




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
青島版8年級下冊數(shù)學期末測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、下列運算中,正確的是(
)A. B.C. D.2、如圖,有一塊直角三角形紙片,兩直角邊,.現(xiàn)將直角邊沿直線折疊,使它落在斜邊上,且與重合,則的大小為(
)A.2cm B.3cm C.4.8cm D.5cm3、下列各式中,與是同類二次根式的是(
)A. B. C. D.254、以下正方形的邊長是無理數(shù)的是(
)A.面積為121的正方形 B.面積為36的正方形C.面積為1.69的正方形 D.面積為8的正方形5、現(xiàn)有四塊正方形紙片,面積分別是4,6,8,10,從中選取三塊按如圖的方式組成圖案,若要使所圍成的三角形是直角三角形,則要選取的三塊紙片的面積分別是(
)A.4,6,8 B.4,6,10 C.4,8,10 D.6,8,106、小明用四根長度相同的木條制作了能夠活動的菱形學具,他先活動學具成為圖1所示菱形,并測得∠B=60°,對角線AC=10cm,接著活動學具成為圖2所示正方形,則圖2中對角線AC的長為()A.10cm B.20cm C.30cm D.cm7、如圖是一個放置在水平桌面上的錐形瓶,向錐形瓶中勻速注水,則水面高度與注水時間之間的函數(shù)關(guān)系圖象大致是(
)A. B.C. D.8、在平面直角坐標系中,有三個點A(﹣3,1),B(﹣1,5),C(0,m),當△ABC的周長最短時,m的值為()A.﹣10 B.﹣8 C.4 D.7第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、已知函數(shù)y=(2m﹣4)x+m2﹣9(x是自變量)的圖象只經(jīng)過二、四象限,則m=_____.2、在平面直角坐標系中,對進行循環(huán)往復的軸對稱變換,若原來點的坐標是,則經(jīng)過第2021次變換后所得的A點的坐標是__________.3、如圖,某同學在附中紅星校區(qū)(A處)測得他家位置在北偏西方向,當他沿紅星路向西騎行600米到了市委(B處)的位置,又測得他家在北偏西方向,該同學每天從家(C處)出發(fā),先向正南騎行到路口處,再沿紅星路向東到紅星校區(qū)上學,假設(shè)他騎行的速度是250米分,請你幫他計算一下,他從家到學校大約用______分鐘.(結(jié)果精確到1分鐘,4、已知直線,點A與原點O關(guān)于直線l對稱,則線段的最大值是_________.5、已知4+的小數(shù)部分為k,則=_____.6、D為等腰Rt△ABC斜邊BC上一點(不與B、C重合),DE⊥BC于點D,交直線BA于點E,DF交AC于F,連接EF,BD=nDC,當n=_____時,△DEF為等腰直角三角形.7、一個三角形的三邊長均為整數(shù).已知其中兩邊長為3和5,第三邊長是不等式組的正整數(shù)解.則第三邊的長為:______.三、解答題(7小題,每小題10分,共計70分)1、定義:如圖,點、把線段分割成、和,若以、、為邊的三角形是一個直角三角形,則稱點、是線段的勾股分割點.已知點、是線段的勾股分割點,若,,求的長.2、如圖,在△ABC和△CDE中,∠ABC=∠CDE=90°,且AC⊥CE,AC=CE.(1)求證:(2)若AC=13,DE=5,求DB的長.3、對于平面直角坐標系xOy中的圖形W和點P(點P在圖形W上),給出如下定義:若點,……,都在圖形W上,且,那么稱點,,……,是圖形W關(guān)于點P的“等距點”,線段,,……,是圖形W關(guān)于點P的“等距線段”.(1)如圖1,已知點B(-2,0),C(2,0),A(0,a)()①判斷:點B,C△ABC關(guān)于點O的“等距點”,線段OA,OB△ABC關(guān)于點O的“等距線段”;(填“是”或“不是”)②△ABC關(guān)于點O的兩個“等距點”,分別在邊AB,AC上,當相應(yīng)的“等距線段”最短時,請在圖1中畫出線段,;(2)如圖2,已知C(4,0),A(2,2),P(3,0),若點C,D是△AOC關(guān)于點P的“等距點”,求點D的坐標;(3)如圖3,已知C(a,0)在x軸的正半軸上,.點P(x,0),△AOC關(guān)于點P的“等距點”恰好有四個,且其中一個點是點O,請直接寫出點P橫坐標的取值范圍.(用含a的式子表示)4、計算:(1)計算:+()﹣1;(2)求x的值:(x﹣1)2﹣4=0.5、在△ABC中,∠ACB=90°,AC=BC=10,點D為AB的中點,連結(jié)DC.點E以每秒1個單位長度的速度從點A出發(fā),沿射線AC方向運動,連結(jié)DE.過點D作DF⊥DE,交射線CB于點F,連結(jié)EF.設(shè)點E的運動時間為t(秒).(1)如圖,當0<t<10時.①求證:∠ADE=∠CDF;②試探索四邊形CEDF的面積是否為定值?若為定值,求出這個定值;若不為定值,請說明理由;(2)當t≥10時,試用含t的代數(shù)式表示△DEF的面積.6、如圖是直角三角尺()和等腰直角三角尺()放置在同一平面內(nèi),斜邊BC重合在一起,,,.交AB于點E;作交AC的延長線于點F.(1)求證:四邊形AEDF是正方形.(2)當時,求正方形AEDF的邊長.7、我校為了豐富校園活動,計劃購買乒乓球拍和羽毛球拍共100副,其中乒乓球拍每副50元,羽毛球拍每副100元,(1)若購買兩種球拍剛好用去8000元,則購買兩種球拍各多少副?(2)若購買羽毛球拍的數(shù)量不少于乒乓球拍的數(shù)量,請設(shè)計一種購買方案使所需總費用最低,并求出該購買方案所需總費用.-參考答案-一、單選題1、A【解析】【分析】根據(jù)合并同類項、同底數(shù)冪的除法、完全平方公式以及二次根式的除法運算即可求出答案.【詳解】解:A、原式,故選項A符合題意.B、原式,故選項B不符合題意.C、原式=9aD、原式,故選項D不符合題意.故選:A.【點睛】本題考查了合并同類項、同底數(shù)冪的除法、完全平方公式以及二次根式的除法運算,本題屬于基礎(chǔ)題型.2、B【解析】【分析】根據(jù)折疊的性質(zhì)可得AC=AE=6,CD=DE,∠ACD=∠AED=∠DEB=90°,利用勾股定理列式求出AB,從而求出BE,設(shè)CD=DE=x,表示出BD,然后在Rt△DEB中,利用勾股定理列式計算即可得解.【詳解】解:由折疊的性質(zhì)可得,AC=AE=6,CD=DE,∠ACD=∠AED=∠DEB=90°,在Rt△ABC中,AB2=AC2+BC2=62+82=102,∴AB=10,∴BE=AB-AE=10-6=4,設(shè)CD=DE=x,則DB=BC-CD=8-x,在Rt△DEB中,由勾股定理,得x2+42=(8-x)2,解得x=3,即CD=3cm,故選:B.【點睛】本題考查了翻折變換的性質(zhì),以及勾股定理,熟記性質(zhì)并表示出Rt△DEB的三邊,然后利用勾股定理列出方程是解題的關(guān)鍵.3、B【解析】【分析】先把各選項化成最簡二次根式,然后根據(jù)同類二次根式判斷即可.【詳解】∵,,∴與是同類二次根式的是.故選:B.【點睛】本題考查了最簡二次根式和同類二次根式的定義,把各個選項化簡是解題的關(guān)鍵.4、D【解析】【分析】理解無理數(shù)的概念,一定要透徹理解有理數(shù)的概念,有理數(shù)是整數(shù)與分數(shù)的統(tǒng)稱,即有限小數(shù)和無限循環(huán)小數(shù)是有理數(shù),而無限不循環(huán)小數(shù)是無理數(shù),由此即可判定選擇項.【詳解】A、面積為9的正方形的邊長為3,是整數(shù),屬于有理數(shù),故本選項不合題意;B、面積為49的正方形的邊長為7,是整數(shù),屬于有理數(shù),故本選項不合題意;C、面積為1.69的正方形的邊長為1.3,是有限小數(shù),屬于有理數(shù),故本選項不合題意;D、面積為8的正方形的邊長為,是無理數(shù),故本選項符合題意,故選:D.【點睛】本題主要考查了無理數(shù),解題的關(guān)鍵是掌握無理數(shù)的定義,其中初中范圍內(nèi)學習的無理數(shù)有:π,2π等,開方開不盡的數(shù),以及像0.1010010001...等有這樣規(guī)律的數(shù).5、B【解析】【分析】根據(jù)勾股定理,直角三角形中兩直角邊的平方等于斜邊的平方,即2個小正方形的面積等于大正方形的面積,據(jù)此分析判斷即可【詳解】解:A.,故該選項不正確,不符合題意;B.,故該選項正確,不符合題意;C.
,故該選項不正確,不符合題意;D.,故該選項不正確,不符合題意;故選B【點睛】本題考查了勾股定理,理解直角三角形中兩直角邊的平方等于斜邊的平方是解題的關(guān)鍵.6、D【解析】【分析】分別連接圖1與圖2中的AC,證明圖1中△ABC是等邊三角形,求出BC,利用勾股定理求出圖2中AC.【詳解】解:分別連接圖1與圖2中的AC,在圖1中:∵四邊形ABCD是菱形,∴AB=BC,∵∠B=60°,∴△ABC是等邊三角形,∴AB=AC=10cm,在圖2中,BC=AB=10cm,∠B=90°,∴cm,故選:D.【點睛】此題考查了菱形的性質(zhì),正方形的性質(zhì),等邊三角形的判定及性質(zhì),勾股定理,解題的關(guān)鍵是理解兩圖中的邊長相等.7、B【解析】【分析】根據(jù)注水速度與水面高度的關(guān)系和錐形瓶的形狀,即可得到函數(shù)大致圖像,此題得解.【詳解】解:向錐形瓶中勻速注水,則水面上升的速度由慢變快,最后到了到達錐形瓶上部時,上升的速度不變,即圖象開始的曲線由緩到陡,最后是一條線段,故符合題意的圖象是選項B.故選:B.【點睛】熟練掌握自變量與因變量之間的關(guān)系,此題需要重點關(guān)注的是錐形瓶的形狀.8、C【解析】【分析】如圖,作關(guān)于x軸的對稱點,連接,與x軸的交點即為點,可知,,有,知當在同一直線上時△ABC的周長最短,設(shè)直線的解析式為,將的點坐標代入,解得,得函數(shù)解析式為,將代入求解即可.【詳解】解:如圖,作關(guān)于x軸的對稱點,連接,與x軸的交點即為點∴,∴∴當在同一直線上時△ABC的周長最短設(shè)直線的解析式為將的點坐標代入得解得∴將代入得故選C.【點睛】本題考查了軸對稱的性質(zhì),兩點之間線段最短,一次函數(shù)的應(yīng)用.解題的關(guān)鍵在于對知識的靈活運用.二、填空題1、-3【解析】【分析】根據(jù)解析式是關(guān)于x的一次函數(shù),只經(jīng)過二、四象限可知函數(shù)為正比例函數(shù),k<0,b=0,列方程與不等式求解即可.【詳解】解:函數(shù)y=(2m﹣4)x+m2﹣9是關(guān)于x的一次函數(shù),∵函數(shù)y=(2m﹣4)x+m2﹣9(x是自變量)的圖象只經(jīng)過二、四象限,∴,解得,∵m=3>2舍去,m=-3<2,滿足條件,∴m=-3,故答案為-3.【點睛】本題考查一次函數(shù)的性質(zhì),正比例函數(shù),解不等式,直接開平方法解一元二次方程,掌握一次函數(shù)的性質(zhì),正比例函數(shù),解不等式,直接開平方法解一元二次方程是解題關(guān)鍵.2、【解析】【分析】觀察圖形可知每四次對稱為一個循環(huán)組依次循環(huán),用2021除以4,然后根據(jù)商和余數(shù)的情況確定出變換后的點所在的象限,然后解答即可.【詳解】解:∵點第一次關(guān)于軸對稱后在第四象限,點第二次關(guān)于軸對稱后在第三象限,點第三次關(guān)于軸對稱后在第二象限,點第四次關(guān)于軸對稱后在第一象限,即點回到原始位置,∴每四次對稱為一個循環(huán)組依次循環(huán),∵,∴經(jīng)過第2021次變換后所得的點與第一次變換的位置相同,在第四象限.故答案為:.【點睛】本題考查了軸對稱的性質(zhì),點的坐標變換規(guī)律,讀懂題目信息,觀察出每四次對稱為一個循環(huán)組依次循環(huán)是解題的關(guān)鍵,也是本題的難點.3、【解析】【分析】用含的直角三角形的性質(zhì)求出,再用勾股定理表示出,結(jié)合,求出的長度,進而得到和的長度,即可求得某同學從他家到學校的路程,再用路程除以速度求解.【詳解】解:由題意得,,,,,,是直角三角形,,,,,他從家到學校大約用(分鐘).故答案為:.【點睛】本題考查了解直角三角形的應(yīng)用——方向角的問題,勾股定理,求出的長度是解答關(guān)鍵.4、【解析】【分析】如圖,對于一次函數(shù)y=k(x?1)+3,過定點B(1,3).O、A關(guān)于直線y=k(x?1)+3對稱,可得OB=AB=,再根據(jù)OA≤OB+AB=2,可得結(jié)論.【詳解】解:如圖,對于一次函數(shù)y=k(x?1)+3,過定點B(1,3).∵O、A關(guān)于直線y=k(x?1)+3對稱,∴OB=AB=,∵OA≤OB+AB=2,∴OA的最大值為2.故答案為:2.【點睛】本題考查軸對稱的性質(zhì),一次函數(shù)的性質(zhì),勾股定理等知識,解題的關(guān)鍵是發(fā)現(xiàn)直線過定點B(1,3),推出AB=OB=解決問題.5、【解析】【分析】先估算出k的值,再代入化簡即可.【詳解】故答案為:【點睛】本題考查無理數(shù)的估算、分母有理化,掌握二次根式的運算法則是得出正確答案的前提.6、或1【解析】【分析】分兩種情況:情況①:當∠DEF=90°時,由題意得出EF∥BC,作FG⊥BC于G,證出△CFG、△BDE是等腰直角三角形,四邊形EFGD是正方形,得出BD=DE=EF=DG=FG=CG,即可得出結(jié)果;情況②:當∠EFD=90°時,求出∠DEF=45°,得出E與A重合,D是BC的中點,BD=CD,即可得出結(jié)果.【詳解】解:分兩種情況:情況①:當∠DEF=90°時,如圖1所示:∵DE⊥BC,∴∠BDE=90°=∠DEF,∴EF∥BC,作FG⊥BC于G,∴∠EDB=∠FGB=90°,∴ED∥FG,∴四邊形EDGF為矩形,∵△ABC是等腰直角三角形,∴△CFG、△BDE是等腰直角三角形,∴BD=DE,當△DEF為等腰直角三角形時,DE=EF,此時四邊形EFGD是正方形,∴BD=DE=EF=DG=FG=CG,∴BD=DC,∴n=;情況②:當∠EFD=90°時,如圖2所示:∵∠EDF=45°,∴∠DEF=45°,此時E與A重合,D是BC的中點,∴BD=CD,∴n=1.故答案為:或1.【點睛】本題考查了等腰直角三角形的判定與性質(zhì)、平行線的判定、正方形的判定與性質(zhì);熟練掌握等腰直角三角形的性質(zhì),分兩種情況討論是解決問題的關(guān)鍵.7、7【解析】【分析】先利用一元一次不等式組的解法確定出正整數(shù)解,然后利用三角形的三邊關(guān)系來求解.【詳解】解:解得,所以正整數(shù)解是、、9.三角形的其中兩邊長為和,,即,所以只有符合.故答案為:.【點睛】本題考查了三角形三邊關(guān)系和一元一次不等式的整數(shù)解.解題的關(guān)鍵是求解不等式組求出它的正整數(shù)解.三、解答題1、的長為或10【解析】【分析】分兩種情況:①當為最大線段時,由勾股定理求出;②當為最大線段時,由勾股定理求出即可.【詳解】解:分兩種情況:①當為最大線段時,點、是線段的勾股分割點,;②當為最大線段時,點、是線段的勾股分割點,;綜上所述:的長為或10.【點睛】本題考查了新定義“勾股分割點”、勾股定理;理解新定義,熟練掌握勾股定理,進行分類討論是解決問題的關(guān)鍵.2、(1)見解析(2)7【解析】【分析】(1)由AC⊥CE,∠ABC=∠CDE=90°,易證∠DCE=∠A.即可利用“AAS”證明△ABC≌△CDE.(2)由全等三角形的性質(zhì)可知BC=DE=5,CE=13.再在中,利用勾股定理即可求出CD的長,從而可求出DB的長.(1)證明:∵AC⊥CE,∠ABC=∠CDE=90°,∴∠BCA+∠DCE=90°,∠A+∠BCA=90°∴∠DCE=∠A.∴在△ABC和△CDE中,,∴△ABC≌△CDE(AAS).(2)∵△ABC≌△CDE,DE=5,AC=13∴BC=DE=5,CE=13∴在中,∴.【點睛】本題考查全等三角形的判定和性質(zhì),勾股定理.掌握全等三角形的判定條件是解答本題的關(guān)鍵.3、(1)①是;不是;②見解析(2)D(2,0)或(3,1)(3)<x<【解析】【分析】(1)①根據(jù)題意可得,,結(jié)合題中定義即可得出結(jié)果;②根據(jù)題意及題中“等距點”可得,由相應(yīng)的“等距線段”最短時,過點O分別作,,此時“等距線段”最短,據(jù)此作圖即可得;(2)根據(jù)勾股定理及其逆定理可得是等腰直角三角形,,結(jié)合題意可得:,,結(jié)合圖形即可得出點的坐標;(3)分兩部分進行討論:①當時,點P為線段OC的中點;②當時,;結(jié)合題中“等距點”的定義及含角直角三角形的性質(zhì)依次分析即可得出點P橫坐標的取值范圍.(1)解:①∵點B(-2,0),C(2,0),A(0,a)(),∴,,∴點B,C是關(guān)于點O的“等距點”,線段OA,OB不是關(guān)于點O的“等距線段”;故答案為:是;不是;②∵關(guān)于點O的兩個“等距點”,分別在邊AB,AC上,∴,當相應(yīng)的“等距線段”最短時,過點O分別作,,此時“等距線段”最短,如圖所示:(2)解:如圖所示,∵C(4,0),A(2,2),∴,∵,∴是等腰直角三角形,∴,∵P(3,0),∴,∴∴,∴D(2,0)或(3,1);(3)解:①當時,點P為線段OC的中點,∴,∴點O、C是關(guān)于點P的“等距點”,過點P作于點B,截取,連接PD,如圖所示:則,∵,∴,∴的關(guān)于點P的“等距點”有兩個在OC上,有一個在AC上,∵關(guān)于點P的“等距點”恰好有四個,且其中一個是點O,∴,即;②當時,,,則的關(guān)于點P的“等距點”有兩個在OC上,有一個在AC上,∵關(guān)于點P的“等距點”恰好有四個,且其中一個是點O,,即;綜上可得:,∴點P橫坐標的取值范圍為:.【點睛】題目主要考查坐標系中兩點間的距離,直線外一點到直線的垂線段最短,勾股定理,等腰三角形的判定和性質(zhì),含角直角三角形的性質(zhì)等,理解題意,作出相應(yīng)輔助線是解題關(guān)鍵.4、(1)6(2)或-1【解析】【分析】(1)先根據(jù)平方根,零指數(shù)冪,負整數(shù)指數(shù)冪化簡,再計算,即可求解;(2)先移項,再根據(jù)平方根的性質(zhì),可得或,即可求解.(1)解:+()﹣1;(2)解:(x﹣1)2﹣4=0移項得:,∴或,解得:或-1.【點睛】本題主要考查了平方根的性質(zhì),零指數(shù)冪,負整數(shù)指數(shù)冪,熟練掌握平方根的性質(zhì),零指數(shù)冪,負整數(shù)指數(shù)冪法則是解題的關(guān)鍵.5、(1)①見解析;②是,25(2)【解析】【分析】(1)①利用等腰三角形的三線合一的性質(zhì)證明即可;②結(jié)論:四邊形CEDF的面積為定值.證明△ADE≌△CDF(ASA),可得結(jié)論;(2)當t≥10時,點E在AC的延長線上.過點D分別作DG⊥BC,DH⊥AC,垂足分別為點G,H.證明△DBF≌△DCE(ASA),推出BF=CE=t﹣10,CF=CB+BF=10+(t﹣10)=t.再根據(jù)S△DEF=S四邊形DCEF﹣S△DCE,求解即可.(1)證明:(1)①∵AC=BC,點D為AB的中點,∴CD⊥AB,∵DF⊥DE,∴∠ADE+∠CDE=∠CDF+∠CDE=90°,∴∠ADE=∠CDF;②結(jié)論:四邊形CEDF的面積為定值,理由如下:∵AC=BC,點D為AB的中點,∠ACB=90°,∴∠A=∠B=∠ACD=∠BCD=45°,,∴AD=BD=CD,∵∠ADE=∠CDF,∴△ADE≌△CDF(ASA),∴S△ADE=S△CDF,∴S四邊形CEDF=S△CDE+S△CDF=S△CDE+S△ADE=S△ACD=.∴四邊形CEDF的面積為定值.(2)解:當t≥10時,點E在AC的延長線上.過點D分別作DG⊥BC,DH⊥AC,垂足分別為點G,H.∵∠FDC=∠FDE+∠CDE=∠BDC+∠BDF,∴∠BDF=∠CDE.由②得:AD=BD=CD,∠ABC=∠ACD=45°,∴∠DBF=∠DCE=135°,∴△DBF≌△DCE(ASA),∴BF=CE=t﹣10,∴CF=CB+BF=10+(t﹣10)=t.∵,DG⊥BC,DH⊥AC,∴,∵A
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 外墻保溫板施工方案
- 2025年成都市中考物理真題(含答案)
- 小兒暴發(fā)性心肌炎課件
- 農(nóng)村農(nóng)具展覽館合同范本
- 三方車輛過戶協(xié)議書模板
- 婚介介紹人合同協(xié)議書范本
- 買農(nóng)村房子地基合同范本
- 怎樣打印委托協(xié)議合同模板
- BT合作協(xié)議屬于性質(zhì)合同
- 香港銀行開戶購銷合同范本
- 鍋爐安全技術(shù)規(guī)程標準(TSG 11-2020)
- 加油站安全教育培訓計劃表及全套記錄表模板
- 員工薪資調(diào)整審批表
- 除銹劑MSDS參考資料
- (完整word版)中醫(yī)病證診斷療效標準
- 新人教版八年級物理(下冊)期末綜合能力測試卷及答案
- 低壓配電箱安裝施工方案
- 蓄水池檢驗批質(zhì)量驗收記錄(海綿城市質(zhì)檢表格)
- 單梁起重機安全操作培訓課件
- 腦出血診治指南
- 2022年重慶市汽車運輸(集團)有限責任公司招聘考試真題
評論
0/150
提交評論