難點詳解京改版數(shù)學(xué)9年級上冊期末試卷【新題速遞】附答案詳解_第1頁
難點詳解京改版數(shù)學(xué)9年級上冊期末試卷【新題速遞】附答案詳解_第2頁
難點詳解京改版數(shù)學(xué)9年級上冊期末試卷【新題速遞】附答案詳解_第3頁
難點詳解京改版數(shù)學(xué)9年級上冊期末試卷【新題速遞】附答案詳解_第4頁
難點詳解京改版數(shù)學(xué)9年級上冊期末試卷【新題速遞】附答案詳解_第5頁
已閱讀5頁,還剩29頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

京改版數(shù)學(xué)9年級上冊期末試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題26分)一、單選題(6小題,每小題2分,共計12分)1、關(guān)于二次函數(shù)的最大值或最小值,下列說法正確的是()A.有最大值4 B.有最小值4 C.有最大值6 D.有最小值62、如果,那么的結(jié)果是(

)A. B. C. D.3、將拋物線C1:y=(x-3)2+2向左平移3個單位長度,得到拋物線C2,拋物線C2與拋物線C3關(guān)于x軸對稱,則拋物線C3的解析式為().A.y=x2-2 B.y=-x2+2 C.y=x2+2 D.y=-x2-24、如圖A、B、C在⊙O上,連接OA、OB、OC,若∠BOC=3∠AOB,劣弧AC的度數(shù)是120o,OC=.則圖中陰影部分的面積是(

)A. B. C. D.5、如圖,點A、B、C在⊙O上,且∠ACB=100o,則∠α度數(shù)為(

)A.160o B.120o C.100o D.80o6、在正方形網(wǎng)格中,每個小正方形的頂點稱為格點,以格點為頂點的三角形叫做格點三角形.如圖,△ABC是格點三角形,在圖中的6×6正方形網(wǎng)格中作出格點三角形△ADE(不含△ABC),使得△ADE∽△ABC(同一位置的格點三角形△ADE只算一個),這樣的格點三角形一共有()A.4個 B.5個 C.6個 D.7個二、多選題(7小題,每小題2分,共計14分)1、下表時二次函數(shù)y=ax2+bx+c的x,y的部分對應(yīng)值:…………則對于該函數(shù)的性質(zhì)的判斷中正確的是()A.該二次函數(shù)有最大值B.不等式y(tǒng)>﹣1的解集是x<0或x>2C.方程y=ax2+bx+c的兩個實數(shù)根分別位于﹣<x<0和2<x<之間D.當(dāng)x>0時,函數(shù)值y隨x的增大而增大2、如圖,△ABC中,D在AB上,E在AC上,下列條件中,不能判定DE∥BC的是(

).A. B.C. D.3、如圖,□ABCD中,E是AD延長線上一點,BE交AC于點F,交DC于點G,則下列結(jié)論中正確的是()A.△ABE∽△DGE B.△CGB∽△DGEC.△BCF∽△EAF D.△ACD∽△GCF4、如圖,在△ABC中,點P為AB上一點,給出下列四個條件中能滿足△APC和△ACB相似的條件是(

)A.∠ACP=∠B B.∠APC=∠ACB C.AC2=AP·AB D.AB·CP=AP·CB5、下列多邊形中,一定不相似的是(

)A.兩個矩形 B.兩個菱形 C.兩個正方形 D.兩個平行四邊形6、在Rt△ABC中,∠C=90°,當(dāng)已知∠A和a時,求c,不能選擇的關(guān)系式是(

)A.c= B.c= C.c=a·tanA D.c=7、如圖,△ABC中,P為AB上點,在下列四個條件中能確定△APC和△ACB相似的是(

)A.∠ACP=∠B B.∠APC=∠ACB C.∠CAP=∠BAC D.第Ⅱ卷(非選擇題74分)三、填空題(7小題,每小題2分,共計14分)1、如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,AC=,BC的中點為D,將△ABC繞點C順時針旋轉(zhuǎn)任意一個角度得到△FEC,EF的中點為G,連接DG,在旋轉(zhuǎn)過程中,DG的最大值是________2、二次函數(shù)的最小值為______.3、如圖,點A是反比例函數(shù)y=(x>0)圖象上的一點,AB垂直于x軸,垂足為B,△OAB的面積為6.若點P(a,4)也在此函數(shù)的圖象上,則a=_____.4、在等腰△ABC中,AB=AC,AD⊥BC于D,G是重心,若AG=9cm,則GD=_______cm.5、拋物線是二次函數(shù),則m=___.6、如圖是二次函數(shù)和一次函數(shù)y2=kx+t的圖象,當(dāng)y1≥y2時,x的取值范圍是_____.7、如圖,小明在距離地面30米的P處測得A處的俯角為15°,B處的俯角為60°.若斜面坡度為1:,則斜坡AB的長是__________米.四、解答題(6小題,每小題10分,共計60分)1、某校舉行田徑運動會,學(xué)校準備了某種氣球,這些氣球內(nèi)充滿了一定質(zhì)量的氣體,當(dāng)溫度不變時,氣球內(nèi)氣體的氣壓是氣體體積的反比例函數(shù),其圖象如圖所示.(1)求這一函數(shù)的解析式.(2)當(dāng)氣體的體積為時,氣壓是多少?(3)當(dāng)氣球內(nèi)的氣壓大于時,氣球會將爆炸,為了安全起見,氣體的體積應(yīng)不小于多少?2、根據(jù)下列條件,求二次函數(shù)的解析式.(1)圖象經(jīng)過(0,1),(1,﹣2),(2,3)三點;(2)圖象的頂點(2,3),且經(jīng)過點(3,1);3、頂點為D的拋物線y=﹣x2+bx+c交x軸于A、B(3,0),交y軸于點C,直線y=﹣x+m經(jīng)過點C,交x軸于E(4,0).(1)求出拋物線的解析式;(2)如圖1,點M為線段BD上不與B、D重合的一個動點,過點M作x軸的垂線,垂足為N,設(shè)點M的橫坐標(biāo)為x,四邊形OCMN的面積為S,求S與x之間的函數(shù)關(guān)系式,并求S的最大值;(3)點P為x軸的正半軸上一個動點,過P作x軸的垂線,交直線y=﹣x+m于G,交拋物線于H,連接CH,將△CGH沿CH翻折,若點G的對應(yīng)點F恰好落在y軸上時,請直接寫出點P的坐標(biāo).4、二次函數(shù)與軸分別交于點和點,與軸交于點,直線的解析式為,軸交直線于點.(1)求二次函數(shù)的解析式;(2)為線段上一動點,過點且垂直于軸的直線與拋物線及直線分別交于點、.直線與直線交于點,當(dāng)時,求值.5、(1)計算:.(2)解方程:.6、某商品的進價為每件40元,如果售價為每件50元,每個月可賣出210件;如果售價超過50元但不超過80元,每件商品的售價每上漲1元,則每個月少賣1件,如果售價超過80元后,若再漲價,則每漲1元每月少賣3件.設(shè)每件商品的售價x元(x為整數(shù)),每個月的銷售量為y件.(1)求y與x的函數(shù)關(guān)系式并直接寫出自變量x的取值范圍;(2)設(shè)每月的銷售利潤為W,請直接寫出W與x的函數(shù)關(guān)系式.-參考答案-一、單選題1、D【解析】【分析】根據(jù)二次函數(shù)的解析式,得到a的值為2,圖象開口向上,函數(shù)有最小值,根據(jù)定點坐標(biāo)(4,6),即可得出函數(shù)的最小值.【詳解】解:∵在二次函數(shù)中,a=2>0,頂點坐標(biāo)為(4,6),∴函數(shù)有最小值為6.故選:D.【考點】本題主要考查了二次函數(shù)的最值問題,關(guān)鍵是根據(jù)二次函數(shù)的解析式確定a的符號和根據(jù)頂點坐標(biāo)求出最值.2、B【解析】【分析】根據(jù)比例的性質(zhì)即可得到結(jié)論.【詳解】∵=,∴可設(shè)a=2k,b=3k,∴==-.故選B.【考點】本題主要考查了比例的性質(zhì),解本題的要點根據(jù)題意可設(shè)a,b的值,從而求出答案.3、D【解析】【分析】根據(jù)拋物線C1的解析式得到頂點坐標(biāo),利用二次函數(shù)平移的規(guī)律:左加右減,上加下減,并根據(jù)平移前后二次項的系數(shù)不變可得拋物線C2的頂點坐標(biāo),再根據(jù)關(guān)于x軸對稱的兩條拋物線的頂點橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù),二次項系數(shù)互為相反數(shù)可得到拋物線C3所對應(yīng)的解析式.【詳解】解:∵拋物線C1:y=(x-3)2+2,其頂點坐標(biāo)為(3,2)∵向左平移3個單位長度,得到拋物線C2∴拋物線C2的頂點坐標(biāo)為(0,2)∵拋物線C2與拋物線C3關(guān)于x軸對稱∴拋物線C3的橫坐標(biāo)不變,縱坐標(biāo)互為相反數(shù),二次項系數(shù)互為相反數(shù)∴拋物線C3的頂點坐標(biāo)為(0,-2),二次項系數(shù)為-1∴拋物線C3的解析式為y=-x2-2故選:D.【考點】本題主要考查了二次函數(shù)圖象的平移、對稱問題,熟練掌握平移的規(guī)律以及關(guān)于x軸對稱的兩條拋物線的頂點的橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù),二次項系數(shù)互為相反數(shù)是解題的關(guān)鍵.4、C【解析】【分析】首先根據(jù)∠BOC=3∠AOB,劣弧AC的度數(shù)是120o得到∠AOB=30°,從而得到∠COB為直角,然后利用S陰影=S扇形OBC-S△OEC求解即可.【詳解】解:設(shè)OB與AC相交于點E,如圖∵劣弧AC的度數(shù)是120o∴∠AOC=120°∵OA=OC∴∠OCA=∠OAC=30°∵∠BOC=3∠AOB又∵∠AOC=∠AOB+∠BOC∴∠AOC=∠AOB+3∠AOB=120°∴∠AOB=30°∴∠BOC=3∠AOB=90°在Rt△OCE中,OC=2∴OE=OCtan∠OCE=2tan30°=2×=2∴S△OEC=×2×2=2S扇形OBC=∴用S陰影=S扇形OBC-S△OEC=-2故選C.【考點】本題考查了扇形面積的計算,解直角三角形等知識.在求不規(guī)則的陰影部分的面積時常常轉(zhuǎn)化為幾個規(guī)則幾何圖形的面積的和或差.5、A【解析】【分析】在⊙O取點,連接利用圓的內(nèi)接四邊形的性質(zhì)與一條弧所對的圓心角是它所對的圓周角的2倍,可得答案.【詳解】解:如圖,在⊙O取點,連接四邊形為⊙O的內(nèi)接四邊形,.故選A【考點】本題考查的是圓的內(nèi)接四邊形的性質(zhì),同弧所對的圓心角是它所對的圓周角的2倍,掌握相關(guān)知識點是解題的關(guān)鍵.6、C【解析】【分析】根據(jù)題意,得出ABC的三邊之比,并在直角坐標(biāo)系中找出與ABC各邊長成比例的相似三角形,并在直角坐標(biāo)系中無一遺漏地表示出來.【詳解】解:ABC的三邊之比為,如圖所示,可能出現(xiàn)的相似三角形共有以下六種情況:所以使得△ADE∽△ABC的格點三角形一共有6個,故選:C.【考點】本題考察了在直角坐標(biāo)系中畫出與已知三角形相似的圖形,解題的關(guān)鍵在于找出與已知三角形各邊長成比例的三角形,并在直角坐標(biāo)系中無一遺漏地表示出來.二、多選題1、BC【解析】【分析】由圖表可得二次函數(shù)y=ax2+bx+c的對稱軸為直線x=1,a>0,即可判斷A,D不正確,由圖表可直接判斷B,C正確.【詳解】解:∵當(dāng)x=0時,y=-1;當(dāng)x=2時,y=-1;當(dāng)x=,y=;當(dāng)x=,y=;∴二次函數(shù)y=ax2+bx+c的對稱軸為直線x=1,x>1時,y隨x的增大而增大,x<1時,y隨x的增大而減?。郺>0即二次函數(shù)有最小值則A,D錯誤由圖表可得:不等式y(tǒng)>-1的解集是x<0或x>2;由圖表可得:方程ax2+bx+c=0的兩個實數(shù)根分別位于-<x<0和2<x<之間;所以選項B,C正確,故選:BC.【考點】本題考查了拋物線與x軸的交點,二次函數(shù)的性質(zhì),二次函數(shù)的最值,理解圖表中信息是本題的關(guān)鍵.2、BCD【解析】【分析】利用各選項給定的條件,結(jié)合再證明,可得,逐一分析各選項,從而可得答案.【詳解】解:A、而則故A不符合題意;B、與不一定相似,則與不一定相等,不一定平行,故B符合題意;C、,而而不一定相等,故不一定平行,故C符合題意;D、與不一定相似,則與不一定相等,不一定平行,故D符合題意;故選:BCD.【考點】本題考查的是相似三角形的判定與性質(zhì),平行線的判定,掌握兩邊對應(yīng)成比例且夾角相等的兩個三角形相似是解題的關(guān)鍵.3、ABC【解析】【分析】本題中可利用平行四邊形ABCD中兩對邊平行的特殊條件來進行求解.【詳解】解:∵四邊形ABCD是平行四邊形,∴AB∥CD,∴∠EDG=∠EAB,∵∠E=∠E,∴△ABE∽△DGE,故選項A正確;∵AE∥BC,∴∠EDC=∠BCG,∠E=∠CBG,∴△CGB∽△DGE,故選項B正確;∵AE∥BC,∴∠E=∠FBC,∠EAF=∠BCF,∴△BCF∽△EAF,故選項C正確;無法證得△ACD∽△GCF,故選:ABC.【考點】本題考查了相似三角形的判定定理,平行四邊形的性質(zhì),正確的識別圖形是解題的關(guān)鍵.4、ABC【解析】【分析】根據(jù)相似三角形的判定定理逐項判斷即可.【詳解】解:A、∵∠ACP=∠B,∠A=∠A,∴△APC∽△ACB,故選項A符合題意;B、∵∠APC=∠ACB,∠A=∠A,∴△APC∽△ACB,故選項B符合題意;C、∵AC2=AP·AB,∠A=∠A,∴△APC∽△ACB,故選項C符合題意;D、AB·CP=AP·CB不是兩個對應(yīng)邊成比例,不能證明△APC和△ACB相似,故選項D不符合條件,故選:ABC.【考點】本題考查相似三角形的判定,熟練掌握相似三角形的判定方法是解答的關(guān)鍵.5、ABD【解析】【分析】利用相似多邊形的對應(yīng)邊的比相等,對應(yīng)角相等分析.【詳解】解:要判斷兩個多邊形是否相似,需要看對應(yīng)角是否相等,對應(yīng)邊的比是否相等.矩形、菱形、平行四邊形都屬于形狀不唯一確定的圖形,即對應(yīng)角、對應(yīng)邊的比不一定相等,故不一定相似,選項A、B、D符合題意;而兩個正方形,對應(yīng)角都是90°,對應(yīng)邊的比也都相等,故一定相似,選項C不符合題意.故選:ABD.【考點】本題考查了相似多邊形的識別.判定兩個圖形相似的依據(jù)是:對應(yīng)邊的比相等,對應(yīng)角相等.兩個條件必須同時具備.6、BCD【解析】【分析】在Rt△ABC中,∠C=90°,sinA=變形可判斷A,在Rt△ABC中,∠C=90°,由cosA=和tanA=,可得可判斷B、D,在Rt△ABC中,∠C=90°,由tanA=,可得,由勾股定理c=,可判斷C.【詳解】解:在Rt△ABC中,∠C=90°,∵sinA=,∴c=,故選項A正確;在Rt△ABC中,∠C=90°,∵cosA=∴∵tanA=∴∴故選項B不正確;在Rt△ABC中,∠C=90°,∵tanA=∴∴c=故選項C不正確在Rt△ABC中,∠C=90°,∵tanA=∴∵cosA=∴∴故選項D不正確;不能選擇的關(guān)系式是BCD.故選擇BCD.【考點】本題主要考查解三角形,勾股定理,解題的關(guān)鍵是熟練運用三角函數(shù)的定義求解.7、ABD【解析】【分析】根據(jù)有兩組角對應(yīng)相等的兩個三角形相似可對A、B、C進行判斷;根據(jù)兩組對應(yīng)邊的比相等且夾角對應(yīng)相等的兩個三角形相似可對D進行判斷.【詳解】解:∵∠ACP=∠B,∠A公共角,∴△APC∽△ACB,故選項A正確,符合題意;∵∠APC=∠ACB,∠A公共角,∴△APC∽△ACB,故選項B正確,符合題意;∵∠CAP=∠BAC,只有一組角相等,∴不能判斷△APC和△ACB相似,故選項C錯誤,不符合題意;∵,∠A是夾角,∴△APC∽△ACB,故選項D正確,符合題意.故答案為:ABD.【考點】本題考查了相似三角形的判定:兩組對應(yīng)邊的比相等且夾角對應(yīng)相等的兩個三角形相似;有兩組角對應(yīng)相等的兩個三角形相似.三、填空題1、6【解析】【分析】解直角三角形求出AB、BC,再求出CD,連接CG,根據(jù)直角三角形斜邊上的中線等于斜邊的一半求出CG,然后根據(jù)三角形的任意兩邊之和大于第三邊判斷出D、C、G三點共線時DG有最大值,再代入數(shù)據(jù)進行計算即可得解.【詳解】連接CG,∵BC的中點為D∵△ABC繞點C順時針旋轉(zhuǎn)任意一個角度得到△FEC,EF的中點為G由三角形的三邊關(guān)系得∴D、C、G三點共線時,DG有最大值故答案為:6.【考點】本題考查了旋轉(zhuǎn)三角形的問題,掌握旋轉(zhuǎn)的性質(zhì)、解直角三角形、三角形的三邊關(guān)系是解題的關(guān)鍵.2、【解析】【分析】先將函數(shù)解析式化為頂點式,再根據(jù)函數(shù)的性質(zhì)解答.【詳解】解:,∵a=1>0,∴當(dāng)x=-2時,二次函數(shù)有最小值-4,故答案為:-4.【考點】此題考查將二次函數(shù)一般式化為頂點式,函數(shù)的性質(zhì),熟練轉(zhuǎn)化函數(shù)解析式的形式及掌握確定最值的方法是解題的關(guān)鍵.3、3【解析】【分析】根據(jù)反比例函數(shù)的幾何意義,可得,從而得到,再將點P(a,4)代入解析式,即可求解.【詳解】解:∵點A是反比例函數(shù)y=(x>0)圖象上的一點,AB垂直于x軸,∴,∵△OAB的面積為6.∴,即,∴反比例函數(shù)的解析式為,∵點P(a,4)也在此函數(shù)的圖象上,∴,解得:.故答案為:3【考點】本題主要考查了反比例函數(shù)的幾何意義,反比例函數(shù)的圖象和性質(zhì),熟練掌握反比例函數(shù)的幾何意義,反比例函數(shù)的圖象和性質(zhì),利用數(shù)形結(jié)合思想解答是解題的關(guān)鍵.4、4.5【解析】【分析】由三角形的重心的性質(zhì)即可得出答案.【詳解】解:∵AB=AC,AD⊥BC于D,∴AD是△ABC的中線,∵G是△ABC的重心,∴AG=2GD,∵AG=9cm,∴GD=4.5cm,故答案為:4.5.【考點】本題考查了三角形的重心,三角形三條中線的交點叫做三角形的重心,三角形的重心到一個頂點的距離等于它到對邊中點距離的兩倍.5、3【解析】【分析】根據(jù)二次函數(shù)的定義:一般地,形如(a、b、c是常數(shù)且a≠0)的函數(shù)叫做二次函數(shù),進行求解即可.【詳解】解:∵拋物線是二次函數(shù),∴,∴,故答案為:3.【考點】本題主要考查了二次函數(shù)的定義,解題的關(guān)鍵在于能夠熟知二次函數(shù)的定義.6、﹣1≤x≤2【解析】【分析】根據(jù)圖象可以直接回答,使得y1≥y2的自變量x的取值范圍就是直線y1=kx+m落在二次函數(shù)y2=ax2+bx+c的圖象上方的部分對應(yīng)的自變量x的取值范圍.【詳解】根據(jù)圖象可得出:當(dāng)y1≥y2時,x的取值范圍是:﹣1≤x≤2.故答案為:﹣1≤x≤2.【考點】本題考查了二次函數(shù)的性質(zhì).本題采用了“數(shù)形結(jié)合”的數(shù)學(xué)思想,使問題變得更形象、直觀,降低了題的難度.7、【解析】【分析】首先根據(jù)題意得出∠ABF=30°,進而得出∠PBA=90°,∠BAP=45°,再利用銳角三角函數(shù)關(guān)系求出即可.【詳解】解:如圖所示:過點A作AF⊥BC于點F,∵斜面坡度為1:,∴tan∠ABF=,∴∠ABF=30°,∵在距離地面30米的P處測得A處的俯角為15°,B處的俯角為60°,∴∠HPB=30°,∠APB=45°,∴∠HBP=60°,∴∠PBA=90°,∠BAP=45°,∴PB=AB,∵PH=30m,sin60°=,解得:PB=,故AB=m,故答案為:.【考點】此題主要考查了解直角三角形的應(yīng)用,正確得出PB=AB是解題關(guān)鍵.四、解答題1、(1);(2)60KPa;(3)【解析】【分析】(1)設(shè),A(0.5,120)在反比例函數(shù)上,即可求得反比例函數(shù)解析式;(2)把V=1代入(1)中的函數(shù)關(guān)系式求P即可;(3)依題意P≤150,即,解不等式即可.【詳解】(1)設(shè),∵A(0.5,120)在反比例函數(shù)上∴∴k=60∴;故答案為:(2)當(dāng)V=1m3時,=60(KPa);故答案為:60KPa(3)當(dāng)P>150KPa時,氣球?qū)⒈?,∴P≤150,∴,解得V0.4(m3).故答案為:為了安全起見,氣體的體積應(yīng)不小于0.4(m3).【考點】本題考查了反比例函數(shù)的應(yīng)用,將實際的問題轉(zhuǎn)化為數(shù)學(xué)問題,建立反比例函數(shù)的數(shù)學(xué)模型.要熟練掌握物理或化學(xué)學(xué)科中的一些具有反比例函數(shù)關(guān)系的公式.同時體會數(shù)學(xué)中的轉(zhuǎn)化思想.2、(1)y=4x2﹣7x+1;(2)y=﹣2(x﹣2)2+3.【解析】【分析】(1)先設(shè)出拋物線的解析式為y=ax2+bx+c,再將點(0,1),(1,?2),(2,3)代入解析式中,即可求得拋物線的解析式;(2)由于已知拋物線的頂點坐標(biāo),則可設(shè)頂點式y(tǒng)=a(x?2)2+3,然后把(3,1)代入求出a的值即可.【詳解】解:(1)設(shè)出拋物線的解析式為y=ax2+bx+c,將(0,1),(1,﹣2),(2,3)代入解析式,得:,解得:,∴拋物線解析式為:y=4x2﹣7x+1;(2)設(shè)拋物線解析式為y=a(x﹣2)2+3,把(3,1)代入得:a(3﹣2)2+3=1,解得a=﹣2,所以拋物線解析式為y=﹣2(x﹣2)2+3.【考點】本題考查了待定系數(shù)法求二次函數(shù)的解析式:一般地,當(dāng)已知拋物線上三點時,常選擇一般式,用待定系數(shù)法列三元一次方程組來求解;當(dāng)已知拋物線的頂點或?qū)ΨQ軸時,常設(shè)其解析式為頂點式來求解;當(dāng)已知拋物線與x軸有兩個交點時,可選擇設(shè)其解析式為交點式來求解.3、(1)y=﹣x2+2x+3;(2)S=﹣(x﹣)2+;當(dāng)x=時,S有最大值,最大值為;(3)存在,點P的坐標(biāo)為(4,0)或(,0).【解析】【分析】(1)將點E代入直線解析式中,可求出點C的坐標(biāo),將點C、B代入拋物線解析式中,可求出拋物線解析式.(2)將拋物線解析式配成頂點式,可求出點D的坐標(biāo),設(shè)直線BD的解析式,代入點B、D,可求出直線BD的解析式,則MN可表示,則S可表示.(3)設(shè)點P的坐標(biāo),則點G的坐標(biāo)可表示,點H的坐標(biāo)可表示,HG長度可表示,利用翻折推出CG=HG,列等式求解即可.【詳解】(1)將點E代入直線解析式中,0=﹣×4+m,解得m=3,∴解析式為y=﹣x+3,∴C(0,3),∵B(3,0),則有,解得,∴拋物線的解析式為:y=﹣x2+2x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4),設(shè)直線BD的解析式為y=kx+b,代入點B、D,,解得,∴直線BD的解析式為y=﹣2x+6,則點M的坐標(biāo)為(x,﹣2x+6),∴S=(3+6﹣2x)?x?=﹣(x﹣)2+,∴當(dāng)x=時,S有最大值,最大值為.(3)存在,如圖所示,設(shè)點P的坐標(biāo)為(t,0),則點G(t,﹣t+3),H(t,﹣t2+2t+3),∴HG=|﹣t2+2t+3﹣(﹣t+3)|=|t2﹣t|CG==t,∵△CGH沿GH翻折,G的對應(yīng)點為點F,F(xiàn)落在y軸上,而HG∥y軸,∴HG∥CF,HG=HF,CG=CF,∠GHC=∠CHF,∴∠FCH=∠CHG,∴∠FCH=∠FHC,∴∠GCH=∠GHC,∴CG=HG,∴|t2﹣t|=t,當(dāng)t2﹣t=t時,解得t1=0(舍),t2=4,此時點P(4,0).當(dāng)t2﹣t=﹣t時,解得t1=0(舍),t2=,此時點P(,0).綜上,點P的坐標(biāo)為(4,0)或(,0)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論