




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
烏魯木齊第四中學(xué)7年級數(shù)學(xué)下冊第四章三角形達(dá)標(biāo)測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計20分)1、如圖,直線EF經(jīng)過AC的中點O,交AB于點E,交CD于點F,下列不能使△AOE≌△COF的條件為()A.∠A=∠C B.AB∥CD C.AE=CF D.OE=OF2、如圖,已知∠BAC=∠ABD=90°,AD和BC相交于O.在①AC=BD;②BC=AD;③∠C=∠D;④OA=OB.條件中任選一個,可使△ABC≌△BAD.可選的條件個數(shù)為()A.1 B.2 C.3. D.43、BP是∠ABC的平分線,CP是∠ACB的鄰補角的平分線,∠ABP=20°,∠ACP=50°,則∠P=()A.30° B.40° C.50° D.60°4、如圖,已知為的外角,,,那么的度數(shù)是()A.30° B.40° C.50° D.60°5、如圖,圖形中的的值是()A.50 B.60 C.70 D.806、下列長度的三條線段能組成三角形的是()A.348 B.4410 C.5610 D.56117、已知的三邊長分別為a,b,c,則a,b,c的值可能分別是()A.1,2,3 B.3,4,7C.2,3,4 D.4,5,108、下列長度的三條線段能組成三角形的是()A.2,3,6 B.2,4,7 C.3,3,5 D.3,3,79、定理:三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和.已知:如圖,∠ACD是△ABC的外角.求證:∠ACD=∠A+∠B.證法1:如圖,∵∠A=70°,∠B=63°,且∠ACD=133°(量角器測量所得)又∵133°=70°+63°(計算所得)∴∠ACD=∠A+∠B(等量代換).證法2:如圖,∵∠A+∠B+∠ACB=180°(三角形內(nèi)角和定理),又∵∠ACD+∠ACB=180°(平角定義),∴∠ACD+∠ACB=∠A+∠B+∠ACB(等量代換).∴∠ACD=∠A+∠B(等式性質(zhì)).下列說法正確的是()A.證法1用特殊到一般法證明了該定理B.證法1只要測量夠100個三角形進行驗證,就能證明該定理C.證法2還需證明其他形狀的三角形,該定理的證明才完整D.證法2用嚴(yán)謹(jǐn)?shù)耐评碜C明了該定理10、如圖,E為線段BC上一點,∠ABE=∠AED=∠ECD=90°,AE=ED,BC=20,AB=8,則BE的長度為()A.12 B.10 C.8 D.6第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計20分)1、如圖,在△ABC中,∠ACB=90°,AC=8,BC=10,點P從點A出發(fā)沿線段AC以每秒1個單位長度的速度向終點C運動,點Q從點B出發(fā)沿折線BC﹣CA以每秒3個單位長度的速度向終點A運動,P、Q兩點同時出發(fā).分別過P、Q兩點作PE⊥l于E,QF⊥l于F,當(dāng)△PEC與△QFC全等時,CQ的長為______.2、如圖,一把直尺的一邊緣經(jīng)過直角三角形的直角頂點,交斜邊于點;直尺的另一邊緣分別交、于點、,若,,則___________度.3、在新年聯(lián)歡會上,老師設(shè)計了“你說我畫”的游戲.游戲規(guī)則如下:甲同學(xué)需要根據(jù)乙同學(xué)提供的三個條件畫出形狀和大小都確定的三角形.已知乙同學(xué)說出的前兩個條件是“,”.現(xiàn)僅存下列三個條件:①;②;③.為了甲同學(xué)畫出形狀和大小都確定的,乙同學(xué)可以選擇的條件有:______.(填寫序號,寫出所有正確答案)4、如圖,△ABE≌△ACD,∠A=60°,∠B=20°,則∠DOE的度數(shù)為_____°.5、如圖,△ABC≌△DEF,BE=a,BF=b,則CF=___.6、等腰三角形的一條邊長為4cm,另一條邊長為6cm,則它的周長是________.7、如圖,△PBC的面積為5cm2,BP平分∠ABC,AP⊥BP于點P,則△ABC的面積為_____cm2.8、如圖,已知AB=12m,CA⊥AB于點A,DB⊥AB于點B,且AC=4m,點P從點B向點A運動,每分鐘走1m,點Q從點B向點D運動,每分鐘走2m.若P,Q兩點同時出發(fā),運動_____分鐘后,△CAP與△PQB全等.9、如圖,AB,CD相交于點O,,請你補充一個條件,使得,你補充的條件是______.10、如圖,△ABC中,BD平分∠ABC,AD垂直于BD,△BCD的面積為58,△ADC的面積為30,則△ABD的面積等于______.三、解答題(6小題,每小題10分,共計60分)1、如圖,Rt△ACB中,∠ACB=90°,AC=BC,E點為射線CB上一動點,連結(jié)AE,作AF⊥AE且AF=AE.(1)如圖1,過F點作FD⊥AC交AC于D點,求證:FD=BC;(2)如圖2,連結(jié)BF交AC于G點,若AG=3,CG=1,求證:E點為BC中點.(3)當(dāng)E點在射線CB上,連結(jié)BF與直線AC交子G點,若BC=4,BE=3,則.(直接寫出結(jié)果)2、如圖,在同一平面內(nèi)有四個點A、B、C、D,請按要求完成下列問題.(注:此題作圖不要求寫出畫法和結(jié)論)(1)分別連接AB、AD,作射線AC,作直線BD與射線AC相交于點O;(2)我們?nèi)菀着袛喑鼍€段AB+AD與BD的數(shù)量關(guān)系是,理由是.3、如圖,是的中線,分別過點、作及其延長線的垂線,垂足分別為、.(1)求證:;(2)若的面積為8,的面積為6,求的面積.4、如圖,在長方形ABCD中,AD=3,DC=5,動點M從A點出發(fā)沿線段AD—DC以每秒1個單位長度的速度向終點C運動;動點N同時從C點出發(fā)沿線段CD—DA以每秒3個單位長度的速度向終點A運動.ME⊥PQ于點E,NF⊥PQ于點F,設(shè)運動的時間為秒.(1)在運動過程中當(dāng)M、N兩點相遇時,求t的值.(2)在整個運動過程中,求DM的長.(用含t的代數(shù)式表示)(3)當(dāng)DEM與DFN全等時,請直接寫出所有滿足條件的DN的長.5、如圖,△ABC中,D是邊BC的中點,過點C作CE∥AB,交AD的延長線于點E.求證:AB=CE.6、已知三角形的兩邊長分別是4cm和9cm,如果第三邊長是奇數(shù),求第三邊的長-參考答案-一、單選題1、C【分析】根據(jù)全等三角形的判定逐項判斷即可.【詳解】解:∵直線EF經(jīng)過AC的中點O,∴OA=OC,A、∵OA=OC,∠A=∠C,∠AOE=∠COF,∴△AOE≌△COF(ASA),此選項不符合題意;B、∵AB∥CD,∴∠A=∠C,又∵OA=OC,∠AOE=∠COF,∴△AOE≌△COF(ASA),此選項不符合題意;C、由OA=OC,AE=CF,∠AOE=∠COF,不能證明△AOE≌△COF,符合題意;D、∵OA=OC,∠AOE=∠COF,OE=OF,∴△AOE≌△COF(SAS),此選項不符合題意,故選:C.【點睛】本題考查全等三角形的判定、對頂角相等,熟練掌握全等三角形的判定條件是解答的關(guān)鍵.2、D【分析】先得到∠BAC=∠ABD=90°,若添加AC=BD,則可根據(jù)“SAS”判斷△ABC≌△BAD;若添加BC=AD,則可利用“HL”證明Rt△ABC≌Rt△BAD,若添加∠C=∠D,則可利用“AAS”證明△ABC≌△BAD;若添加OA=OB,可先根據(jù)“ASA”證明△AOC≌△BOD得∠C=∠D,則可利用“AAS”證明△ABC≌△BAD.【詳解】解:在△ABC和△BAD中,∴△ABC≌△BAD故選AC=BD可使△ABC≌△BAD.∵∠BAC=∠ABD=90°,∴△ABC和△BAD均為直角三角形在Rt△ABC和Rt△BAD中,∴Rt△ABC≌Rt△BAD故選BC=AD可使△ABC≌△BAD.在△ABC和△BAD中,∴△ABC≌△BAD故選∠C=∠D可使△ABC≌△BAD.∵OA=OB∴∵∠BAC=∠ABD=90°,∴在△AOC和△BOD中,∴△AOC≌△BOD∴在△ABC和△BAD中,∴△ABC≌△BAD故選OA=OB可使△ABC≌△BAD.∴可選的條件個數(shù)有4個故選:D【點睛】本題考查了全等三角形的判定:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”、“HL”.3、A【分析】根據(jù)角平分線的定義以及一個三角形的外角等于與它不相鄰的兩個內(nèi)角和,可求出∠P的度數(shù).【詳解】∵BP是△ABC中∠ABC的平分線,CP是∠ACB的外角的平分線,∴∠ABP=∠CBP=20°,∠ACP=∠MCP=50°,∵∠PCM是△BCP的外角,∴∠P=∠PCM?∠CBP=50°?20°=30°,故選:A.【點睛】本題考查三角形外角性質(zhì)以及角平分線的定義,解題時注意:一個三角形的外角等于與它不相鄰的兩個內(nèi)角的和.4、B【分析】根據(jù)三角形的外角性質(zhì)解答即可.【詳解】解:∵∠ACD=60°,∠B=20°,∴∠A=∠ACD?∠B=60°?20°=40°,故選:B.【點睛】此題考查三角形的外角性質(zhì),關(guān)鍵是根據(jù)三角形外角性質(zhì)解答.5、B【分析】根據(jù)三角形外角的性質(zhì):三角形一個外角的度數(shù)等于與其不相鄰的兩個內(nèi)角的度數(shù)和進行求解即可.【詳解】解:由題意得:∴,∴,故選B.【點睛】本題主要考查了三角形外角的性質(zhì),解一元一次方程,熟知三角形外角的性質(zhì)是解題的關(guān)鍵.6、C【分析】根據(jù)三角形的任意兩邊之和大于第三邊對各選項分析判斷求解即可.【詳解】解:A.∵3+4<8,∴不能組成三角形,故本選項不符合題意;B.∵4+4<10,∴不能組成三角形,故本選項不符合題意;C.∵5+6>10,∴能組成三角形,故本選項符合題意;D.∵5+6=11,∴不能組成三角形,故本選項不符合題意;故選:C.【點睛】本題考查了三角形的三邊關(guān)系,熟記三角形的任意兩邊之和大于第三邊是解決問題的關(guān)鍵.7、C【分析】三角形的三邊應(yīng)滿足兩邊之和大于第三邊,兩邊之差小于第三邊,據(jù)此求解.【詳解】解:A、1+2=3,不能組成三角形,不符合題意;B、3+4=7,不能組成三角形,不符合題意;C、2+3>4,能組成三角形,符合題意;D、4+5<10,不能組成三角形,不符合題意;故選:C.【點睛】本題考查了三角形的三邊關(guān)系,滿足兩條較小邊的和大于最大邊即可.8、C【分析】根據(jù)三角形的三邊關(guān)系,逐項判斷即可求解.【詳解】解:A、因為,所以不能組成三角形,故本選項不符合題意;B、因為,所以不能組成三角形,故本選項不符合題意;C、因為,所以能組成三角形,故本選項符合題意;D、因為,所以不能組成三角形,故本選項不符合題意;故選:C【點睛】本題主要考查了三角形的三邊關(guān)系,熟練掌握三角形的兩邊之和大于第三邊,兩邊之差小于第三邊是解題的關(guān)鍵.9、D【分析】利用測量的方法只能是驗證,用定理,定義,性質(zhì)結(jié)合嚴(yán)密的邏輯推理推導(dǎo)新的結(jié)論才是證明,再逐一分析各選項即可得到答案.【詳解】解:證法一只是利用特殊值驗證三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和,證法2才是用嚴(yán)謹(jǐn)?shù)耐评碜C明了該定理,故A不符合題意,C不符合題意,D符合題意,證法1測量夠100個三角形進行驗證,也只是驗證,不能證明該定理,故B不符合題意;故選D【點睛】本題考查的是三角形的外角的性質(zhì)的驗證與證明,理解驗證與證明的含義及證明的方法是解本題的關(guān)鍵.10、A【分析】利用角相等和邊相等證明,利用全等三角形的性質(zhì)以及邊的關(guān)系,即可求出BE的長度.【詳解】解:由題意可知:∠ABE=∠AED=∠ECD=90°,,,,在和中,,,,故選:A.【點睛】本題主要是考查了全等三角形的判定和性質(zhì),熟練通過已知條件證明三角形全等,利用全等性質(zhì)及邊的關(guān)系,來求解未知邊的長度,這是解決本題的主要思路.二、填空題1、7或3.5【分析】分兩種情況:(1)當(dāng)P在AC上,Q在BC上時;(2)當(dāng)P在AC上,Q在AC上時,即P、Q重合時;【詳解】解:當(dāng)P在AC上,Q在BC上時,∵∠ACB=90°,∴∠PCE+∠QCF=90°,∵PE⊥l于E,QF⊥l于F.∴∠PEC=∠CFQ=90°,∴∠EPC+∠PCE=90°,∴∠EPC=∠QCF,∵△PEC與△QFC全等,∴此時是△PCE≌△CQF,∴PC=CQ,∴8-t=10-3t,解得t=1,∴CQ=10-3t=7;當(dāng)P在AC上,Q在AC上時,即P、Q重合時,則CQ=PC,由題意得,8-t=3t-10,解得t=4.5,∴CQ=3t-10=3.5,綜上,當(dāng)△PEC與△QFC全等時,滿足條件的CQ的長為7或3.5,故答案為:7或3.5.【點睛】本題主要考查了全等三角形的性質(zhì),根據(jù)題意得出關(guān)于的方程是解題的關(guān)鍵.2、20【分析】利用平行線的性質(zhì)求出∠1,再利用三角形外角的性質(zhì)求出∠DCB即可.【詳解】解:∵EF∥CD,∴,∵∠1是△DCB的外角,∴∠1-∠B=50°-30°=20o,故答案為:20.【點睛】本題考查了平行線的性質(zhì),三角形外角的性質(zhì)等知識,解題的關(guān)鍵是熟練掌握基本知識.3、②【分析】根據(jù)兩邊及其夾角對應(yīng)相等的兩個三角形全等,即可求解.【詳解】解:①若選,是邊邊角,不能得到形狀和大小都確定的;②若選,是邊角邊,能得到形狀和大小都確定的;③若選,是邊邊角,不能得到形狀和大小都確定的;所以乙同學(xué)可以選擇的條件有②.故答案為:②【點睛】本題主要考查了全等三角形的判定,熟練掌握兩邊及其夾角對應(yīng)相等的兩個三角形全等是解題的關(guān)鍵.4、100【分析】直接利用三角形的外角的性質(zhì)得出∠CEO=80°,再利用全等三角形的性質(zhì)得出答案.【詳解】解:∵∠A=60°,∠B=20°,∴∠CEO=80°,∵△ABE≌△ACD,∴∠B=∠C=20°,∴∠DOE=∠C+∠CEO=100°.故答案為:100.【點睛】此題主要考查了全等三角形的性質(zhì)以及三角形的外角的性質(zhì),求出∠CEO=80°是解題關(guān)鍵.5、##【分析】先利用線段和差求EF=BE﹣BF=a-b,根據(jù)全等三角形的性質(zhì)BC=EF,再結(jié)合線段和差求出FC可得答案.【詳解】解:∵BE=,BF=,∴EF=BE﹣BF=,∵△ABC≌△DEF,∴BC=EF=,∴CF=BC﹣BF=,故答案為:.【點睛】本題考查全等三角形的性質(zhì),線段和差,解題的關(guān)鍵是根據(jù)全等三角形的性質(zhì)得出BC=EF.6、16cm或14cm【分析】根據(jù)題意分腰為6cm和底為6cm兩種情況,分別求出即可.【詳解】解:①當(dāng)腰為6cm時,它的周長為6+6+4=16(cm);②當(dāng)?shù)诪?cm時,它的周長為6+4+4=14(cm);故答案為:16cm或14cm.【點睛】本題考查了等腰三角形的性質(zhì)的應(yīng)用,注意:等腰三角形的兩腰相等,注意分類討論.7、10【分析】根據(jù)已知條件證得△ABP≌△EBP,根據(jù)全等三角形的性質(zhì)得到AP=PE,得出S△ABP=S△EBP,S△ACP=S△ECP,推出S△ABC=2S△PBC,代入求出即可.【詳解】解:延長AP交BC于E,∵BP平分∠ABC,∴∠ABP=∠EBP,∵AP⊥BP,∴∠APB=∠EPB=90°,在△ABP和△EBP中,,∴△ABP≌△EBP(ASA),∴AP=PE,∴S△ABP=S△EBP,S△ACP=S△ECP,∴S△ABC=2S陰影=10(cm2),故答案為:10.【點睛】本題考查了全等三角形的性質(zhì)和判定,三角形的面積的應(yīng)用,注意:等底等高的三角形的面積相等.8、4【分析】根據(jù)題意CA⊥AB,DB⊥AB,則,則分或兩種情況討論,根據(jù)路程等于速度乘以時間求得的長,根據(jù)全等列出一元一次方程解方程求解即可【詳解】解:CA⊥AB,DB⊥AB,點P從點B向點A運動,每分鐘走1m,點Q從點B向點D運動,每分鐘走2m,設(shè)運動時間為,且AC=4m,,當(dāng)時則,即,解得當(dāng)時,則,即,解得且不符合題意,故舍去綜上所述即分鐘后,△CAP與△PQB全等.故答案為:【點睛】本題考查了三角形全等的性質(zhì),根據(jù)全等的性質(zhì)列出方程是解題的關(guān)鍵.9、(答案不唯一)【分析】在與中,已經(jīng)有條件:所以補充可以利用證明兩個三角形全等.【詳解】解:在與中,所以補充:故答案為:【點睛】本題考查的是全等三角形的判定,掌握“利用邊邊邊公理證明兩個三角形全等”是解本題的關(guān)鍵.10、28【分析】延長交于,由證明,得出,得出,進而得出,即可得出結(jié)果.【詳解】如圖所示,延長交于,∵平分,,∴,,在和中,,∴,∴,∴,,∴.故答案為:28.【點睛】此題考查全等三角形的判定與性質(zhì),三角形面積的計算,證明三角形全等得出是解題關(guān)鍵.三、解答題1、(1)證明見解析;(2)證明見解析;(3)或【分析】(1)證明△AFD≌△EAC,根據(jù)全等三角形的性質(zhì)得到DF=AC,等量代換證明結(jié)論;(2)作FD⊥AC于D,證明△FDG≌△BCG,得到DG=CG,求出CE,CB的長,得到答案;(3)過F作FD⊥AG的延長線交于點D,根據(jù)全等三角形的性質(zhì)得到CG=GD,AD=CE=7,代入計算即可.【詳解】(1)證明:∵FD⊥AC,∴∠FDA=90°,∴∠DFA+∠DAF=90°,同理,∠CAE+∠DAF=90°,∴∠DFA=∠CAE,在△AFD和△EAC中,,∴△AFD≌△EAC(AAS),∴DF=AC,∵AC=BC,∴FD=BC;(2)作FD⊥AC于D,由(1)得,F(xiàn)D=AC=BC,AD=CE,在△FDG和△BCG中,,∴△FDG≌△BCG(AAS),∴DG=CG=1,∴AD=2,∴CE=2,∵BC=AC=AG+CG=4,∴E點為BC中點;(3)當(dāng)點E在CB的延長線上時,過F作FD⊥AG的延長線交于點D,BC=AC=4,CE=CB+BE=7,由(1)(2)知:△ADF≌△ECA,△GDF≌△GCB,∴CG=GD,AD=CE=7,∴CG=DG=1.5,∴AG=CG+AC=5.5,∴,同理,當(dāng)點E在線段BC上時,AG=AC-CG+=2.5,∴,故答案為:或.【點睛】本題考查的是全等三角形的判定和性質(zhì),掌握全等三角形的判定定理和性質(zhì)定理是解題的關(guān)鍵.2、(1)見解析;(2)AB+AD>BD,在三角形中,兩邊之和大于第三邊.【分析】(1)根據(jù)直線,射線,線段的作圖方法作圖即可;(2)根據(jù)三角形三邊的關(guān)系:兩邊之和大于第三邊進行求解即可.【詳解】解:(1)如圖所示,即為所求;(2)我們?nèi)菀着袛喑鼍€段AB+AD與BD的數(shù)量關(guān)系是:AB+AD>BD,理由是:在三角形中,兩邊之和大于第三邊,故答案為:AB+AD>BD,在三角形中,兩邊之和大于第三邊.【點睛】本題主要考查了三角形三邊的關(guān)系,作直線,射線和線段,解題的關(guān)鍵在于能夠熟練掌握相關(guān)知識進行求解.3、(1)見解析(2)的面積為20.【分析】(1)根據(jù)已知條件得到、,然后利用全等三角形的判定,進行證明即可.(2)分別根據(jù)和的面積,用CF表示AF、DF,通過,得到,,用CF表示出AE的長,最后利用面積公式求解即可.(1)(1)解:由題意可知:是的中線在與中.(2)解:的面積為8,的面積為6.,即,即由(1)可知:,.【點睛】本題主要是考查了全等三角形的判定和性質(zhì),熟練根據(jù)條件證明三角形全等,利用其性質(zhì),證明對應(yīng)邊相等,這是解決本題的關(guān)鍵.4、(1)2;(2)當(dāng)0≤t≤3時,DM=3-t,當(dāng)3<t≤8時,DM=t-3;(3)2或1【分析】(1)根據(jù)題意得:,解得:,即可求解;(2)根據(jù)題意得:當(dāng)0≤t≤3時,AM=t
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 校園食品安全基礎(chǔ)知識培訓(xùn)
- 校園防衛(wèi)安全知識培訓(xùn)課件
- 校園消防知識培訓(xùn)課件主持詞
- 蕪湖工會考試試題及答案
- 出鏡人員安全考試試題及答案
- 防暑安康面試題及答案
- 2025年貴州省中考語文真題(含答案)
- 施工企業(yè)面試題及答案
- 太鐵衛(wèi)生防疫考試試題及答案
- 種族趣味測試題及答案
- 電子醫(yī)保協(xié)議書
- 零碳綠建三星智慧園區(qū)解決方案
- 反洗錢知識競賽題庫反洗錢法知識測試題題庫(題目+答案+解析)
- 服裝生產(chǎn)工藝全流程圖解
- 廠區(qū)高空作業(yè)施工方案
- 建筑行業(yè)財務(wù)試題及答案
- NB/T 11629-2024煤炭行業(yè)物資分類與編碼規(guī)范
- DBJ51-T276-2024 球墨鑄鐵可調(diào)式防沉降檢查井蓋安裝及維護技術(shù)規(guī)程
- 2025-2030中國增強型飛行視覺系統(tǒng)行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略研究報告
- 區(qū)域性物流樞紐項目可行性研究報告
- 能美消防R-21Z火災(zāi)報警控制器使用說明書
評論
0/150
提交評論