




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
滬科版9年級(jí)下冊(cè)期末測(cè)試卷考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿(mǎn)分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計(jì)16分)1、一個(gè)不透明的盒子里裝有a個(gè)除顏色外完全相同的球,其中有6個(gè)白球,每次將球充分?jǐn)噭蚝?,任意摸?個(gè)球記下顏色然后再放回盒子里,通過(guò)如此大量重復(fù)試驗(yàn),發(fā)現(xiàn)摸到白球的頻率穩(wěn)定在0.4左右,則a的值約為()A.10 B.12 C.15 D.182、如圖,在△ABC中,∠CAB=64°,將△ABC在平面內(nèi)繞點(diǎn)A旋轉(zhuǎn)到△AB′C′的位置,使CC′AB,則旋轉(zhuǎn)角的度數(shù)為()A.64° B.52° C.42° D.36°3、等邊三角形、等腰三角形、矩形、菱形中既是軸對(duì)稱(chēng)圖形,又是中心對(duì)稱(chēng)圖形的個(gè)數(shù)是()A.2個(gè) B.3個(gè) C.4個(gè) D.5個(gè)4、下列圖形中,可以看作是中心對(duì)稱(chēng)圖形的是()A. B.C. D.5、“2022年春節(jié)期間,中山市會(huì)下雨”這一事件為()A.必然事件 B.不可能事件 C.確定事件 D.隨機(jī)事件6、如圖,AB為的直徑,,,劣弧BC的長(zhǎng)是劣弧BD長(zhǎng)的2倍,則AC的長(zhǎng)為()A. B. C.3 D.7、如圖,是△ABC的外接圓,已知,則的大小為()A.55° B.60° C.65° D.75°8、下面四個(gè)立體圖形中,從正面看是三角形的是()A. B. C. D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計(jì)14分)1、林業(yè)部門(mén)要考察某種幼樹(shù)在一定條件下的移植成活率,下表是這種幼樹(shù)在移植過(guò)程中的一組數(shù)據(jù):移植的棵數(shù)n10001500250040008000150002000030000成活的棵數(shù)m8651356222035007056131701758026430成活的頻率0.8650.9040.8880.8750.8820.8780.8790.881估計(jì)該種幼樹(shù)在此條件下移植成活的概率為_(kāi)______.2、如圖,把△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)某個(gè)角度α得到,∠A=30°,∠1=70°,則旋轉(zhuǎn)角α的度數(shù)為_(kāi)____.3、如圖,是由繞點(diǎn)O順時(shí)針旋轉(zhuǎn)30°后得到的圖形,若點(diǎn)D恰好落在AB上,且的度數(shù)為100°,則的度數(shù)是______.4、在Rt△ABC中,∠ACB=90°,AC=AB,點(diǎn)E、F分別是邊CA、CB的中點(diǎn),已知點(diǎn)P在線段EF上,聯(lián)結(jié)AP,將線段AP繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)90°得到線段DP,如果點(diǎn)P、D、C在同一直線上,那么tan∠CAP=_______.5、把一個(gè)正六邊形繞其中心旋轉(zhuǎn),至少旋轉(zhuǎn)________度,可以與自身重合.6、《九章算術(shù)》是我國(guó)古代的數(shù)學(xué)名著,書(shū)中有這樣的一個(gè)問(wèn)題:“今有勾八步,股十五步,問(wèn)勾中容圓徑幾何?”.其意思是:“如圖,現(xiàn)有直角三角形,勾(短直角邊)長(zhǎng)為8步,股(長(zhǎng)直角邊)長(zhǎng)為15步,問(wèn)該直角三角形所能容納的最大圓的直徑是多少?”答:該直角三角形所能容納的最大圓的直徑是______步.7、點(diǎn)P為邊長(zhǎng)為2的正方形ABCD內(nèi)一點(diǎn),是等邊三角形,點(diǎn)M為BC中點(diǎn),N是線段BP上一動(dòng)點(diǎn),將線段MN繞點(diǎn)M順時(shí)針旋轉(zhuǎn)60°得到線段MQ,連接AQ、PQ,則的最小值為_(kāi)_____.三、解答題(7小題,每小題0分,共計(jì)0分)1、正方形綠化場(chǎng)地?cái)M種植兩種不同顏色(用陰影部分和非陰影部分表示)的花卉,要求種植的花卉能組成軸對(duì)稱(chēng)或中心對(duì)稱(chēng)圖案,下面是三種不同設(shè)計(jì)方案中的一部分.(1)請(qǐng)把圖①、圖②補(bǔ)成既是軸對(duì)稱(chēng)圖形,又是中心對(duì)稱(chēng)圖形,并畫(huà)出一條對(duì)稱(chēng)軸;(2)把圖③補(bǔ)成只是中心對(duì)稱(chēng)圖形,并把中心標(biāo)上字母P.2、如圖,ABC是⊙O的內(nèi)接三角形,,,連接AO并延長(zhǎng)交⊙O于點(diǎn)D,過(guò)點(diǎn)C作⊙O的切線,與BA的延長(zhǎng)線相交于點(diǎn)E.(1)求證:AD∥EC;(2)若AD=6,求線段AE的長(zhǎng).3、在所給的的正方形網(wǎng)格中,按下列要求操作:(單位正方形的邊長(zhǎng)為1)(1)請(qǐng)?jiān)诘诙笙迌?nèi)的格點(diǎn)上找一點(diǎn),使是以為底的等腰三角形,且腰長(zhǎng)是無(wú)理數(shù),求點(diǎn)的坐標(biāo);(2)畫(huà)出以點(diǎn)為中心,旋轉(zhuǎn)180°后的,并求的面積.4、在△ABC與△DEF中,∠BAC=∠EDF=90°,且AB=AC,DE=DF.(1)如圖1,若點(diǎn)D與A重合,AC與EF交于P,且∠CAE=30°,CE,求EP的長(zhǎng);(2)如圖2,若點(diǎn)D與C重合,EF與BC交于點(diǎn)M,且BM=CM,連接AE,且∠CAE=∠MCE,求證:AE+MF=CE;(3)如圖3,若點(diǎn)D與A重合,連接BE,且∠ABE∠ABC,連接BF,CE,當(dāng)BF+CE最小時(shí),直接出的值.5、如圖,在方格紙中,已知頂點(diǎn)在格點(diǎn)處的△ABC,請(qǐng)畫(huà)出將△ABC繞點(diǎn)C旋轉(zhuǎn)180°得到的△A'B'C'.(需寫(xiě)出△A'B'C'各頂點(diǎn)的坐標(biāo)).6、在正方形ABCD中,過(guò)點(diǎn)B作直線l,點(diǎn)E在直線l上,連接CE,DE,其中,過(guò)點(diǎn)C作于點(diǎn)F,交直線l于點(diǎn)H.(1)當(dāng)直線l在如圖①的位置時(shí)①請(qǐng)直接寫(xiě)出與之間的數(shù)量關(guān)系______.②請(qǐng)直接寫(xiě)出線段BH,EH,CH之間的數(shù)量關(guān)系______.(2)當(dāng)直線l在如圖②的位置時(shí),請(qǐng)寫(xiě)出線段BH,EH,CH之間的數(shù)量關(guān)系并證明;(3)已知,在直線l旋轉(zhuǎn)過(guò)程中當(dāng)時(shí),請(qǐng)直接寫(xiě)出EH的長(zhǎng).7、為了引導(dǎo)青少年學(xué)黨史,某中學(xué)舉行了“獻(xiàn)禮建黨百年”黨史知識(shí)競(jìng)賽活動(dòng),將成績(jī)劃分為四個(gè)等級(jí):A(優(yōu)秀)、B(優(yōu)良)、C(合格)、D(不合格).小李隨機(jī)調(diào)查了部分同學(xué)的競(jìng)賽成績(jī),繪制成了如下統(tǒng)計(jì)圖(部分信息未給出):(1)小李共抽取了名學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì)分析,扇形統(tǒng)計(jì)圖中“優(yōu)秀”等級(jí)對(duì)應(yīng)的扇形圓心角度數(shù)為,請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;(2)該校共有2000名學(xué)生,請(qǐng)你估計(jì)該校競(jìng)賽成績(jī)“優(yōu)秀”的學(xué)生人數(shù);(3)已知調(diào)查對(duì)象中只有兩位女生競(jìng)賽成績(jī)不合格,小李準(zhǔn)備隨機(jī)回訪兩位競(jìng)賽成績(jī)不合格的同學(xué),請(qǐng)用樹(shù)狀圖或列表法求出恰好回訪到一男一女的概率.-參考答案-一、單選題1、C【分析】在同樣條件下,大量反復(fù)試驗(yàn)時(shí),隨機(jī)事件發(fā)生的頻率逐漸穩(wěn)定在概率附近,可以從摸到白球的頻率穩(wěn)定在0.4左右得到比例關(guān)系,列出方程求解即可.【詳解】解:由題意可得,,解得,a=15.經(jīng)檢驗(yàn),a=15是原方程的解故選:C.【點(diǎn)睛】本題利用了用大量試驗(yàn)得到的頻率可以估計(jì)事件的概率.關(guān)鍵是根據(jù)白球的頻率得到相應(yīng)的等量關(guān)系.2、B【分析】先根據(jù)平行線的性質(zhì)得∠ACC′=∠CAB=64°,再根據(jù)旋轉(zhuǎn)的性質(zhì)得∠CAC′等于旋轉(zhuǎn)角,AC=AC′,則利用等腰三角形的性質(zhì)得∠ACC′=∠AC′C=64°,然后根據(jù)三角形內(nèi)角和定理可計(jì)算出∠CAC′的度數(shù),從而得到旋轉(zhuǎn)角的度數(shù).【詳解】解:∵CC′∥AB,∴∠ACC′=∠CAB=64°∵△ABC在平面內(nèi)繞點(diǎn)A旋轉(zhuǎn)到△AB′C′的位置,∴∠CAC′等于旋轉(zhuǎn)角,AC=AC′,∴∠ACC′=∠AC′C=64°,∴∠CAC′=180°-∠ACC′-∠AC′C=180°-2×64°=52°,∴旋轉(zhuǎn)角為52°.故選:B.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì):對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.3、A【分析】根據(jù)軸對(duì)稱(chēng)圖形與中心對(duì)稱(chēng)圖形的概念進(jìn)行判斷.【詳解】解:矩形,菱形既是軸對(duì)稱(chēng)圖形,也是中心對(duì)稱(chēng)圖形,符合題意;等邊三角形、等腰三角形是軸對(duì)稱(chēng)圖形,不是中心對(duì)稱(chēng)圖形,不符合題意;共2個(gè)既是軸對(duì)稱(chēng)圖形又是中心對(duì)稱(chēng)圖形.故選:A.【點(diǎn)睛】此題主要考查了中心對(duì)稱(chēng)圖形與軸對(duì)稱(chēng)圖形的概念.(1)如果一個(gè)圖形沿著一條直線對(duì)折后兩部分完全重合,這樣的圖形叫做軸對(duì)稱(chēng)圖形,這條直線叫做對(duì)稱(chēng)軸.(2)如果一個(gè)圖形繞某一點(diǎn)旋轉(zhuǎn)180°后能夠與自身重合,那么這個(gè)圖形就叫做中心對(duì)稱(chēng)圖形,這個(gè)點(diǎn)叫做對(duì)稱(chēng)中心.4、C【分析】根據(jù)中心對(duì)稱(chēng)圖形的定義進(jìn)行逐一判斷即可.【詳解】解:A、不是中心對(duì)稱(chēng)圖形,故此選項(xiàng)不符合題意;B、不是中心對(duì)稱(chēng)圖形,故此選項(xiàng)不符合題意;C、是中心對(duì)稱(chēng)圖形,故此選項(xiàng)符合題意;D、不是中心對(duì)稱(chēng)圖形,故此選項(xiàng)不符合題意;故選C.【點(diǎn)睛】本題主要考查了中心對(duì)稱(chēng)圖形的識(shí)別,解題的關(guān)鍵在于能夠熟練掌握中心對(duì)稱(chēng)圖形的定義:把一個(gè)圖形繞著某一個(gè)點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來(lái)的圖形重合,那么這個(gè)圖形叫做中心對(duì)稱(chēng)圖形,這個(gè)點(diǎn)就是它的對(duì)稱(chēng)中心.5、D【分析】根據(jù)事件發(fā)生的可能性大小判斷相應(yīng)事件的類(lèi)型即可.【詳解】解:“2022年年春節(jié)期間,中山市會(huì)下雨”這一事件為隨機(jī)事件,故選:D.【點(diǎn)睛】本題考查的是必然事件、不可能事件、隨機(jī)事件的概念,必然事件指在一定條件下,一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件,不確定事件即隨機(jī)事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.6、D【分析】連接,根據(jù)求得半徑,進(jìn)而根據(jù)的長(zhǎng),勾股定理的逆定理證明,根據(jù)弧長(zhǎng)關(guān)系可得,即可證明是等邊三角形,求得,進(jìn)而由勾股定理即可求得【詳解】如圖,連接,,是直角三角形,且是等邊三角形是直徑,故選D【點(diǎn)睛】本題考查了弧與圓心角的關(guān)系,直徑所對(duì)的圓周角是90度,勾股定理,等邊三角形的判定,求得的長(zhǎng)是解題的關(guān)鍵.7、C【分析】由OA=OB,,求出∠AOB=130°,根據(jù)圓周角定理求出的度數(shù).【詳解】解:∵OA=OB,,∴∠BAO=.∴∠AOB=130°.∴=∠AOB=65°.故選:C.【點(diǎn)睛】此題考查了同圓中半徑相等的性質(zhì),圓周角定理:同弧所對(duì)的圓周角等于圓心角的一半.8、C【分析】找到從正面看所得到的圖形為三角形即可.【詳解】解:A、主視圖為正方形,不符合題意;B、主視圖為圓,不符合題意;C、主視圖為三角形,符合題意;D、主視圖為長(zhǎng)方形,不符合題意.故選:C.【點(diǎn)睛】本題考查了三視圖的知識(shí),主視圖是從物體的正面看得到的視圖.二、填空題1、0.880【分析】大量重復(fù)實(shí)驗(yàn)的情況下,當(dāng)頻率呈現(xiàn)一定的穩(wěn)定性時(shí),可以用這一穩(wěn)定值估計(jì)事件發(fā)生的概率,據(jù)此可解.【詳解】解:大量重復(fù)實(shí)驗(yàn)的情況下,當(dāng)頻率呈現(xiàn)一定的穩(wěn)定性時(shí),可以用這一穩(wěn)定值估計(jì)事件發(fā)生的概率,從上表可以看出,頻率成活的頻率,即穩(wěn)定于0.880左右,∴估計(jì)這種幼樹(shù)移植成活率的概率約為0.88.故答案為:0.880.【點(diǎn)睛】此題主要考查了利用頻率估計(jì)概率,大量反復(fù)試驗(yàn)下頻率穩(wěn)定值即概率.2、##【分析】由旋轉(zhuǎn)的性質(zhì)可得再利用三角形的外角的性質(zhì)求解從而可得答案.【詳解】解:把△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)某個(gè)角度α得到,∠A=30°,∠1=70°,故答案為:【點(diǎn)睛】本題考查的是旋轉(zhuǎn)的性質(zhì),三角形的外角的性質(zhì),利用性質(zhì)的性質(zhì)求解是解本題的關(guān)鍵.3、35°【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)可得∠AOD=∠BOC=30°,AO=DO,再求出∠BOD,∠ADO,然后利用三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和列式計(jì)算即可得解.【詳解】解:∵△COD是△AOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)30°后得到的圖形,∴∠AOD=∠BOC=30°,AO=DO,∵∠AOC=100°,∴∠BOD=100°?30°×2=40°,∠ADO=∠A=(180°?∠AOD)=(180°?30°)=75°,由三角形的外角性質(zhì)得,∠B=∠ADO?∠BOD=75°?40°=35°.故答案為:35°.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì),等腰三角形的性質(zhì),三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和的性質(zhì),熟記各性質(zhì)并準(zhǔn)確識(shí)圖是解題的關(guān)鍵.4、【分析】①如圖1所示,由題意知,EF為△ABC的中位線,∠EFC=∠ABC=45°,∠PAO=45°,∠PAO=∠OFH,∠POA=∠FOH,∠H=∠APO,在Rt△APC中,EA=EC,有PE=EA=EC,∠EPA=∠EAP=∠BAH,∠H=∠BAH,BH=BA,∠ADP=∠BDC=45°,∠ADB=90°,知BD⊥AH,∠DBA=∠DBC=22.5°,∠ADB=∠ACB=90°,有A,D,C,B四點(diǎn)共圓,∠DAC=∠DBC=22.5°,∠DCA=∠ABD=22.5°,∠DAC=∠DCA=22.5°,知DA=DC,設(shè)AD=a,則DC=AD=a,PD=a=AP,tan∠CAP==計(jì)算求解即可;②如圖2所示,當(dāng)點(diǎn)P在線段CD上時(shí),同理可證:DA=DC,設(shè)AD=a,則CD=AD=a,PD=,PC=a﹣a,tan∠CAP=,計(jì)算求解即可,而情形2滿(mǎn)足要求.【詳解】解:①如圖1,當(dāng)點(diǎn)D在線段PC上時(shí),延長(zhǎng)AD交BC的延長(zhǎng)線于H.∵CE=EA,CF=FB,∴EF∥AB,∴∠EFC=∠ABC=45°,∵∠PAO=45°,∴∠PAO=∠OFH,∵∠POA=∠FOH,∴∠H=∠APO,∵∠APC=90°,EA=EC,∴PE=EA=EC,∴∠EPA=∠EAP=∠BAH,∴∠H=∠BAH,∴BH=BA,∵∠ADP=∠BDC=45°,∴∠ADB=90°,∴BD⊥AH,∴∠DBA=∠DBC=22.5°,∵∠ADB=∠ACB=90°,∴A,D,C,B四點(diǎn)共圓,∠DAC=∠DBC=22.5°,∠DCA=∠ABD=22.5°,∴∠DAC=∠DCA=22.5°,∴DA=DC,設(shè)AD=a,則DC=AD=a,PD=a=AP,∴tan∠CAP===+1;②如圖2中,當(dāng)點(diǎn)P在線段CD上時(shí),同理可證:DA=DC,設(shè)AD=a,則CD=AD=a,PD=∴PC=a﹣a,∴tan∠CAP===,∵點(diǎn)P在線段EF上,∴情形1不滿(mǎn)足條件,情形2滿(mǎn)足條件;故答案為:﹣1.【點(diǎn)睛】本題考查了中位線,等腰三角形的判定與性質(zhì),旋轉(zhuǎn),直角三角形斜邊上中線的性質(zhì),正切函數(shù)等知識(shí)點(diǎn).解題的關(guān)鍵在于表示出正切中線段的長(zhǎng)度.5、60【分析】正六邊形連接各個(gè)頂點(diǎn)和中心,這些連線會(huì)將360°分成6分,每份60°因此至少旋轉(zhuǎn)60°,正六邊形就能與自身重合.【詳解】360°÷6=60°故答案為:60【點(diǎn)睛】本題考查中心對(duì)稱(chēng)圖形的性質(zhì),根據(jù)圖形特征找到最少旋轉(zhuǎn)度數(shù)是本題關(guān)鍵.6、6【分析】依題意,直角三角形性質(zhì),結(jié)合題意能夠容納的最大為內(nèi)切圓,結(jié)合內(nèi)切圓半徑,利用等積法求解即可;【詳解】設(shè)直角三角形中能容納最大圓的半徑為:;依據(jù)直角三角形的性質(zhì):可得斜邊長(zhǎng)為:依據(jù)直角三角形面積公式:,即為;內(nèi)切圓半徑面積公式:,即為;所以,可得:,所以直徑為:;故填:6;【點(diǎn)睛】本題主要考查直角三角形及其內(nèi)切圓的性質(zhì),重點(diǎn)在理解題意和利用內(nèi)切圓半徑求解面積;7、【分析】如圖,取的中點(diǎn),連接,,,證明,進(jìn)而證明在上運(yùn)動(dòng),且垂直平分,根據(jù),求得最值,根據(jù)正方形的性質(zhì)和勾股定理求得的長(zhǎng)即可求得的最小值.【詳解】解:如圖,取的中點(diǎn),連接,,,將線段MN繞點(diǎn)M順時(shí)針旋轉(zhuǎn)60°得到線段MQ,,是等邊三角形,,是的中點(diǎn),是的中點(diǎn)是等邊三角形,即在和中,又是的中點(diǎn)點(diǎn)在上是的中點(diǎn),是等邊三角,又垂直平分即的最小值為四邊形是正方形,且的最小值為故答案為:【點(diǎn)睛】本題考查了正方形的性質(zhì)等邊三角形的性質(zhì),旋轉(zhuǎn)的性質(zhì),全等三角形的性質(zhì)與判定,勾股定理,垂直平分線的性質(zhì)與判定,根據(jù)以上知識(shí)轉(zhuǎn)化線段是解題的關(guān)鍵.三、解答題1、(1)見(jiàn)解析(2)見(jiàn)解析【分析】(1)根據(jù)軸對(duì)稱(chēng)圖形,中心對(duì)稱(chēng)圖形的性質(zhì)畫(huà)出圖形即可.(2)根據(jù)中心對(duì)稱(chēng)圖形的定義畫(huà)出圖形即可.(1)解:圖形如圖①②所示.(2)解:圖形如圖③所示,點(diǎn)P即為所求作.【點(diǎn)睛】本題考查利用旋轉(zhuǎn)變換設(shè)計(jì)圖案,正方形的性質(zhì),軸對(duì)稱(chēng)圖形,中心對(duì)稱(chēng)圖形等知識(shí),解題的關(guān)鍵是理解題意,靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題.2、(1)見(jiàn)解析;(2)6【分析】(1)連接OC,根據(jù)CE是⊙O的切線,可得∠OCE=,根據(jù)圓周角定理,可得∠AOC=,從而得到∠AOC+∠OCE=,即可求證;(2)過(guò)點(diǎn)A作AF⊥EC交EC于點(diǎn)F,由∠AOC=,OA=OC,可得∠OAC=,從而得到∠BAD=,再由AD∥EC,可得,然后證得四邊形OAFC是正方形,可得,從而得到AF=3,再由直角三角形的性質(zhì),即可求解.【詳解】證明:(1)連接OC,∵CE是⊙O的切線,∴∠OCE=,∵∠ABC=,∴∠AOC=2∠ABC=,∵∠AOC+∠OCE=,∴AD∥EC;(2)解:過(guò)點(diǎn)A作AF⊥EC交EC于點(diǎn)F,∵∠AOC=,OA=OC,∴∠OAC=,∵∠BAC=,∴∠BAD=,∵AD∥EC,∴,∵∠OCE=,∠AOC=,∠AFC=90°,∴四邊形OAFC是矩形,∵OA=OC,∴四邊形OAFC是正方形,∴,∵,∴,在Rt△AFE中,,∴AE=2AF=6.【點(diǎn)睛】本題主要考查了圓周角定理,切線的性質(zhì),直角三角形的性質(zhì),正方形的判定和性質(zhì),熟練掌握相關(guān)知識(shí)點(diǎn)是解題的關(guān)鍵.3、(1)圖見(jiàn)解析,點(diǎn)的坐標(biāo)為(2)圖見(jiàn)解析,4【分析】(1)根據(jù)題意,腰長(zhǎng)為無(wú)理數(shù)且為以AB為底的等腰三角形,只在第二象限,作圖即可確定點(diǎn),然后寫(xiě)出點(diǎn)的坐標(biāo)即可;(2)現(xiàn)確定旋轉(zhuǎn)后的點(diǎn),然后依次連接即可,根據(jù)旋轉(zhuǎn)前后三角形的面積不變,利用表格及勾股定理確定三角形的底和高,即可得出面積.(1)解:如圖所示,點(diǎn)的坐標(biāo)為;,為無(wú)理數(shù),符合題意;(2)如圖所示:點(diǎn)的坐標(biāo),點(diǎn)的坐標(biāo)為,∵旋轉(zhuǎn)180°后的的面積等于的面積,,∴,∴的面積為4.【點(diǎn)睛】題目主要考查等腰三角形的定義及旋轉(zhuǎn)圖形的作法,理解題意,熟練掌握在坐標(biāo)系中旋轉(zhuǎn)圖形的作法是解題關(guān)鍵.4、(1);(2)證明見(jiàn)詳解;(3).【分析】(1)過(guò)點(diǎn)P作PG⊥EC于G,根據(jù)等腰直角三角形得出∠B=∠C=45°,根據(jù)PG⊥EC,可取∠GPC=90°-∠C=45°,可得PG=GC,根據(jù)三角形外角性質(zhì)∠EPC=75°,可求∠EPG=30°,根據(jù)30°直角三角形性質(zhì)得出EP=2EG,根據(jù)勾股定理根據(jù)EC=EG+GC=EG+,可求EG=即可;(2)連結(jié)AE,在CE上截取EJ=AE,連結(jié)AJ,根據(jù)∠MAH=45°=∠HEC,可得點(diǎn)A、M、C、E四點(diǎn)共圓,得出∠AEM=∠ACM=45°=∠HEC,∠AME=∠ACE,可得△AEJ為等腰直角三角形,根據(jù)根據(jù)勾股定理AJ=,得出∠CAE=∠MCE,可證∠JAC=∠JCA,可得AJ=JC=,先證△CHM∽△ECM,再證△AEM≌△HEC(AAS),得出EM=EC,再證△AME≌△MCF(AAS),得出AE=MF即可;(3)分兩種情況,當(dāng)BE在∠ABC的平分線上時(shí),與BE在△ABC外部時(shí),當(dāng)BE在∠ABC的平分線上時(shí),作∠ABC的平分線交AC于O,將△AEC逆時(shí)針旋轉(zhuǎn)90°得到△AFC′,過(guò)點(diǎn)O作OP⊥BC于P,則點(diǎn)E在BO上,有∠ABE=∠ABC,先證B、A、C′三點(diǎn)共線,根據(jù)兩點(diǎn)之交線段最短可得BF+CE=BF+C′F≥BC′,當(dāng)點(diǎn)F在BC′上時(shí),BF+CE最短=BC′,此時(shí)點(diǎn)E在AC上與點(diǎn)O重合,然后利用勾股定理EC=,BF=AB+AF=AC+AF=(1+)AF+AF=(2+)AF在Rt△ABE中,根據(jù)勾股定理,當(dāng)BE在△ABC外部時(shí),∠EBA=,將△EAC逆時(shí)針旋轉(zhuǎn)90°得到△FAC′,先證B、A、C′三點(diǎn)共線,根據(jù)兩點(diǎn)之間線段最短可得BF+CE=BF+FC′≥BC′,當(dāng)點(diǎn)F在BC′上時(shí),BF+CE最短=BC′,再證EF=BF,然后根據(jù)勾股定理BF=CE=AE+AC=AF+AB=在Rt△EAB中,根據(jù)勾股定理即可.【詳解】解:(1)過(guò)點(diǎn)P作PG⊥EC于G,∵∠BAC=90°,AB=AC,∴∠B=∠C=45°,∵PG⊥EC,∴∠GPC=90°-∠C=45°,∴PG=GC,∵∠EAC=30°,∠EDF=90°,DE=DF,∴∠DEF=∠F=45°,∴∠EPC=∠AEF+∠EAC=30°+45°=75°,∴∠EPG=∠EPC-∠GPC=75°-45°=30°,∴EP=2EG,在Rt△EPG中,根據(jù)勾股定理∴GC=PG=∴EC=EG+GC=EG+,∴EG=,∴EP=2EG=;(2)連結(jié)AE,在CE上截取EJ=AE,連結(jié)AJ,∵BM=CM,AB=AC,∠BAC=90°,∴AM⊥BC,AM=BM=CM,∴∠MAH=45°=∠HEC,∴點(diǎn)A、M、C、E四點(diǎn)共圓,∴∠AEM=∠ACM=45°=∠HEC,∠AME=∠ACE,∴∠AEJ=∠AEM+∠HEC=45°+45°=90°,∵AE=JE,∴∠EAJ=∠EJA=45°,在Rt△AEJ中,根據(jù)勾股定理AJ=,∵∠CAE=∠MCE,∴∠JAC+45°=∠JCA+45°,∴∠JAC=∠JCA,∴AJ=JC=,∵∠HCM=∠CEM=45°,∠HMC=∠CME,∴△CHM∽△ECM,∴∠MHC=∠MCE,∵∠EHA=∠MHC=∠MCE=∠EAH∴AE=HE,在△AEM和△HEC中,,∴△AEM≌△HEC(AAS),∴EM=EC,∴∠EMC=∠ECM,∵∠AME+∠EMC=∠ECM+∠MCF=90°,∴∠AME=∠MCF,在△AME和△MCF中,∴△AME≌△MCF(AAS),∴AE=MF,∴CE=EJ+JC=MF+AE;(3)分兩種情況,當(dāng)BE在∠ABC的平分線上時(shí),與BE在△ABC外部時(shí),當(dāng)當(dāng)BE在∠ABC的平分線上時(shí),作∠ABC的平分線交AC于O,將△AEC逆時(shí)針旋轉(zhuǎn)90°得到△AFC′,過(guò)點(diǎn)O作OP⊥BC于P,則點(diǎn)E在BO上,有∠ABE=∠ABC,∵△AEC≌△AFC′,∴∠CAE=∠C′AF,∵∠BAC′=∠BAC+∠OAC′=∠BAC+∠FAC′+∠OAF=∠BAC+∠EAC+∠OAF=∠BAC+∠EAF=180°,∴B、A、C′三點(diǎn)共線,∴BF+CE=BF+C′F≥BC′,當(dāng)點(diǎn)F在BC′上時(shí),BF+CE最短=BC′,此時(shí)點(diǎn)E在AC上與點(diǎn)O重合,∵BO為∠ABC的平分線,OA⊥AB,OP⊥BC,∴OP=AO=AF,∵AB=AC,∠BAC=90°,∴∠ABC=∠C=45°,∴∠PEC=180°-∠EPC-∠C=45°,∴PC=EP=AF,∴EC=,∴AC=AE+EC=AF+=(1+)AF,∴BF=AB+AF=AC+AF=(1+)AF+AF=(2+)AF,在Rt△ABE中,根據(jù)勾股定理,∴;當(dāng)BE在△ABC外部時(shí),∠EBA=,將△EAC逆時(shí)針旋轉(zhuǎn)90°得到△FAC′,則△EAC≌△FAC′,∴AC′=AC,EC=FC′,∠EAC=∠FAC′,∵∠FEB+∠EAC=360°-∠EAF-∠BAC=360°-90°-90°=180°,∴∠FAB+∠FAC′=∠FAB+∠EAC=180°,∴B、A、C′三點(diǎn)共線,∴BF+CE=BF+FC′≥BC′,∴點(diǎn)F在BC′上時(shí),BF+CE最短=BC′,∵∠EBA=,∠EFA=45°,∴∠EFA=∠EBA+∠BEF=45°,∴∠BEF=45°-∠EBA=45°-22.5°=22.5°,∴EF=BF,在Rt△EAF中,,∴BF=,∴AB=BF+AF=+AF=,∴CE=AE+AC=AF+AB=,在Rt△EAB中,根據(jù)勾股定理,∴.綜合.【點(diǎn)睛】本題考查等腰直角三角形性質(zhì),三角形外角性質(zhì),30°直角三角形性質(zhì),勾股定理,三角形全等判定與性質(zhì),四點(diǎn)共圓,同弧所對(duì)圓周角性質(zhì),三角形相似判定與性質(zhì),圖形旋轉(zhuǎn)性質(zhì),最短路徑問(wèn)題,角平分線性質(zhì),分類(lèi)討論思想,本題難度大,應(yīng)用知識(shí)多,是中考?jí)狠S題,利用輔助線作出正確圖形是解題關(guān)鍵.5、A'(-1,-3),B'(1,-1),C'(-2,0),畫(huà)圖見(jiàn)解析.【分析】先畫(huà)出點(diǎn)A,B關(guān)于點(diǎn)C中心對(duì)稱(chēng)的點(diǎn)A',B',再連接A',B',C即可解題.【詳解】解:A關(guān)于點(diǎn)C中心對(duì)稱(chēng)的點(diǎn)A'(-1,-3),B關(guān)于點(diǎn)C中心對(duì)稱(chēng)的點(diǎn)B'(1,-1),C關(guān)于點(diǎn)C中心對(duì)稱(chēng)的點(diǎn)C'(-2,0),如圖,△A'B'C'即為所求作圖形.【點(diǎn)睛】本題考查中心對(duì)稱(chēng)圖形,是基礎(chǔ)考點(diǎn),掌握相關(guān)知識(shí)是解題關(guān)鍵.6、(1)①;②;(2);證明見(jiàn)解析;(3)或.【分析】(1)①,根據(jù)CE=BC,四邊形ABCD為正方形,可得BC=CD=CE,根據(jù)CF⊥DE,得出CF平分∠ECD即可;②,過(guò)點(diǎn)C作CG⊥BE于G,根據(jù)BC=EC,得出∠ECG=∠BCG=,根據(jù)∠ECH=∠HCD=,可得CG=HG,根據(jù)勾股定理在Rt△GHC中,,根據(jù)GE=,得出即可;(2),過(guò)點(diǎn)C作交BE于點(diǎn)M,得出,先證得出,可證是等腰直角三角形,可得即可;(3)或,根據(jù),分兩種情況,當(dāng)∠ABE=90°-15°=75°時(shí),BC=CE,先證△CDE為等邊三角形,可求∠FEH=∠DEC=∠CEB=60°-15°=45°,根據(jù)CF⊥DE,得出DF=EF=1,∠FHE=180°-∠HFE-∠FEH=45°,根據(jù)勾股定理HE=,當(dāng)∠ABE=90°+15°=105°,可得BC=CE得出∠CBE=∠CEB=15°,可求∠FCE=,∠FEC=180°-∠CFE-∠FCE=30°,根據(jù)30°直角三角形先證得出CF=,根據(jù)勾股定理EF=,再證FH=FE,得出EH=即可.【詳解】解:(1)①∵CE=BC,四邊形ABCD為正方形,∴BC=CD=CE,∵CF⊥DE,∴CF平分∠ECD,∴∠ECH=∠HCD,故答案為:∠ECH=∠HCD;②,過(guò)點(diǎn)C作CG⊥BE于G,∵BC=EC,∴∠ECG=∠BCG=,∵∠ECH=∠HCD=,∴∠GCH=∠ECG+∠ECF=+,∴∠GHC=180°-∠HGC+∠GCH=180°-90°-45°=45°,∴CG=HG,在Rt△GHC中,∴,∵GE=,∴GH=GE+EH=,∴,∴
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 醫(yī)共體考察匯報(bào)
- 五年級(jí)數(shù)學(xué)(小數(shù)除法)計(jì)算題專(zhuān)項(xiàng)練習(xí)及答案
- 醫(yī)院護(hù)理部培訓(xùn)體系構(gòu)建與實(shí)施
- 耳鼻喉科主要常見(jiàn)病種診療指南匯編
- (2025年標(biāo)準(zhǔn))妻子簽署協(xié)議書(shū)
- (2025年標(biāo)準(zhǔn))聘用醫(yī)師協(xié)議書(shū)
- (2025年標(biāo)準(zhǔn))自動(dòng)劃轉(zhuǎn)協(xié)議書(shū)
- (2025年標(biāo)準(zhǔn))收購(gòu)意向協(xié)議書(shū)
- 社區(qū)農(nóng)田托管協(xié)議與實(shí)施方案
- 小學(xué)英語(yǔ)時(shí)態(tài)知識(shí)總結(jié)與訓(xùn)練
- 公司工程施工與監(jiān)管制度
- 2023-2024學(xué)年北京牛欄山一中高一分班考數(shù)學(xué)試題及答案
- 特立帕肽治療骨質(zhì)疏松性骨折中國(guó)專(zhuān)家共識(shí)(2024版)解讀
- 2024米面油采購(gòu)合同范本
- DL∕T 2553-2022 電力接地系統(tǒng)土壤電阻率、接地阻抗和地表電位測(cè)量技術(shù)導(dǎo)則
- DL∕T 1344-2014 干擾性用戶(hù)接入電力系統(tǒng)技術(shù)規(guī)范
- 二手車(chē)交易試駕協(xié)議
- CBT3795-96船舶上排、下水氣囊
- GA 2094-2023公安機(jī)關(guān)警務(wù)輔助人員工作證卡套技術(shù)規(guī)范
- 早餐配送方案
- 槲皮素的提取課件
評(píng)論
0/150
提交評(píng)論