




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
京改版數(shù)學9年級上冊期末試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題26分)一、單選題(6小題,每小題2分,共計12分)1、對于函數(shù)的圖象,下列說法不正確的是(
)A.開口向下 B.對稱軸是直線C.最大值為 D.與軸不相交2、如圖,AD//BC,∠D=90°,AD=3,BC=4,DC=6,若在邊DC上有點P,使△PAD與△PBC相似,則這樣的點P有(
)A.1個 B.2個 C.3個 D.4個3、如圖,在△ABC中,∠ABC=90°,tan∠BAC=,AD=2,BD=4,連接CD,則CD長的最大值是(
)A. B. C. D.2+24、如圖,AB是半圓的直徑,點D是弧AC的中點,∠ABC=50°,則∠BCD=()A.105° B.110° C.115° D.120°5、若y=(m+1)是二次函數(shù),則m=
(
)A.-1 B.7 C.-1或7 D.以上都不對6、如圖,在中,,,將繞點C順時針旋轉(zhuǎn)得到,點在上,交于F,則圖中與相似的三角形有(不再添加其他線段)(
)A.1個 B.2個 C.3個 D.4個二、多選題(7小題,每小題2分,共計14分)1、已知蓄電池的電壓為定值,使用蓄電池時,電流I(單位:A)與電阻R(單位:Ω)是反比例函數(shù)關(guān)系,它的圖象如圖所示.下列說法正確的是(
)A.函數(shù)解析式為I= B.當R=9Ω時,I=4AC.蓄電池的電壓是13V D.當I≤10A時,R≥3.6Ω2、如圖,在2×3的方格中,畫有格點△ABC,下列選項的方格中所畫格點三角形(陰影部分)與△ABC不相似的是()A. B. C. D.3、若二次函數(shù)(a是不為0的常數(shù))的圖象與x軸交于A、B兩點.則以下結(jié)論正確的有(
)A.B.當時,y隨x的增大而增大C.無論a取任何不為0的數(shù),該函數(shù)的圖象必經(jīng)過定點D.若線段AB上有且只有5個橫坐標為整數(shù)的點,則a的取值范圍是4、如圖,在正方形ABCD中,E是BC的中點,F(xiàn)是CD上一點,且,下列結(jié)論:①∠BAE=30°,②△ABE∽△AEF,③AE⊥EF,④△ADF∽△ECF.其中正確的為(
)A.① B.② C.③ D.④5、如圖,在△ABC中,點P為AB上一點,給出下列四個條件中能滿足△APC和△ACB相似的條件是(
)A.∠ACP=∠B B.∠APC=∠ACB C.AC2=AP·AB D.AB·CP=AP·CB6、已知四條線段a,b,c,d是成比例線段,即,下列說法正確的是(
)A.a(chǎn)d=bc B. C. D.7、下列說法中,正確的是(
)A.兩角對應相等的兩個三角形相似B.兩邊對應成比例的兩個三角形相似C.兩邊對應成比例且夾角相等的兩個三角形相似D.三邊對應成比例的兩個三角形相似第Ⅱ卷(非選擇題74分)三、填空題(7小題,每小題2分,共計14分)1、若函數(shù)圖像與x軸的兩個交點坐標為和,則__________.2、圖1是一種手機托架,使用該手機托架示意圖如圖3所示,底部放置手機處寬AB1.2厘米,托架斜面長BD6厘米,它有C到F共4個檔位調(diào)節(jié)角度,相鄰兩個檔位間的距離為0.8厘米,檔位C到B的距離為2.4厘米.將某型號手機置于托架上(圖2),手機屏幕長AG是15厘米,O是支點且OBOE2.5厘米(支架的厚度忽略不計).當支架調(diào)到E檔時,點G離水平面的距離GH為__________cm.3、小明的身高為1.6,他在陽光下的影長為2,此時他旁邊的旗桿的影長為15,則旗桿的高度為_______.4、如圖,直線MN∥PQ,直線AB分別與MN,PQ相交于點A,B.小宇同學利用以下步驟作圖:①以點A為圓心,適當長為半徑作弧交射線AN于點C,交線段AB于點D;②以點C為圓心,適當長為半徑畫弧;然后再以點D為圓心,同樣長為半徑畫?。昂髢苫≡凇螻AB內(nèi)交于點E;③作射線AE,交PQ于點F;若AF=2,∠FAN=30°,則線段BF的長為_____.5、如圖,點C在線段上,且,分別以、為邊在線段的同側(cè)作正方形、,連接、,則_________.6、如圖,拋物線與直線交于A(-1,P),B(3,q)兩點,則不等式的解集是_____.7、如圖,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點A(﹣3,0),B(1,0),與y軸交于點C.下列結(jié)論:①abc>0;②3a﹣c=0;③當x<0時,y隨x的增大而增大;④對于任意實數(shù)m,總有a﹣b≥am2﹣bm.其中正確的是_____(填寫序號).四、解答題(6小題,每小題10分,共計60分)1、(1)方法導引:問題:如圖1,等邊三角形的邊長為6,點是和的角平分線交點,,繞點任意旋轉(zhuǎn),分別交的兩邊于,兩點.求四邊形面積.討論:①小明:在旋轉(zhuǎn)過程中,當經(jīng)過點時,一定經(jīng)過點.②小穎:小明的分析有道理,這樣我們就可以利用“”證出.③小飛:因為,所以只要算出的面積就得出了四邊形的面積.老師:同學們的思路很清晰,也很正確.在分析和解決問題時,我們經(jīng)常會借用特例作輔助線來解決一般問題:請你按照討論的思路,直接寫出四邊形的面積:________.(2)應用方法:①特例:如圖2,的頂點在等邊三角形的邊上,,,邊于點,于點,求的面積.②探究:如圖3,已知,頂點在等邊三角形的邊上,,,記的面積為,的面積為,求的值.③應用:如圖4,已知,頂點在等邊三角形的邊的延長線上,,,記的面積為,的面積為,請直接寫出與的關(guān)系式.
2、如圖,AB是⊙O的直徑,弦CD⊥AB于點E,點P⊙O上,∠1=∠C.(1)求證:CB∥PD;(2)若∠ABC=55°,求∠P的度數(shù).3、如圖,一次函數(shù)y1=ax+b與反比例函數(shù)的圖象相交于A(2,8),B(8,2)兩點,連接AO,BO,延長AO交反比例函數(shù)圖象于點C.(1)求一次函數(shù)y1的表達式與反比例函數(shù)y2的表達式;(2)當y1<y2,時,直接寫出自變量x的取值范圍;(3)點P是x軸上一點,當時,請求出點P的坐標.4、如圖,在Rt△ABC中,∠ACB=90°,AB=10,BC=6,點O在射線AC上(點O不與點A重合),垂足為D,以點O為圓心,分別交射線AC于E、F兩點,設(shè)OD=x.(1)如圖1,當點O為AC邊的中點時,求x的值;(2)如圖2,當點O與點C重合時,連接DF;求弦DF的長;(3)當半圓O與BC無交點時,直接寫出x的取值范圍.5、已知,且,求x,y的值.6、如圖,∠1=∠2=∠3,試找出圖中兩對相似三角形,并說明為什么?-參考答案-一、單選題1、D【解析】【分析】根據(jù)二次函數(shù)的性質(zhì),進行判斷,即可得到答案.【詳解】解:∵,則開口向下,故A正確;對稱軸是直線,故B正確;當,y有最大值k,故C正確;當,,與y軸肯定有交點,故D錯誤;故選擇:D.【考點】本題考查了二次函數(shù)的性質(zhì),解題的關(guān)鍵是熟記二次函數(shù)的性質(zhì).2、A【解析】【分析】根據(jù)已知分兩種情況△PAD∽△PBC或△PAD∽△CBP來進行分析,求得PD的長,從而確定P存在的個數(shù).【詳解】解:∵AD∥BC,∠D=90°,∴∠C=∠D=90°,∵DC=6,AD=3,BC=4,設(shè)PD=x,則PC=6-x.①若PD:PC=AD:BC,則△PAD∽△PBC,則,解得:x=,經(jīng)檢驗:x=是原方程的解;②若PD:BC=AD:PC,則△PAD∽△BPC,則,解得:x無解,所以這樣的點P存在的個數(shù)有1個.故選:A.【考點】此題考查了相似三角形的性質(zhì),熟練掌握相似三角形對應邊成比例是解本題的關(guān)鍵.3、B【解析】【分析】過點A作∠DAP=∠BAC,過點D作AD⊥DP交AP于點P,分別求出PD,PC,在△PDC中,利用三角形的三邊關(guān)系即可求出CD長的最大值.【詳解】解:如圖,過點A作∠DAP=∠BAC,過點D作AD⊥DP交AP于點P,∵∠ABC=90°,,∴,∴,∵AD=2,∴DP=1,∵∠DAP=∠BAC,∠ADP=∠ABC,∴△ADP∽△ABC,∴,∵∠DAB=∠DAP+∠PAB,∠PAC=∠PAB+∠BAC,∠DAP=∠BAC,∴∠DAB=∠PAC,,∴△ADB∽△APC,∴,∵,∴,∴,,在△PDC中,∵PD+PC>DC,PC?PD<DC,∴,當D,P,C三點共線時,DC最大,最大值為,故選:B.【考點】本題考查了銳角三角函數(shù)的定義,相似三角形的判定和性質(zhì),勾股定理,三角形的三邊關(guān)系,構(gòu)造相似三角形是解題的關(guān)鍵.4、C【解析】【分析】連接AC,然后根據(jù)圓內(nèi)接四邊形的性質(zhì),可以得到∠ADC的度數(shù),再根據(jù)點D是弧AC的中點,可以得到∠DCA的度數(shù),直徑所對的圓周角是90°,從而可以求得∠BCD的度數(shù).【詳解】解:連接AC,∵∠ABC=50°,四邊形ABCD是圓內(nèi)接四邊形,∴∠ADC=130°,∵點D是弧AC的中點,∴CD=AC,∴∠DCA=∠DAC=25°,∵AB是直徑,∴∠BCA=90°,∴∠BCD=∠BCA+∠DCA=115°,故選:C.【考點】本題考查圓周角定理、圓心角、弧、弦的關(guān)系,解答本題的關(guān)鍵是明確題意,利用數(shù)形結(jié)合的思想解答.5、B【解析】【分析】令x的指數(shù)為2,系數(shù)不為0,列出方程與不等式解答即可.【詳解】由題意得:m2-6m-5=2;且m+1≠0;解得m=7或-1;m≠-1,∴m=7,故選:B.【考點】利用二次函數(shù)的定義,二次函數(shù)中自變量的指數(shù)是2;二次項的系數(shù)不為0.6、D【解析】【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)及相似三角形的判定方法進行分析,找出存在的相似三角形即可.【詳解】根據(jù)題意得:BC=B′C,AB=A′B′,AC=A′C,∠B=∠B′,∠A=∠A′=30°,∠ACB=∠A′CB′=90°∵∠A=30°,∠ACB=90°∴∠B=60°∴BB′=BC=B′C,∠B=∠BCB′=∠BB′C=60°∴∠B′CA=30°,∠ACA′=60°,A′B′∥BC∴∠B′FC=∠B′FA=90°∴△AB′F∽△ABC∽△A′B′C∽△A′CF∽△CFB′∴有4個故選D.【考點】考查了相似三角形的判定:①如果兩個三角形的三組對應邊的比相等,那么這兩個三角形相似;②如果兩個三角形的兩條對應邊的比相等,且夾角相等,那么這兩個三角形相似;③如果兩個三角形的兩個對應角相等,那么這兩個三角形相似.平行于三角形一邊的直線截另兩邊或另兩邊的延長線所組成的三角形與原三角形相似.二、多選題1、BD【解析】【分析】設(shè)函數(shù)解析式為,將點(4,9)代入判斷A錯誤;將R=9Ω代入判斷B正確;由解析式判斷C錯誤;由函數(shù)性質(zhì)判斷D正確.【詳解】解:設(shè)函數(shù)解析式為,將點(4,9)代入,得,∴函數(shù)解析式為,故A錯誤;當R=9Ω時,I=4A,故B正確;蓄電池的電壓是36V,故C錯誤;∵39>0,∴I隨R的增大而減小,∴當I≤10A時,R≥3.6Ω,故D正確;故選:BD.【考點】此題考查了求反比例函數(shù)解析式,反比例函數(shù)的增減性,已知自變量求函數(shù)值的大小,正確掌握反比例函數(shù)的綜合知識是解題的關(guān)鍵.2、BCD【解析】【分析】先判斷格中所畫格點三角形為直角三角形,利用兩組對應邊的比相等且夾角對應相等的兩個三角形相似,否則不相似,對各選項進行判斷.【詳解】解:由圖知:∠ACB=90°,AC=2,BC=1,AC:BC=2,A選項中,三條線段的長為,因為,此三角形為直角三角形,長直角邊與短直角邊的比為2,所以A選項的方格中所畫格點三角形(陰影部分)與△ABC相似,不符合題意;B選項中,長直角邊與短直角邊的比為3,所以B中格點三角形與△ABC不相似,符合題意;C選項中,三條線段的長為√,因為,此三角形為直角三角形,兩直角邊的比為1,所以C選項的方格中所畫格點三角形(陰影部分)與△ABC不相似,符合題意;D選項中,三角形的兩直角邊的比為1:1.所以D中格點三角形與△ABC不相似,符合題意,故選:BCD.【考點】本題考查相似三角形的判定,能在格點中表示各個線段的長度和掌握相似三角形的判定定理是解決此題的關(guān)鍵.3、ACD【解析】【分析】求得頂點坐標,根據(jù)題意即可判斷①正確;根據(jù)二次函數(shù)的性質(zhì)即可判斷②錯誤;二次函數(shù)是不為0的常數(shù))的頂點,即可判斷③錯誤;根據(jù)題意時,時,即可判斷④正確.【詳解】解:二次函數(shù),頂點為,在軸的下方,∵函數(shù)的圖象與軸交于、兩點,拋物線開口向上,,故①正確;時,隨的增大而增大,故②錯誤;由題意可知當,二次函數(shù)是不為0的常數(shù))的圖象一定經(jīng)過點,故③正確;線段上有且只有5個橫坐標為整數(shù)的點,且對稱軸為直線,∴當時,,當時,,,解得,故④正確;故選:ACD.【考點】本題考查了二次函數(shù)的性質(zhì),二次函數(shù)圖象與系數(shù)的關(guān)系,二次函數(shù)圖象上點的坐標特征,能夠理解題意,利用二次函數(shù)的性質(zhì)解答是解題的關(guān)鍵.4、BC【解析】【分析】根據(jù)相似三角形的定義,已知條件判定相似的三角形,再利用相似三角形的性質(zhì)逐一判斷選項即可.【詳解】解:在正方形中,是的中點,是上一點,且,,..,.,,,..,.②③正確.故選:BC.【考點】本題考查了相似三角形的判定與性質(zhì),解題的關(guān)鍵是掌握判定定理有①有兩個對應角相等的三角形相似,②有兩個對應邊的比相等,且其夾角相等,則兩個三角形相似;③三組對應邊的比相等,則兩個三角形相似.5、ABC【解析】【分析】根據(jù)相似三角形的判定定理逐項判斷即可.【詳解】解:A、∵∠ACP=∠B,∠A=∠A,∴△APC∽△ACB,故選項A符合題意;B、∵∠APC=∠ACB,∠A=∠A,∴△APC∽△ACB,故選項B符合題意;C、∵AC2=AP·AB,∠A=∠A,∴△APC∽△ACB,故選項C符合題意;D、AB·CP=AP·CB不是兩個對應邊成比例,不能證明△APC和△ACB相似,故選項D不符合條件,故選:ABC.【考點】本題考查相似三角形的判定,熟練掌握相似三角形的判定方法是解答的關(guān)鍵.6、ABD【解析】【分析】根據(jù)比例的性質(zhì)將原式變形,分別進行判斷即可,進而得出答案.【詳解】解:∵四條線段a,b,c,d是成比例線段,即,∴A.利用內(nèi)項之積等于外項之積,ad=bc,故選項正確,B.利用內(nèi)項之積等于外項之積,a(b+d)=b(a+c),ab+ad=ab+bc,即ad=bc,故選項正確,C.∵,∴,故選項錯誤,D.∵∴,故選項正確,故選:ABD.【考點】此題主要考查了比例的性質(zhì),將比例式靈活正確變形得出是解題關(guān)鍵.7、ACD【解析】【分析】根據(jù)相似三角形的判定定理判斷即可.【詳解】A
“兩角對應相等的兩個三角形相似”是正確的;B
“兩邊對應成比例的兩個三角形相似”是錯誤的,還需添上條件“且夾角相等”才成立;C
“兩邊對應成比例且夾角相等的兩個三角形相似”是正確的;D
“三邊對應成比例的兩個三角形相似”是正確的故選:ACD【考點】本題考查了相似三角形的判定定理,做題的關(guān)鍵是熟練掌握相似三角形的判定定理.三、填空題1、-2【解析】【分析】根據(jù)二次函數(shù)圖象對稱軸所在的直線與x軸的交點的坐標,即為它的圖象與x軸兩交點之間線段中點的橫坐標,即可求得.【詳解】解:函數(shù)圖像與x軸的兩個交點坐標為和由對稱軸所在的直線為:解得故答案為:-2.【考點】本題考查了二次函數(shù)的性質(zhì)及中點坐標的求法,熟練掌握和運用二次函數(shù)的性質(zhì)及中點坐標的求法是解決本題的關(guān)鍵.2、【解析】【分析】如圖3中,作DT⊥AH于T,OK⊥BD于K.解直角三角形求出BK,OK,利用相似三角形的性質(zhì)求出DT,BT,AD,即可求出GH的長.【詳解】如圖3中,作DT⊥AH于T,OK⊥BD于K.∵OB=OE=2.5cm,BE=2.4+0.82=4(cm),OK⊥BE,∴BK=KE=2(cm),∴OK(cm),∵∠OBK=∠DBT,∠OKB=∠BTD=90°,∴△BKO∽△BTD,∴,∴,∴BT=4.8(cm),DT=3.6(cm),AT=1.2+4.8=6(cm),∴AD=(cm),∵DT∥GH,∴△ATD∽△AHG,∴,∴,∴(cm).故答案為:.【考點】本題考查了相似三角形的應用,勾股定理的應用等知識,解題的關(guān)鍵是理解題意,靈活運用所學知識解決問題,屬于中考填空題中的壓軸題.3、12【解析】【分析】設(shè)這根旗桿的高度為xm,利用某一時刻物體的高度與它的影長的比相等得到,然后利用比例性質(zhì)求x即可.【詳解】設(shè)這根旗桿的高度為xm,根據(jù)題意得解得x=12(m),即這根旗桿的高度為12m.故答案為12.【考點】本題考查了相似三角形的應用:利用影長測量物體的高度;利用相似測量河的寬度(測量距離);借助標桿或直尺測量物體的高度.4、2【解析】【分析】過B作BG⊥AF于G,依據(jù)AB=BF,運用等腰三角形的性質(zhì),即可得出GF的長,進而得到BF的長.【詳解】解:如圖,過B作BG⊥AF于G,∵MN∥PQ,∴∠FAN=∠3=30°,由題意得:AF平分∠NAB,∴∠1=∠2=30°,∴∠1=∠3=30°,∴AB=BF,又∵BG⊥AF,∴AG=GF=AF=,∴Rt△BFG中,BF=,故答案為:2.【考點】本題考查了平行線的性質(zhì)、角平分線的基本作圖、直角三角形30度角的性質(zhì),熟練掌握平行線和角平分線的基本作圖是關(guān)鍵.5、【解析】【分析】設(shè)BC=a,則AC=2a,然后利用正方形的性質(zhì)求得CE、CG的長、∠GCD=ECD=45°,進而說明△ECG為直角三角形,最后運用正切的定義即可解答.【詳解】解:設(shè)BC=a,則AC=2a∵正方形∴EC=,∠ECD=同理:CG=,∠GCD=
∴.故答案為.【考點】本題考查了正方形的性質(zhì)和正切的定義,根據(jù)正方形的性質(zhì)說明△ECG是直角三角形是解答本題的關(guān)鍵.6、或.【解析】【分析】由可變形為,即比較拋物線與直線之間關(guān)系,而直線PQ:與直線AB:關(guān)于與y軸對稱,由此可知拋物線與直線交于,兩點,再觀察兩函數(shù)圖象的上下位置關(guān)系,即可得出結(jié)論.【詳解】解:∵拋物線與直線交于,兩點,∴,,∴拋物線與直線交于,兩點,觀察函數(shù)圖象可知:當或時,直線在拋物線的下方,∴不等式的解集為或.故答案為或.【考點】本題考查了二次函數(shù)與不等式,根據(jù)兩函數(shù)圖象的上下位置關(guān)系找出不等式的解集是解題的關(guān)鍵.7、①④或④①【解析】【分析】根據(jù)拋物線的對稱軸,開口方向,與軸的交點位置,即可判斷①,根據(jù)二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點A(﹣3,0),B(1,0),即可求得對稱軸,以及當時,,進而可以判斷②③,根據(jù)頂點求得函數(shù)的最大值,即可判斷④.【詳解】解:拋物線開口向下,,對稱軸,,拋物線與軸交于正半軸,,,故①正確,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點A(﹣3,0),B(1,0),對稱軸為,則,當,,,故②不正確,由函數(shù)圖象以及對稱軸為,可知,當時,隨的增大而增大,故③不正確,對稱軸為,則當時,取得最大值,對于任意實數(shù)m,總有,即,故④正確.故答案為:①④.【考點】本題考查了二次函數(shù)圖象的性質(zhì),數(shù)形結(jié)合是解題的關(guān)鍵.四、解答題1、(1);(2)①的面積;②xy=12;③.【解析】【分析】(1)連接、,利用ASA證出,從而得出的面積與四邊形的面積相等,過點作于點,利用銳角三角函數(shù)求出OH即可求出△OBC的面積,從而得出結(jié)論;(2)①根據(jù)等邊三角形的性質(zhì)可得,從而求出∠BOD,然后根據(jù)30°所對的直角邊是斜邊的一半和勾股定理即可求出OD和BD,從而求出結(jié)論;②過點作于,于,根據(jù)相似三角形判定定理可得,根據(jù)相似三角形的性質(zhì)列出比例式,變形可得,然后根據(jù)三角形的面積公式即可求出結(jié)論;③過點作交的延長線于,于,根據(jù)相似三角形的判定定理可得,根據(jù)相似三角形的性質(zhì)列出比例式,變形可得,分別求出OM和ON,再結(jié)合三角形的面積公式即可求出結(jié)論.【詳解】解:(1)連接、∵是等邊三角形,∴∵是和的角平分線交點∴∴,∴∴∴的面積與四邊形的面積相等過點作于點∵,∴∵,∴,∴∴四邊形的面積為.故答案為:.(2)①∵是等邊三角形,∴∵于點,∴∵,∴,,∴的面積②過點作于,于.由①得:,同理:∵是等邊三角形,∴∵,∴∴,∴∴,∴∴③過點作交的延長線于,于.∵,∴∴,∵∴,∴∴∵,,∴,∴∵,,∴,∴∴【考點】此題考查的是全等三角形的判定及性質(zhì)、等邊三角形的性質(zhì)、相似三角形的判定及性質(zhì)和銳角三角函數(shù),掌握全等三角形的判定及性質(zhì)、等邊三角形的性質(zhì)、相似三角形的判定及性質(zhì)和銳角三角函數(shù)是解決此題的關(guān)鍵.2、(1)證明見解析;(2)35°【解析】【詳解】試題分析:(1)要證明CB∥PD,只要證明∠1=∠P;由∠1=∠C,∠P=∠C,可得∠1=∠P,即可解決問題;(2)在Rt△CEB中,求出∠C即可解決問題.試題解析:(1)如圖,∵∠1=∠C,∠P=∠C,∴∠1=∠P,∴CB∥PD;(2)∵CD⊥AB,∴∠CEB=90°,∵∠CBE=55°,∴∠C=90°﹣55°=35°,∴∠P=∠C=35°.【考點】主要考查了圓周角定理、垂徑定理、直角三角形的性質(zhì)等知識,解題的關(guān)鍵是熟練掌握基本知識.3、(1),;(2)當y1<y2,時,自變量x的取值范圍為x>8或0<x<2;(3)點P的坐標為(3,0)或(-3,0).【解析】【分析】(1)利用待定系數(shù)法確定解析式即可;(2)利用數(shù)形結(jié)合的思想,分析兩個函數(shù)圖象的位置,根據(jù)交點的橫坐標確定滿足條件的解集即可.(3)先利用分割法求出的面積,利用求出的面積,由面積公式列式求解即可.【詳解】解:(1)將,代入中,得解得:∴反比例函數(shù)y2的表達式為:將,代入中,得:解得:∴一次函數(shù)y1的表達式為:(2)由圖象可知,當時,反比例函數(shù)圖象應在一次函數(shù)圖象上方∴自變量x的取值范圍為:或(3)設(shè)直線AB與x軸的交點為D,如下圖:∵延長AO交反比例函數(shù)圖象于點C∴點C與點A關(guān)于原點對稱∴設(shè)直線AB交x軸的交點為D將代入∴∴又∵∴即:∴∵點P在x軸上∴或【考點】本題考查待定系數(shù)法求一次函數(shù)與反比例函數(shù)的解析式,通過圖象交點情況確定滿足條件的自變量取值范圍等知識點,能夠利用數(shù)形結(jié)合思想是解題的關(guān)鍵.4、(1);(2);(3)滿足條件的x取值范圍為:0<x<3或x>12.【解析】
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 志愿者的活動總結(jié)13篇
- 漢字注拼音的課件制作
- 漢字教育課件
- 福建省龍巖市2024-2025學年高二下學期期末教學質(zhì)量檢查政治試卷(含解析)
- 安徽省合肥市廬江縣柯坦中學2024-2025學年七年級下學期6月期末數(shù)學試題(含部分答案)
- 2024-2025學年甘肅省白銀十一中八年級(下)期末語文試卷(含答案)
- 大數(shù)據(jù)技術(shù)應用趨勢分析
- 快遞公司工作總結(jié)(集合10篇)
- 跨境電商市場發(fā)展瓶頸分析
- 漢字之美課件
- 高速天橋拆除方案(3篇)
- 2025年中國冷鏈物流行業(yè)投資前景分析、未來發(fā)展趨勢研究報告(智研咨詢發(fā)布)
- 2025合作合同范本下載
- 手外傷急救診療流程標準化
- 農(nóng)村土地托管培訓課件
- 老年??谱o士學習培訓匯報
- 基孔肯雅熱防控培訓課件
- 公司崗位補助管理辦法
- 游戲與兒童發(fā)展課件
- 捐贈助學活動方案
- 健康體檢服務投標方案投標文件(技術(shù)方案)
評論
0/150
提交評論