遼寧省瓦房店市中考數(shù)學(xué)真題分類(勾股定理)匯編章節(jié)測(cè)評(píng)試題(詳解)_第1頁(yè)
遼寧省瓦房店市中考數(shù)學(xué)真題分類(勾股定理)匯編章節(jié)測(cè)評(píng)試題(詳解)_第2頁(yè)
遼寧省瓦房店市中考數(shù)學(xué)真題分類(勾股定理)匯編章節(jié)測(cè)評(píng)試題(詳解)_第3頁(yè)
遼寧省瓦房店市中考數(shù)學(xué)真題分類(勾股定理)匯編章節(jié)測(cè)評(píng)試題(詳解)_第4頁(yè)
遼寧省瓦房店市中考數(shù)學(xué)真題分類(勾股定理)匯編章節(jié)測(cè)評(píng)試題(詳解)_第5頁(yè)
已閱讀5頁(yè),還剩29頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

遼寧省瓦房店市中考數(shù)學(xué)真題分類(勾股定理)匯編章節(jié)測(cè)評(píng)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計(jì)14分)1、如圖,在矩形ABCD中,,將△ABD沿對(duì)角線BD對(duì)折,得到△EBD,DE與BC交于F,,則(

)A. B.3 C. D.62、已知直角三角形紙片的兩條直角邊長(zhǎng)分別為m和n(m<n),過銳角頂點(diǎn)把該紙片剪成兩個(gè)三角形,若這兩個(gè)三角形都為等腰三角形,則()A.m2+2mn+n2=0 B.m2﹣2mn+n2=0 C.m2+2mn﹣n2=0 D.m2﹣2mn﹣n2=03、如圖,將直角三角形紙片沿AD折疊,使點(diǎn)B落在AC延長(zhǎng)線上的點(diǎn)E處.若AC=3,BC=4,則圖中陰影部分的面積是()A. B. C. D.4、觀察“趙爽弦圖”(如圖),若圖中四個(gè)全等的直角三角形的兩直角邊分別為a,b,,根據(jù)圖中圖形面積之間的關(guān)系及勾股定理,可直接得到等式(

)A. B.C. D.5、如圖,中,,一同學(xué)利用直尺和圓規(guī)完成如下操作:①以點(diǎn)C為圓心,以CB為半徑畫弧,交AB于點(diǎn)G;分別以點(diǎn)G、B為圓心,以大于的長(zhǎng)為半徑畫弧,兩弧交點(diǎn)K,作射線CK;②以點(diǎn)B為圓心,以適當(dāng)?shù)拈L(zhǎng)為半徑畫弧,交BC于點(diǎn)M,交AB的延長(zhǎng)線于N,分別以M、N為圓心,以大于的長(zhǎng)為半徑畫弧,兩弧交于點(diǎn)P,作直線BP交AC的延長(zhǎng)線于點(diǎn)D,交射線CK于點(diǎn)E.請(qǐng)你觀察圖形,根據(jù)操作結(jié)果解答下列問題;過點(diǎn)D作交AB的延長(zhǎng)線于點(diǎn)F,若,,則CE的長(zhǎng)為(

)A.13 B. C. D.6、如圖,矩形中,的平分線交于點(diǎn)E,,垂足為F,連接.下列結(jié)論:①;②;③;④;⑤若,則.其中正確的結(jié)論有(

)A.2個(gè) B.3個(gè) C.4個(gè) D.5個(gè)7、如圖,在△ABC中,AB=6,AC=9,AD⊥BC于D,M為AD上任一點(diǎn),則MC2-MB2等于(

)A.29 B.32 C.36 D.45第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計(jì)16分)1、如圖,在中,,于點(diǎn)D.E為線段BD上一點(diǎn),連結(jié)CE,將邊BC沿CE折疊,使點(diǎn)B的對(duì)稱點(diǎn)落在CD的延長(zhǎng)線上.若,,則的面積為__________.2、如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,點(diǎn)D在AB上,AD=AC,AF⊥CD交CD于點(diǎn)E,交CB于點(diǎn)F,則CF的長(zhǎng)是________________.3、如圖,Rt△ABC的兩條直角邊,.分別以Rt△ABC的三邊為邊作三個(gè)正方形.若四個(gè)陰影部分面積分別為,,,,則的值為______,的值為______.4、若△ABC中,cm,cm,高cm,則BC的長(zhǎng)為________cm.5、有一個(gè)水池,水面是一個(gè)邊長(zhǎng)為10尺的正方形,在水池正中央有一根蘆葦,它高出水面1尺.如果把這根蘆葦拉向水池一邊的中點(diǎn),它的頂端恰好到達(dá)池邊的水面,這根蘆葦?shù)拈L(zhǎng)度為_____尺.6、如圖,在中,,,,現(xiàn)將沿進(jìn)行翻折,使點(diǎn)剛好落在上,則__________.7、我國(guó)古代的數(shù)學(xué)名著《九章算術(shù)》中有這樣一道題目“今有立木,系索其末,委地三尺.引索卻行,去本八尺而索盡.問索長(zhǎng)幾何?”譯文為“今有一豎立著的木柱,在木柱的上端系有繩索,繩索從木柱上端順木柱下垂后,堆在地面的部分尚有3尺,牽索沿地面退行,在離木柱根部8尺處時(shí),繩索用盡問繩索長(zhǎng)是多少?”示意圖如下圖所示,設(shè)繩索的長(zhǎng)為尺,根據(jù)題意,可列方程為__________.8、《九章算術(shù)》是我國(guó)古代最重要的數(shù)學(xué)著作之一,在勾股章中記載了一道“折竹抵地”問題:“今有竹高一丈,末折抵地,去本三尺,問折著高幾何?”翻譯成數(shù)學(xué)問題是:如圖所示,在ΔABC中,∠ACB=90o,AC+AB=10,BC=3,求AC的長(zhǎng),若設(shè)AC=x,則可列方程為________________.三、解答題(7小題,每小題10分,共計(jì)70分)1、如圖,CE⊥AB于點(diǎn)E,BD⊥AC于點(diǎn)D,AB=AC.(1)求證:△ABD≌△ACE.(2)連接BC,若AD=6,CD=4,求△ABC的面積.2、如圖,一個(gè)長(zhǎng)5m的梯子AB,斜靠在一豎直的墻AO上,這時(shí)AO的距離為4m,如果梯子的頂端A沿墻下滑1m至C點(diǎn).(1)求梯子底端B外移距離BD的長(zhǎng)度;(2)猜想CE與BE的大小關(guān)系,并證明你的結(jié)論.3、閱讀理解:【問題情境】教材中小明用4張全等的直角三角形紙片拼成圖1,利用此圖,可以驗(yàn)證勾股定理嗎?【探索新知】從面積的角度思考,不難發(fā)現(xiàn):大正方形的面積=小正方形的面積+4個(gè)直角三角形的面積.從而得數(shù)學(xué)等式:(a+b)2=c2+4×ab,化簡(jiǎn)證得勾股定理:a2+b2=c2.【初步運(yùn)用】(1)如圖1,若b=2a,則小正方形面積:大正方形面積=;(2)現(xiàn)將圖1中上方的兩直角三角形向內(nèi)折疊,如圖2,若a=4,b=6,此時(shí)空白部分的面積為;(3)如圖3,將這四個(gè)直角三角形緊密地拼接,形成風(fēng)車狀,已知外圍輪廓(實(shí)線)的周長(zhǎng)為24,OC=3,求該風(fēng)車狀圖案的面積.(4)如圖4,將八個(gè)全等的直角三角形緊密地拼接,記圖中正方形ABCD,正方形EFGH,正方形MNKT的面積分別為S1,S2,S3,若S1+S2+S3=40,則S2=.【遷移運(yùn)用】如果用三張含60°的全等三角形紙片,能否拼成一個(gè)特殊圖形呢?帶著這個(gè)疑問,小麗拼出圖5的等邊三角形,你能否仿照勾股定理的驗(yàn)證,發(fā)現(xiàn)含60°的三角形三邊a、b、c之間的關(guān)系,寫出此等量關(guān)系式及其推導(dǎo)過程.4、如圖所示,在中,,,,為邊上的中點(diǎn).(1)求、的長(zhǎng)度;(2)將折疊,使與重合,得折痕;求、的長(zhǎng)度.5、如圖②,它可以看作是由邊長(zhǎng)為a、b、c的兩個(gè)直角三角形(如圖①C為斜邊)拼成的,其中A、C、D三點(diǎn)在同一條直線上,(1)請(qǐng)從面積出發(fā)寫出一個(gè)表示a、b、c的關(guān)系的等式;(要求寫出過程)(2)如圖③④⑤,以直角三角形的三邊為邊或直徑,分別向外部作正方形、半圓、等邊三角形,這三個(gè)圖形中面積關(guān)系滿足的有_______個(gè).(3)如圖⑥,直角三角形的兩直角邊長(zhǎng)分別為3,5,分別以直角三角形的三邊為直徑作半圓,則圖中陰影部分的面積為_______.6、2020年春季“新冠肺炎”在武漢全面爆發(fā),蔓延全國(guó),危及到人民生命安全,為了積極響應(yīng)國(guó)家防控政策,雙流區(qū)某鎮(zhèn)政府采用了移動(dòng)宣講的形式進(jìn)行宣傳防控措施,如圖,筆直公路的一側(cè)點(diǎn)處有一村莊,村莊到公路的距離為600米,假設(shè)宣講車周圍1000米以內(nèi)能聽到廣播宣傳,宣講車在公路上沿方向行駛時(shí):(1)請(qǐng)問村莊能否聽到宣傳,請(qǐng)說明理由;(2)如果能聽到,已知宣講車的速度是200米/分鐘,那么村莊總共能聽到多長(zhǎng)時(shí)間的宣傳?7、如圖,有一架秋千,當(dāng)他靜止時(shí),踏板離地的垂直高度,將他往前推送(水平距離)時(shí),秋千的踏板離地的垂直高度,秋千的繩索始終拉得很直,求繩索的長(zhǎng)度.-參考答案-一、單選題1、A【解析】【分析】根據(jù)折疊的性質(zhì),可知BF=DF=-EF,在Rt中,由勾股定理得:,由此即可求得EF值.【詳解】解:∵,,∴AD=,,由折疊可知,AB=BE=6,AD=ED=,,,∵,∴∠BDF=∠DBF∴BF=DF=-EF,∴在Rt中,由勾股定理得:,∴,解得:EF=,故選:A.【考點(diǎn)】本題主要考查的是勾股定理的應(yīng)用,靈活利用折疊進(jìn)行發(fā)掘條件是解題的關(guān)鍵.2、C【解析】【分析】如圖,根據(jù)等腰三角形的性質(zhì)和勾股定理可得m2+m2=(n-m)2,整理即可求解【詳解】m2+m2=(n﹣m)2,2m2=n2﹣2mn+m2,m2+2mn﹣n2=0.故選C.3、B【解析】【分析】由勾股定理求出AB,設(shè)CD=x,則BD=4-x,根據(jù)求出x得到CD的長(zhǎng),利用面積求出答案.【詳解】解:∵∠ACB=90°,∴,由折疊得AE=AB=5,DE=BD,設(shè)CD=x,則BD=4-x,在△DCE中,∠DCE=90°,CE=AE-AC=5-3=2,∵,∴,解得x=1.5,∴CD=1.5,∴圖中陰影部分的面積是,故選:B.【考點(diǎn)】此題考查了折疊的性質(zhì),勾股定理,熟記勾股定理的計(jì)算公式是解題的關(guān)鍵.4、C【解析】【分析】根據(jù)小正方形的面積等于大正方形的面積減去4個(gè)直角三角形的面積可得問題的答案.【詳解】標(biāo)記如下:∵,∴(a﹣b)2=a2+b2﹣4=a2﹣2ab+b2.故選:C.【考點(diǎn)】此題考查的是利用勾股定理的證明,可以完全平方公式進(jìn)行證明,掌握面積差得算式是解決此題關(guān)鍵.5、D【解析】【分析】先證明CE=CD=DF,BC=BF=5,利用勾股定理求出AB,設(shè)CE=CD=DF=x,在Rt△ADF中,利用勾股定理構(gòu)建方程求解即可.【詳解】解:由作圖知CE⊥AB,BD平分∠CBF,∴∠1=∠2=∠3,∵∠CEB+∠3=∠2+∠CDE=90°,∴∠CEB=∠CDE,∴CD=CE,在△DBC和△DBF中,,∴△BDC≌△BDF(AAS),∴CD=DF,BC=BF=5,∵∠ACB=90°,AC=12,BC=5,∴AB=,設(shè)EC=CD=DF=x,在Rt△ADF中,則有(12+x)2=x2+182,∴x=,∴CE=,故選D.【考點(diǎn)】本題考查作圖-復(fù)雜作圖,全等三角形的判定和性質(zhì),等腰三角形的判定,以及勾股定理等知識(shí),解題的關(guān)鍵是學(xué)會(huì)構(gòu)建方程解決問題,屬于中考??碱}型.6、D【解析】【分析】根據(jù)AE平分∠DAE,可得,從而得到AB=BE,進(jìn)而得到,可得①正確;然后證明△ABE≌△AFD,可得AB=BE=AF=FD,從而得到∠AED=∠CED,故②正確;再證得△DEF≌△DEC,可得③正確;再根據(jù)△ABF≌△DCF,可得BF=CF,故④正確;過點(diǎn)F作FG⊥BC于點(diǎn)G,可得,從而得到,進(jìn)而得到,可得⑤正確;即可求解.【詳解】解:在矩形中,∠BAD=∠ADC=∠ABC=90°,AD=BC,AD∥BC,∵AE平分∠DAE,∴,∵AD∥BC,∴∠DAE=∠AEB=45°,∴∠AEB=∠BAE=45°,∴AB=BE,∴,∵,∴AE=AD,故①正確;在△ABE和△AFD中,∵∠BAE=∠DAE,∠ABE=∠AFD,AE=AD,∴△ABE≌△AFD(AAS),∴BE=DF,∴AB=BE=AF=FD,∴,∴∠AED=∠CED,故②正確;∵∠DAE=45°,DF⊥AE,∴∠ADF=45°,∴∠CDF=45°,∠EDF=∠ADE-∠ADF=22.5°,∴∠CDE=∠FDE=22.5°,∵∠AEB=45°,∠AED=67.5°,∴∠CED=67.5°,∴∠AED=∠CED,∵DE=DE,∴△DEF≌△DEC,∴DF=CD,∴DE⊥CF,故③正確;∵AB=CD,∠BAE=∠CDF=45°,AF=DF,∴△ABF≌△DCF,∴BF=CF,故④正確;如圖,過點(diǎn)F作FG⊥BC于點(diǎn)G,∴FG∥AB,∴∠EFG=∠BAE=45°,∴∠EFG=∠FEG,∴FG=GE,∵△DEF≌△DEC,∴CE=EF,∴,∴,∵BF=CF,∴BG=CG,∴,∵AB=1,,∴,,解得:,∴.故⑤正確;∴正確的有5個(gè).故選:D【考點(diǎn)】本題主要考查了矩形的性質(zhì),全等三角形的判定和性質(zhì),等腰直角三角形的判定和性質(zhì),勾股定理等知識(shí),熟練掌握相關(guān)知識(shí)點(diǎn)是解題的關(guān)鍵.7、D【解析】【分析】在Rt△ABD及Rt△ADC中可分別表示出BD2及CD2,在Rt△BDM及Rt△CDM中分別將BD2及CD2的表示形式代入表示出BM2和MC2,然后作差即可得出結(jié)果.【詳解】解:在Rt△ABD和Rt△ADC中,BD2=AB2?AD2,CD2=AC2?AD2,在Rt△BDM和Rt△CDM中,BM2=BD2+MD2=AB2?AD2+MD2,MC2=CD2+MD2=AC2?AD2+MD2,∴MC2?MB2=(AC2?AD2+MD2)?(AB2?AD2+MD2)=AC2?AB2=45.故選:D.【考點(diǎn)】本題考查了勾股定理的知識(shí),題目有一定的技巧性,比較新穎,解答本題需要認(rèn)真觀察,分別兩次運(yùn)用勾股定理求出MC2和MB2是本題的難點(diǎn),重點(diǎn)還是在于勾股定理的熟練掌握.二、填空題1、【解析】【分析】在△ABC中由等面積求出,進(jìn)而得到,設(shè)BE=x,進(jìn)而DE=DB-BE=,最后在中使用勾股定理求出x即可求解.【詳解】解:在中由勾股定理可知:,∵,∴,∴,在中由勾股定理可知:,∴,設(shè)BE=x,由折疊可知:BE=B’E,且DE=DB-BE=,在中由勾股定理可知:,代入數(shù)據(jù):∴,解得,∴,∴,故答案為:.【考點(diǎn)】本題考查了勾股定理求線段長(zhǎng)、折疊的性質(zhì)等,解題的關(guān)鍵是掌握折疊的性質(zhì),熟練使用勾股定理求線段長(zhǎng).2、1.5【解析】【分析】連接DF,由勾股定理求出AB=5,由等腰三角形的性質(zhì)得出∠CAF=∠DAF,由SAS證明△ADF≌△ACF,得出CF=DF,∠ADF=∠ACF=∠BDF=90°,設(shè)CF=DF=x,則BF=4-x,在Rt△BDF中,由勾股定理得出方程,解方程即可.【詳解】連接DF,如圖所示:在Rt△ABC中,∠ACB=90°,AC=3,BC=4,由勾股定理求得AB=5,∵AD=AC=3,AF⊥CD,∴∠CAF=∠DAF,BD=AB-AD=2,在△ADF和△ACF中,∴△ADF≌△ACF(SAS),∴∠ADF=∠ACF=90°,CF=DF,∴∠BDF=90°,設(shè)CF=DF=x,則BF=4-x,在Rt△BDF中,由勾股定理得:DF2+BD2=BF2,即x2+22=(4-x)2,解得:x=1.5;∴CF=1.5;故答案為1.5.【考點(diǎn)】本題考查了勾股定理、全等三角形的判定與性質(zhì)、等腰三角形的性質(zhì),證明△ADF≌△ACF得到CF=DF,在Rt△BDF中利用勾股定理列方程是解決問題的關(guān)鍵.3、

24

0【解析】【分析】先證明從而可得再利用圖形的面積關(guān)系可得:兩式相減可得:而證明從而可得第二空的答案.【詳解】解:如圖,以Rt△ABC的三邊為邊作三個(gè)正方形,兩式相減可得:而故答案為:24,0【考點(diǎn)】本題考查的是正方形的性質(zhì),全等三角形的判定與性質(zhì),圖形面積之間的關(guān)系,證明是解本題的關(guān)鍵.4、28或8##8或28【解析】【分析】高的位置不確定,應(yīng)分情況進(jìn)行討論:(1)高在內(nèi)部;(2)高在外部,依此即可求解.【詳解】解:如圖(1)cm,cm,,則,,則;如圖(2),由(1)得,,則.則的長(zhǎng)為或.故答案為或.【考點(diǎn)】此題考查了勾股定理,本題需注意高的位置不確定,應(yīng)根據(jù)三角形的形狀分兩種情況討論.5、13【解析】【分析】找到題中的直角三角形,設(shè)水深為x尺,根據(jù)勾股定理解答.【詳解】解:設(shè)水深為尺,則蘆葦長(zhǎng)為尺,根據(jù)勾股定理得:,解得:,蘆葦?shù)拈L(zhǎng)度(尺,答:蘆葦長(zhǎng)13尺.故答案為:13.【考點(diǎn)】本題考查正確運(yùn)用勾股定理.善于觀察題目的信息是解題以及學(xué)好數(shù)學(xué)的關(guān)鍵.6、【解析】【詳解】解:設(shè)CD=x,則AD=A′D=4-x.在直角三角形ABC中,BC==5.則A′C=BC-AB=BC-A′B=5-3=2.在直角三角形A′DC中:AD2+AC2=CD2.即:(4-x)2+22=x2.解得:x=.故答案為:2.57、x2?(x?3)2=82【解析】【分析】設(shè)繩索長(zhǎng)為x尺,根據(jù)勾股定理列出方程解答即可.【詳解】解:設(shè)繩索長(zhǎng)為x尺,根據(jù)題意得:x2?(x?3)2=82,故答案為:x2?(x?3)2=82.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,找準(zhǔn)等量關(guān)系,正確列出相應(yīng)方程是解題的關(guān)鍵.8、【解析】【分析】設(shè)AC=x,則AB=10-x,再由即可列出方程.【詳解】解:∵,且,∴,在Rt△ABC中,由勾股定理有:,即:,故可列出的方程為:,故答案為:.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,熟練掌握勾股定理是解決本題的關(guān)鍵.三、解答題1、(1)見解析(2)【解析】【分析】(1)根據(jù)題目所給條件證即可;(2)由可得,由勾股定理可求BD,即可求解;(1)證明:∵,∴,∵,∴.(2)解:∵,∴,在中,,∴.【考點(diǎn)】本題主要考查三角形的全等證明、勾股定理,掌握三角形的全等證明及性質(zhì)是解題的關(guān)鍵.2、(1)BD=1m;(2)CE與BE的大小關(guān)系是CE=BE,證明見解析.【解析】【分析】(1)利用勾股定理求出OB,求出OC,再根據(jù)勾股定理求出OD,即可求出答案;(2)求出△AOB和△DOC全等,根據(jù)全等三角形的性質(zhì)得出OC=OB,∠ABO=∠DCO,求出∠OCB=∠OBC,求出∠EBC=∠ECB,根據(jù)等腰三角形的判定得出即可.【詳解】(1)∵AO⊥OD,AO=4m,AB=5m,∴OB==3m,∵梯子的頂端A沿墻下滑1m至C點(diǎn),∴OC=AO﹣AC=3m,∵CD=AB=5m,∴由勾股定理得:OD=4m,∴BD=OD﹣OB=4m﹣3m=1m;(2)CE與BE的大小關(guān)系是CE=BE,證明如下:連接CB,由(1)知:AO=DO=4m,AB=CD=5m,∵∠AOB=∠DOC=90°,在Rt△AOB和Rt△DOC中,∴Rt△AOB≌Rt△DOC(HL),∴∠ABO=∠DCO,OC=OB,∴∠OCB=∠OBC,∴∠ABO﹣∠OBC=∠DCO﹣∠OCB,∴∠EBC=∠ECB,∴CE=BE.【考點(diǎn)】本題考查了勾股定理,等腰三角形的性質(zhì)和判定,全等三角形的判定與性質(zhì)等,能靈活運(yùn)用勾股定理進(jìn)行計(jì)算是解(1)的關(guān)鍵,能求出∠DCO=∠ABO和OC=OB是解(2)的關(guān)鍵.3、【初步運(yùn)用】(1)5:9;(2)28;(3)24;(4);【遷移運(yùn)用】a2+b2﹣ab=c2,證明見解析【解析】【分析】初步運(yùn)用:(1)如圖1,求出小正方形的面積,大正方形的面積即可;(2)根據(jù)空白部分的面積=小正方形的面積﹣2個(gè)直角三角形的面積計(jì)算即可;(3)可設(shè)AC=x,根據(jù)勾股定理列出方程可求x,再根據(jù)直角三角形面積公式計(jì)算即可求解;(4)根據(jù)圖形的特征得出四邊形MNKT的面積設(shè)為x,將其余八個(gè)全等的三角形面積一個(gè)設(shè)為y,從而用x,y表示出S1,S2,S3,得出答案即可.遷移運(yùn)用:根據(jù)大正三角形面積=三個(gè)全等三角形面積+小正三角形面積,構(gòu)建關(guān)系式即可.【詳解】解:【初步運(yùn)用】(1)由題意:b=2a,c=,∴小正方形面積:大正方形面積=5a2:9a2=5:9,故答案為:5:9;(2)空白部分的面積為=52﹣2××4×6=28,故答案為:28;(3)24÷4=6,設(shè)AC=x,依題意有:(x+3)2+32=(6﹣x)2,解得x=1,∴面積為:×(3+1)×3×4=×4×3×4=24,故該飛鏢狀圖案的面積是24;(4)將四邊形MTKN的面積設(shè)為x,將其余八個(gè)全等的三角形面積一個(gè)設(shè)為y,∵正方形ABCD,正方形EFGH,正方形MNKT的面積分別為S1,S2,S3,S1+S2+S3=40,∴S1=8y+x,S2=4y+x,S3=x,∴S1+S2+S3=3x+12y=40,∴x+4y=,∴S2=x+4y=,故答案為:;[遷移運(yùn)用]結(jié)論:a2+b2﹣ab=c2.理由:由題意:大正三角形面積=三個(gè)全等三角形面積+小正三角形面積,可得:(a+b)×k(a+b)=3××b×ka+×c×ck,∴(a+b)2=3ab+c2,∴a2+b2﹣ab=c2.【考點(diǎn)】本題考查

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論