出答案.【詳解】解:設p(x,x2-1),則OH=|x|,PH=|x2-1|,當點P在x軸上方時,∴x2-1>0,∴PH=|x2-1|=x2-1,在Rt△OHP中,由勾股定理,得OP2=OH2+PH2=x2+(x2-1)2=(x2+1)2,∴OP=x2+1,∴OP-PH=(x2+1)-(x2-1)=2,故答案為:2.【考點】本題考查二次函數(shù)圖象上點的坐標特征,勾股定理,利用坐標求線段長度是解題的關鍵.3、2.0或3.3【解析】【分析】由點A的坐標為(3,4),點B的坐標為(7,0),可得OA=5,OB=7,AB=4,然后分別由△OA′D∽△OAB與△OA′D∽△OBA,根據(jù)相似三角形的對應邊成比例,即可得答案.【詳解】∵點A的坐標為(3,4),點B的坐標為(7,0),∴OA==5,OB=7,AB==4,若△OA′D∽△OAB,則,設AD=x,則OD=5﹣x,A′D=x,即,解得:x≈2.2,∴,∴OA′=2.0;若△OA′D∽△OBA,則,同理:可得:OA′≈3.3.故答案為2.0或3.3.【考點】此題考查了相似三角形的性質與折疊的知識.注意數(shù)形結合與方程思想的應用,小心別漏解是解題關鍵.4、112【解析】【分析】根據(jù)題意,可知Rt△AEN∽Rt△FAN,從而可以得到對應邊的比相等,從而可以求得正方形的邊長.【詳解】解:∵點M、點N分別是正方形ABCD的邊AD、AB的中點,∴,∴AM=AN,由題意可得,∠ANF=∠EMA=90°,∠NAF+∠AFN=∠NAF+∠EAM=90°,∴∠AFN=∠EAM,∴Rt△AEM∽Rt△FAN,∴,∵AM=AN,∴,解得:AM=140,∴AD=2AM=280(步),∴(米)故答案為:112.【考點】本題考查相似三角形的應用、數(shù)學常識、正方形的性質,解答本題的關鍵是明確題意.利用相似三角形的性質和數(shù)形結合的思想解答.5、26.【解析】【詳解】在Rt△ABC中,根據(jù)tan30°=BC:AC,即可求得BC=tan30°×AC=×9m=3m≈5.192m=519.2cm.又因519.2÷20≈26,所以即至少為26階.6、【解析】【分析】將已知等式兩邊平方,利用完全平方公式及同角三角函數(shù)間的基本關系化簡求出2sinAcosA的值,即可求出sinAcosA的值.【詳解】解:sinA+cosA=,兩邊平方得:(sinA+cosA)2=,(sinA)2+2sinAcosA+(cosA)2=則1+2sinAcosA=,解得sinAcosA=.故答案為:.【考點】此題考查了同角三角函數(shù)關系,熟練掌握同角三角函數(shù)的基本關系是解本題的關鍵.7、7.6【解析】【分析】作于,于,如圖2,易得四邊形為矩形,則,,再計算出,在中利用正弦可計算出,然后計算即可.【詳解】解:作于E,于,如圖2,∴四邊形為矩形,∴,,∴,∴在中,,∴,∴,∴操作平臺離地面的高度為.故答案是:.【考點】本題考查了解直角三角形的應用:先將實際問題抽象為數(shù)學問題(畫出平面圖形,構造出直角三角形轉化為解直角三角形問題),然后利用三角函數(shù)的定義進行幾何計算.四、解答題1、(1)1;(2)【解析】【分析】(1)先化簡二次根式、代入特殊角的三角函數(shù)值、計算負整數(shù)指數(shù)冪和零指數(shù)冪,再計算乘法和加減運算可得;(2)利用加減消元法求解可得.【詳解】(1)原式=3-3+1=3﹣3+1=1;(2)①+②×3,得:10x=20,解得:x=2,把x=2代入①,得:6+y=1,解得:y=1,∴原方程組的解為.【考點】本題考查了實數(shù)的混合運算與二元一次方程組的解法.涉及了二次根式的化簡、特殊角的三角函數(shù)值、0次冪與負指數(shù)冪的運算、加減消元法解二元一次方程組,熟練掌握相關的運算法則以及解題方法是解題的關鍵.2、避雷針BC的長度為4.8米.【解析】【分析】解直角三角形求出CD,BD,根據(jù)BC=CD-BD求解即可.【詳解】解:在Rt△ABD中,∵,∴1.48=,∵AD=80米,∴BD=118.4(米),在Rt△CAD中,∵tan∠CAD=,∴1.54=,∴CD=123.2(米),∴BC=CD-BD=4.8(米)答:避雷針BC的長度為4.8米.【考點】本題考查解直角三角形的應用,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.3、①;②.【解析】【分析】解此題的關鍵是找到相似三角形,利用相似三角形的性質,相似三角形的對應邊成比例求解.【詳解】①∵,,∴∵,∴∴∴∴;②∵,,∴∵,∴∴∴∴.【考點】本題考查了相似三角形,解題的關鍵是找到相似三角形利用相似三角形的對應邊成比例進行求解.4、(1)y=;(2)D(6,8).【解析】【分析】(1)作CM⊥y軸于M,如圖,利用直線解析式確定A(0,2),B(﹣2,0),再根據(jù)平行線分線段成比例定理求出MC=4,AM=4,則C(4,6),然后把C點坐標代入y=中求出k得到反比例函數(shù)解析式;(2)MC交直線DE于N,如圖,證明△CND為等腰直角三角形得到CN=DN,再利用CD=CE得到CN=NE=DN,設CN=t,則N(4+t,6),D(4+t,6+t),E(4+t,6﹣t),然后把E(4+t,6﹣t)代入y=得(4+t)(6﹣t)=24,最后解方程求出t得到D點坐標.【詳解】解:(1)作CM⊥y軸于M,如圖,當x=0時,y=x+2=2,則A(0,2),當y=0時,x+2=0,解得x=﹣2,則B(﹣2,0),∵MC∥OB,∴===2,∴MC=2OB=4,AM=2OA=4,∴C(4,6),把C(4,6)代入y=得k=4×6=24,∴反比例函數(shù)解析式為y=;(2)MC交直線DE于N,如圖,∵MC=MA,∴△MAC為等腰直角三角形,∴∠ACM=45°,∴∠DCN=45°,∴△CND為等腰直角三角形,∴CN=DN,∵CD=CE,∴CN=NE=DN,設CN=t,則N(4+t,6),D(4+t,6+t),E(4+t,6﹣t),把E(4+t,6﹣t)代入y=得(4+t)(6﹣t)=24,解得t1=0(舍去),t2=2,∴D(6,8).【考點】本題是反比例函數(shù)與一次函數(shù)的綜合題,涉及到待定系數(shù)法求函數(shù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論