




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
蘇教七年級下冊期末解答題壓軸數(shù)學(xué)模擬真題經(jīng)典套題答案一、解答題1.在△ABC中,射線AG平分∠BAC交BC于點G,點D在BC邊上運動(不與點G重合),過點D作DE∥AC交AB于點E.(1)如圖1,點D在線段CG上運動時,DF平分∠EDB①若∠BAC=100°,∠C=30°,則∠AFD=;若∠B=40°,則∠AFD=;②試探究∠AFD與∠B之間的數(shù)量關(guān)系?請說明理由;(2)點D在線段BG上運動時,∠BDE的角平分線所在直線與射線AG交于點F試探究∠AFD與∠B之間的數(shù)量關(guān)系,并說明理由2.閱讀下列材料并解答問題:在一個三角形中,如果一個內(nèi)角的度數(shù)是另一個內(nèi)角度數(shù)的3倍,那么這樣的三角形我們稱為“夢想三角形”例如:一個三角形三個內(nèi)角的度數(shù)分別是120°,40°,20°,這個三角形就是一個“夢想三角形”.反之,若一個三角形是“夢想三角形”,那么這個三角形的三個內(nèi)角中一定有一個內(nèi)角的度數(shù)是另一個內(nèi)角度數(shù)的3倍.(1)如果一個“夢想三角形”有一個角為108°,那么這個“夢想三角形”的最小內(nèi)角的度數(shù)為__________(2)如圖1,已知∠MON=60°,在射線OM上取一點A,過點A作AB⊥OM交ON于點B,以A為端點作射線AD,交線段OB于點C(點C不與O、B重合),若∠ACB=80°.判定△AOB、△AOC是否是“夢想三角形”,為什么?(3)如圖2,點D在△ABC的邊上,連接DC,作∠ADC的平分線交AC于點E,在DC上取一點F,使得∠EFC+∠BDC=180°,∠DEF=∠B.若△BCD是“夢想三角形”,求∠B的度數(shù).3.如圖,已知直線a∥b,∠ABC=100°,BD平分∠ABC交直線a于點D,線段EF在線段AB的左側(cè),線段EF沿射線AD的方向平移,在平移的過程中BD所在的直線與EF所在的直線交于點P.問∠1的度數(shù)與∠EPB的度數(shù)又怎樣的關(guān)系?(特殊化)(1)當(dāng)∠1=40°,交點P在直線a、直線b之間,求∠EPB的度數(shù);(2)當(dāng)∠1=70°,求∠EPB的度數(shù);(一般化)(3)當(dāng)∠1=n°,求∠EPB的度數(shù)(直接用含n的代數(shù)式表示).4.【問題探究】如圖1,DF∥CE,∠PCE=∠α,∠PDF=∠β,猜想∠DPC與α、β之間有何數(shù)量關(guān)系?并說明理由;【問題遷移】如圖2,DF∥CE,點P在三角板AB邊上滑動,∠PCE=∠α,∠PDF=∠β.(1)當(dāng)點P在E、F兩點之間運動時,如果α=30°,β=40°,則∠DPC=°.(2)如果點P在E、F兩點外側(cè)運動時(點P與點A、B、E、F四點不重合),寫出∠DPC與α、β之間的數(shù)量關(guān)系,并說明理由.(圖1)(圖2)5.如圖,,點A、B分別在直線MN、GH上,點O在直線MN、GH之間,若,.(1)=;(2)如圖2,點C、D是、角平分線上的兩點,且,求的度數(shù);(3)如圖3,點F是平面上的一點,連結(jié)FA、FB,E是射線FA上的一點,若,,且,求n的值.6.已知,如圖1,射線PE分別與直線AB、CD相交于E、F兩點,∠PFD的平分線與直線AB相交于點M,射線PM交CD于點N,設(shè)∠PFM=,∠EMF=,且.(1)=____°,=______°;直線AB與CD的位置關(guān)系是_______;(2)如圖2,若點G是射線MA上任意一點,且∠MGH=∠PNF,試找出∠FMN與∠GHF之間存在的數(shù)量關(guān)系,并證明你的結(jié)論:(3)若將圖中的射線PM繞著端點P逆時針方向旋轉(zhuǎn)(如圖3),分別與AB、CD相交于點M和點N,時,作∠PMB的角平分線MQ與射線FM相交于點Q,問在旋轉(zhuǎn)的過程中的值變不變?若不變,請求出其值;若變化,請說明理由.7.如圖1,直線MN與直線AB、CD分別交于點E、F,∠1與∠2互補.(1)試判斷直線AB與直線CD的位置關(guān)系,并說明理由;(2)如圖2,∠BEF與∠EFD的角平分線交于點P,EP與CD交于點G,點H是MN上一點,且GH⊥EG,求證:PF//GH.(3)如圖3,在(2)的條件下,連接PH,K是GH上一點使∠PHK=∠HPK,作PQ平分∠EPK,問∠HPQ的大小是否發(fā)生變化?若不變,請求出其值若變化,說明理由.8.我們將內(nèi)角互為對頂角的兩個三角形稱為“對頂三角形.例如,在圖1中,的內(nèi)角與的內(nèi)角互為對頂角,則與為對頂三角形,根據(jù)三角形內(nèi)角和定理知“對頂三角形”有如下性質(zhì):.(1)(性質(zhì)理解)如圖2,在“對頂三角形”與中,,,求證:;(2)(性質(zhì)應(yīng)用)如圖3,在中,點D、E分別是邊、上的點,,若比大20°,求的度數(shù);(3)(拓展提高)如圖4,已知,是的角平分線,且和的平分線和相交于點P,設(shè),求的度數(shù)(用表示).9.如圖1,直線m與直線n相交于O,點A在直線m上運動,點B在直線n上運動,AC、BC分別是∠BAO和∠ABO的角平分線.(1)若∠BAO=50o,∠ABO=40o,求∠ACB的度數(shù);(2)如圖2,若∠AOB=α,BD是△AOB的外角∠OBE的角平分線,BD與AC相交于點D,點A、B在運動的過程中,∠ADB的大小是否會發(fā)生變化?若發(fā)生變化,請說明理由;若不發(fā)生變化,試求出其度數(shù)(用含α的代數(shù)式表示);(3)如圖3,若直線m與直線n相互垂直,延長AB至E,已知∠ABO、∠OBE的角平分線與∠BOQ的角平分線及延長線分別相交于D、F,在△BDF中,如果有一個角是另一個角的3倍,請直接寫出∠BAO的度數(shù).10.模型規(guī)律:如圖1,延長交于點D,則.因為凹四邊形形似箭頭,其四角具有“”這個規(guī)律,所以我們把這個模型叫做“箭頭四角形”.模型應(yīng)用(1)直接應(yīng)用:①如圖2,,則__________;②如圖3,__________;(2)拓展應(yīng)用:①如圖4,、的2等分線(即角平分線)、交于點,已知,,則__________;②如圖5,、分別為、的10等分線.它們的交點從上到下依次為、、、…、.已知,,則__________;③如圖6,、的角平分線、交于點D,已知,則__________;④如圖7,、的角平分線、交于點D,則、、之同的數(shù)量關(guān)系為__________.【參考答案】一、解答題1.(1)①115°;110°;②;理由見解析;(2);理由見解析【分析】(1)①若∠BAC=100°,∠C=30°,由三角形內(nèi)角和定理求出∠B=50°,由平行線的性質(zhì)得出∠EDB=∠C=30°,由解析:(1)①115°;110°;②;理由見解析;(2);理由見解析【分析】(1)①若∠BAC=100°,∠C=30°,由三角形內(nèi)角和定理求出∠B=50°,由平行線的性質(zhì)得出∠EDB=∠C=30°,由角平分線定義得出,,由三角形的外角性質(zhì)得出∠DGF=100°,再由三角形的外角性質(zhì)即可得出結(jié)果;若∠B=40°,則∠BAC+∠C=180°-40°=140°,由角平分線定義得出,,由三角形的外角性質(zhì)即可得出結(jié)果;②由①得:∠EDB=∠C,,,由三角形的外角性質(zhì)得出∠DGF=∠B+∠BAG,再由三角形的外角性質(zhì)即可得出結(jié)論;(2)由(1)得:∠EDB=∠C,,,由三角形的外角性質(zhì)和三角形內(nèi)角和定理即可得出結(jié)論.【詳解】(1)①若∠BAC=100°,∠C=30°,則∠B=180°-100°-30°=50°,∵DE∥AC,∴∠EDB=∠C=30°,∵AG平分∠BAC,DF平分∠EDB,∴,,∴∠DGF=∠B+∠BAG=50°+50°=100°,∴∠AFD=∠DGF+∠FDG=100°+15°=115°;若∠B=40°,則∠BAC+∠C=180°-40°=140°,∵AG平分∠BAC,DF平分∠EDB,∴,,∵∠DGF=∠B+∠BAG,∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG=故答案為:115°;110°;②;理由如下:由①得:∠EDB=∠C,,,∵∠DGF=∠B+∠BAG,∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG=;(2)如圖2所示:;理由如下:由(1)得:∠EDB=∠C,,,∵∠AHF=∠B+∠BDH,∴∠AFD=180°-∠BAG-∠AHF.【點睛】本題考查了三角形內(nèi)角和定理、三角形的外角性質(zhì)、平行線的性質(zhì)等知識;熟練掌握三角形內(nèi)角和定理和三角形的外角性質(zhì)是解題的關(guān)鍵.2.(1)36°或18°;(2)△AOB、△AOC都是“夢想三角形”,證明詳見解析;(3)∠B=36°或∠B=.【分析】(1)根據(jù)三角形內(nèi)角和等于180°,如果一個“夢想三角形”有一個角為108°,解析:(1)36°或18°;(2)△AOB、△AOC都是“夢想三角形”,證明詳見解析;(3)∠B=36°或∠B=.【分析】(1)根據(jù)三角形內(nèi)角和等于180°,如果一個“夢想三角形”有一個角為108°,可得另兩個角的和為72°,由三角形中一個內(nèi)角是另一個內(nèi)角的3倍時,可以分別求得最小角為180°﹣108°﹣108÷3°=36°,72°÷(1+3)=18°,由此比較得出答案即可;(2)根據(jù)垂直的定義、三角形內(nèi)角和定理求出∠ABO、∠OAC的度數(shù),根據(jù)“夢想三角形”的定義判斷即可;(3)根據(jù)同角的補角相等得到∠EFC=∠ADC,根據(jù)平行線的性質(zhì)得到∠DEF=∠ADE,推出DE∥BC,得到∠CDE=∠BCD,根據(jù)角平分線的定義得到∠ADE=∠CDE,求得∠B=∠BCD,根據(jù)“夢想三角形”的定義求解即可.【詳解】解:當(dāng)108°的角是另一個內(nèi)角的3倍時,最小角為180°﹣108°﹣108÷3°=36°,當(dāng)180°﹣108°=72°的角是另一個內(nèi)角的3倍時,最小角為72°÷(1+3)=18°,因此,這個“夢想三角形”的最小內(nèi)角的度數(shù)為36°或18°.故答案為:18°或36°.(2)△AOB、△AOC都是“夢想三角形”證明:∵AB⊥OM,∴∠OAB=90°,∴∠ABO=90°﹣∠MON=30°,∴∠OAB=3∠ABO,∴△AOB為“夢想三角形”,∵∠MON=60°,∠ACB=80°,∠ACB=∠OAC+∠MON,∴∠OAC=80°﹣60°=20°,∴∠AOB=3∠OAC,∴△AOC是“夢想三角形”.(3)解:∵∠EFC+∠BDC=180°,∠ADC+∠BDC=180°,∴∠EFC=∠ADC,∴AD∥EF,∴∠DEF=∠ADE,∵∠DEF=∠B,∴∠B=∠ADE,∴DE∥BC,∴∠CDE=∠BCD,∵AE平分∠ADC,∴∠ADE=∠CDE,∴∠B=∠BCD,∵△BCD是“夢想三角形”,∴∠BDC=3∠B,或∠B=3∠BDC,∵∠BDC+∠BCD+∠B=180°,∴∠B=36°或∠B=.【點睛】本題考查的是三角形內(nèi)角和定理、“夢想三角形”的概念,用分類討論的思想解決問題是解本題的關(guān)鍵.3.(1)∠EPB=170°;(2)①當(dāng)交點P在直線b的下方時:∠EPB=20°,②當(dāng)交點P在直線a,b之間時:∠EPB=160°,③當(dāng)交點P在直線a的上方時:∠EPB=∠1﹣50°=20°;(3)①當(dāng)解析:(1)∠EPB=170°;(2)①當(dāng)交點P在直線b的下方時:∠EPB=20°,②當(dāng)交點P在直線a,b之間時:∠EPB=160°,③當(dāng)交點P在直線a的上方時:∠EPB=∠1﹣50°=20°;(3)①當(dāng)交點P在直線a,b之間時:∠EPB=180°﹣|n°﹣50°|;②當(dāng)交點P在直線a上方或直線b下方時:∠EPB=|n°﹣50°|.【分析】(1)利用外角和角平分線的性質(zhì)直接可求解;(2)分三種情況討論:①當(dāng)交點P在直線b的下方時;②當(dāng)交點P在直線a,b之間時;③當(dāng)交點P在直線a的上方時;分別畫出圖形求解;(3)結(jié)合(2)的探究,分兩種情況得到結(jié)論:①當(dāng)交點P在直線a,b之間時;②當(dāng)交點P在直線a上方或直線b下方時;【詳解】解:(1)∵BD平分∠ABC,∴∠ABD=∠DBC=∠ABC=50°,∵∠EPB是△PFB的外角,∴∠EPB=∠PFB+∠PBF=∠1+(180°﹣50°)=170°;(2)①當(dāng)交點P在直線b的下方時:∠EPB=∠1﹣50°=20°;②當(dāng)交點P在直線a,b之間時:∠EPB=50°+(180°﹣∠1)=160°;③當(dāng)交點P在直線a的上方時:∠EPB=∠1﹣50°=20°;(3)①當(dāng)交點P在直線a,b之間時:∠EPB=180°﹣|n°﹣50°|;②當(dāng)交點P在直線a上方或直線b下方時:∠EPB=|n°﹣50°|;【點睛】考查知識點:平行線的性質(zhì);三角形外角性質(zhì).根據(jù)動點P的位置,分類畫圖,結(jié)合圖形求解是解決本題的關(guān)鍵.?dāng)?shù)形結(jié)合思想的運用是解題的突破口.4.∠DPC=α+β,理由見解析;(1)70;(2)∠DPC=α–β,理由見解析.【解析】(1)過P作PE∥AD交CD于E,推出AD∥PE∥BC,根據(jù)平行線的性質(zhì)得出∠α=∠DPE,∠β=∠C解析:∠DPC=α+β,理由見解析;(1)70;(2)∠DPC=α–β,理由見解析.【解析】(1)過P作PE∥AD交CD于E,推出AD∥PE∥BC,根據(jù)平行線的性質(zhì)得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(2)化成圖形,根據(jù)平行線的性質(zhì)得出∠α=∠DPE,∠β=∠CPE,即可得出答案.【問題探究】解:∠DPC=α+β如圖,過P作PH∥DF∵DF∥CE,∴∠PCE=∠1=α,∠PDF=∠2∵∠DPC=∠2+∠1=α+β【問題遷移】(1)70(圖1)(圖2)(2)如圖1,∠DPC=β-α∵DF∥CE,∴∠PCE=∠1=β,∵∠DPC=∠1-∠FDP=∠1-α.∴∠DPC=β-α如圖2,∠DPC=α-β∵DF∥CE,∴∠PDF=∠1=α∵∠DPC=∠1-∠ACE=∠1-β.∴∠DPC=α-β5.(1)100;(2)75°;(3)n=3.【分析】(1)如圖:過O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OB解析:(1)100;(2)75°;(3)n=3.【分析】(1)如圖:過O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OBH=360°,即可求出∠AOB;(2)如圖:分別延長AC、CD交GH于點E、F,先根據(jù)角平分線求得,再根據(jù)平行線的性質(zhì)得到;進一步求得,,然后根據(jù)三角形外角的性質(zhì)解答即可;(3)設(shè)BF交MN于K,由∠NAO=116°,得∠MAO=64°,故∠MAE=,同理∠OBH=144°,∠HBF=n∠OBF,得∠FBH=,從而,又∠FKN=∠F+∠FAK,得,即可求n.【詳解】解:(1)如圖:過O作OP//MN,∵MN//GHl∴MN//OP//GH∴∠NAO+∠POA=180°,∠POB+∠OBH=180°∴∠NAO+∠AOB+∠OBH=360°∵∠NAO=116°,∠OBH=144°∴∠AOB=360°-116°-144°=100°;(2)分別延長AC、CD交GH于點E、F,∵AC平分且,∴,又∵MN//GH,∴;∵,∵BD平分,∴,又∵∴;∴;(3)設(shè)FB交MN于K,∵,則;∴∵,∴,,在△FAK中,,∴,∴.經(jīng)檢驗:是原方程的根,且符合題意.【點睛】本題主要考查平行線的性質(zhì)及應(yīng)用,正確作出輔助線、構(gòu)造平行線、再利用平行線性質(zhì)進行求解是解答本題的關(guān)鍵.6.(1)35;35;AB∥CD;(2)∠FMN+∠GHF=180°.證明見解析;(3)的值不變,=2.【分析】(1)利用非負數(shù)的性質(zhì)可知:==35,推出即可解決問題;(2)結(jié)論,只要證明即可解決解析:(1)35;35;AB∥CD;(2)∠FMN+∠GHF=180°.證明見解析;(3)的值不變,=2.【分析】(1)利用非負數(shù)的性質(zhì)可知:==35,推出即可解決問題;(2)結(jié)論,只要證明即可解決問題;(3)結(jié)論:的值不變,=2.如圖3中,作∠PEM1的平分線交M1Q的延長線于R,只要證明∠R=∠,∠=2∠R即可;【詳解】(1)證明:∵,∴==35,∴∠PFM=∠MFN=35°,∠EMF=35°,∴∠EMF=∠MFN,∴AB∥CD;故答案為:35;35;AB∥CD;(2)解:∠FMN+∠GHF=180°.理由:∵AB∥CD,∴∠MNF=∠PME,∵∠MGH=∠MNF,∴∠PME=∠MGH,∴GH∥PN,∴∠GHM=∠FMN,∵∠GHF+∠GHM=180°,∴∠FMN+∠GHF=180°.(3)解:的值不變,=2.理由:如圖3中,作∠PEM1的平分線交M1Q的延長線于R.∵AB∥CD,∴∠PEM1=∠PFN,∵∠PER=∠PEM1,∠PFQ=∠PFN,∴∠PER=∠PFQ,∴ER∥FQ,∴∠=∠R,設(shè)∠PER=∠REB=,,則有:,可得∠=2∠R,∴∠=2∠∴=2.【點睛】本題考查幾何變換綜合題、平行線的判定和性質(zhì)、角平分線的定義、非負數(shù)的性質(zhì)等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,學(xué)會添加常用輔助線,構(gòu)造平行線解決問題,屬于中考壓軸題.7.(1)見詳解;(2)見詳解;(3)∠HPQ的大小不發(fā)生變化,理由見詳解.【分析】(1)根據(jù)同旁內(nèi)角互補,兩條直線平行即可判斷直線AB與直線CD平行;(2)先根據(jù)兩條直線平行,同旁內(nèi)角互補,再根解析:(1)見詳解;(2)見詳解;(3)∠HPQ的大小不發(fā)生變化,理由見詳解.【分析】(1)根據(jù)同旁內(nèi)角互補,兩條直線平行即可判斷直線AB與直線CD平行;(2)先根據(jù)兩條直線平行,同旁內(nèi)角互補,再根據(jù)∠BEF與∠EFD的角平分線交于點P,可得∠EPF=90°,進而證明PF∥GH;(3)根據(jù)角平分線定義,及角的和差計算即可求得∠HPQ的度數(shù),進而即可得到結(jié)論.【詳解】解:(1)AB∥CD,理由如下:∵∠1與∠2互補,∴∠1+∠2=180°,又∵∠1=∠AEF,∠2=∠CFE,∴∠AEF+∠CFE=180°,∴AB∥CD;(2)由(1)知,AB∥CD,∴∠BEF+∠EFD=180°.又∵∠BEF與∠EFD的角平分線交于點P,∴∠FEP+∠EFP=(∠BEF+∠EFD)=90°,∴∠EPF=90°,即EG⊥PF.∵GH⊥EG,∴PF∥GH;(3)∵∠PHK=∠HPK,∴∠PKG=2∠HPK.又∵GH⊥EG,∴∠KPG=90°?∠PKG=90°?2∠HPK.∴∠EPK=180°?∠KPG=90°+2∠HPK.∵PQ平分∠EPK,∴∠QPK=∠EPK=45°+∠HPK.∴∠HPQ=∠QPK?∠HPK=45°.∴∠HPQ的大小不發(fā)生變化.【點睛】本題考查了平行線的判定和性質(zhì)、余角和補角,解決本題的關(guān)鍵是綜合運用角平分線的定義、平行線的性質(zhì)、余角和補角.8.(1)見詳解;(2)100°;(3)∠P=45°-【分析】(1)由“對頂三角形”的性質(zhì)得,從而得,進而即可得到結(jié)論;(2)設(shè)=x,=y,則=x+20°,=y-20°,可得∠ABC+∠DCB=解析:(1)見詳解;(2)100°;(3)∠P=45°-【分析】(1)由“對頂三角形”的性質(zhì)得,從而得,進而即可得到結(jié)論;(2)設(shè)=x,=y,則=x+20°,=y-20°,可得∠ABC+∠DCB=y-20°,根據(jù)三角形內(nèi)角和定理,列出方程,即可求解;(3)設(shè)∠ABE=∠CBE=x,∠ACD=∠BCD=y,可得x+y=90°-,結(jié)合∠CEP+∠ACD=∠CDP+∠P,即可得到結(jié)論.【詳解】(1)證明:∵在“對頂三角形”與中,∴,∵,∴,∵,∴,又∵∴;(2)∵比大20°,+=+,∴設(shè)=x,=y,則=x+20°,=y-20°,∵,∴∠ABC+∠ACB=180°-∠A=180°-=x+y,∴∠ABC+∠DCB=∠ABC+∠ACB-=x+y-x-20°=y-20°,∵∠ABC+∠DCB+=180°,∴y-20°+y=180°,解得:y=100°,∴=100°;(3)∵,是的角平分線,∴設(shè)∠ABE=∠CBE=x,∠ACD=∠BCD=y,∴2x+2y+=180°,即:x+y=90°-,∵和的平分線和相交于點P,∴∠CEP=(180°-2y-x),∠CDP=(180°-2x-y),∵∠CEP+∠ACD=∠CDP+∠P,∴∠P=(180°-2y-x)+y-(180°-2x-y)=x+y=45°-,即:∠P=45°-.【點睛】本題主要考查角平分線的定義,三角形內(nèi)角和定理,三角形外角的性質(zhì),熟練掌握“對頂三角形”的性質(zhì),是解題的關(guān)鍵.9.(1)135°;(2)不變,;(3)或【分析】(1)由角平分線的性質(zhì)分別求解∠CAB與∠CBA的大小,再通過三角形內(nèi)角和定理求值.(2)由三角形的外角定理及角平分線的性質(zhì)求出∠3+∠4=∠1+解析:(1)135°;(2)不變,;(3)或【分析】(1)由角平分線的性質(zhì)分別求解∠CAB與∠CBA的大小,再通過三角形內(nèi)角和定理求值.(2)由三角形的外角定理及角平分線的性質(zhì)求出∠3+∠4=∠1+∠2+α,∠4=∠2+∠D,再通過加減消元求出α與∠D的等量關(guān)系.(3)先通過角平分線的性質(zhì)求出∠FBD為90°,再分類討論有一個角是另一個角的3倍的情況求解.【詳解】解:(1)、分別是和
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 老夫的少女心啊數(shù)學(xué)試卷
- 蘭州中考計算題數(shù)學(xué)試卷
- 遼陽市高一教材數(shù)學(xué)試卷
- 2025年傳媒產(chǎn)業(yè)項目提案報告
- 遼寧鞍山七下數(shù)學(xué)試卷
- 六下北師數(shù)學(xué)試卷
- 六年級冀教數(shù)學(xué)試卷
- 2025年事業(yè)單位招聘考試綜合類專業(yè)能力測試試卷(法律類)解析
- 2025年無損檢測資格證考試磁記憶檢測與評價試卷
- 2025年物業(yè)管理員(中級)職業(yè)技能鑒定考試試題
- 美術(shù)實訓(xùn)室功能設(shè)計方案
- 護理優(yōu)勢??茀R報
- 放射科新技術(shù)介紹
- 銀行職工反詐工作總結(jié)
- 設(shè)備安裝管理培訓(xùn)課件
- 老年人轉(zhuǎn)運照護-輪椅運轉(zhuǎn)
- 國家電網(wǎng)公司供電企業(yè)勞動定員標準
- 7-聊城東制梁場80t龍門吊安拆安全專項方案-八局一-新建鄭州至濟南鐵路(山東段)工程ZJTLSG-2標段
- 中興 ZXNOE 9700 系統(tǒng)介紹
- GB/T 21475-2008造船指示燈顏色
- 有理數(shù)加減混合運算練習(xí)題300道-
評論
0/150
提交評論