




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
五大名校數(shù)學(xué)八年級(jí)上冊(cè)壓軸題模擬試卷一、壓軸題1.(1)如圖1,和都是等邊三角形,且,,三點(diǎn)在一條直線上,連接,相交于點(diǎn),求證:.(2)如圖2,在中,若,分別以,和為邊在外部作等邊,等邊,等邊,連接、、恰交于點(diǎn).①求證:;②如圖2,在(2)的條件下,試猜想,,與存在怎樣的數(shù)量關(guān)系,并說(shuō)明理由.解析:(1)詳見解析;(2)①詳見解析;②,理由詳見解析【解析】【分析】(1)根據(jù)等邊三角形的性質(zhì)得出BC=AC,CE=CD,∠ACB=∠DCE=60°,進(jìn)而得出∠BCE=∠ACD,判斷出(SAS),即可得出結(jié)論;(2)①同(1)的方法判斷出(SAS),(SAS),即可得出結(jié)論;②先判斷出∠APB=60°,∠APC=60°,在PE上取一點(diǎn)M,使PM=PC,證明是等邊三角形,進(jìn)而判斷出(SAS),即可得出結(jié)論.【詳解】(1)證明:∵和都是等邊三角形,∴BC=AC,CE=CD,∠ACB=∠DCE=60°,∴∠ABC+∠ACE=∠DCE+∠ACE,即∠BCE=∠ACD,∴(SAS),∴BE=AD;(2)①證明:∵和是等邊三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠BCD=∠DCE+∠BCD,即∠ACD=∠BCE,∴(SAS),∴AD=BE,同理:(SAS),∴AD=CF,即AD=BE=CF;②解:結(jié)論:PB+PC+PD=BE,理由:如圖2,AD與BC的交點(diǎn)記作點(diǎn)Q,則∠AQC=∠BQP,由①知,,∴∠CAD=∠CBE,在中,∠CAD+∠AQC=180°-∠ACB=120°,∴∠CBE+∠BQP=120°,在中,∠APB=180°-(∠CBE+∠BQP)=60°,∴∠DPE=60°,同理:∠APC=60°,∠CPD=120°,在PE上取一點(diǎn)M,使PM=PC,∴是等邊三角形,∴,∠PCM=∠CMP=60°,∴∠CME=120°=∠CPD,∵是等邊三角形,∴CD=CE,∠DCE=60°=∠PCM,∴∠PCD=∠MCE,∴(SAS),∴PD=ME,∴BE=PB+PM+ME=PB+PC+PD.【點(diǎn)睛】此題是三角形綜合題,主要考查了三角形的內(nèi)角和定理,等邊三角形的性質(zhì)和判定,全等三角形的判定和性質(zhì),構(gòu)造出全等三角形是解本題的關(guān)鍵.2.已知:MN∥PQ,點(diǎn)A,B分別在MN,PQ上,點(diǎn)C為MN,PQ之間的一點(diǎn),連接CA,CB.(1)如圖1,求證:∠C=∠MAC+∠PBC;(2)如圖2,AD,BD,AE,BE分別為∠MAC,∠PBC,∠CAN,∠CBQ的角平分線,求證:∠D+∠E=180°;(3)在(2)的條件下,如圖3,過點(diǎn)D作DA的垂線交PQ于點(diǎn)G,點(diǎn)F在PQ上,∠FDA=2∠FDB,F(xiàn)D的延長(zhǎng)線交EA的延長(zhǎng)線于點(diǎn)H,若3∠C=4∠E,猜想∠H與∠GDB的倍數(shù)關(guān)系并證明.解析:(1)見解析;(2)見解析;(3)猜想:∠H=3∠GDB,證明見解析.【解析】【分析】(1)作輔助線:過C作EF∥MN,根據(jù)平行的傳遞性可知這三條直線兩兩平行,由平行線的性質(zhì)得到內(nèi)錯(cuò)角相等∠MAC=∠ACF,∠BCF=∠PBC,再進(jìn)行角的加和即可得出結(jié)論;(2)根據(jù)角平分線線定理得知,利用平角為180°得到∠DAE=90°,同理得,再根據(jù)四邊形內(nèi)角和180°,得出結(jié)論;(3)由(1)(2)中的結(jié)論進(jìn)行等量代換得到3∠ADB=2∠E,并且兩角的和為180°,由此得到兩個(gè)角的度數(shù)分別為72°和108°,利用角的和與差得到∠HDA=36°,∠H=54°,由此得到倍數(shù)關(guān)系.【詳解】(1)如圖:過C作EF∥MN,∵M(jìn)N∥PQ,∴MN∥EF∥PQ,∴∠MAC=∠ACF,∠BCF=∠PBC,∴∠ACF+∠BCF=∠MAC+∠PBC,即∠ACB=∠MAC+∠PBC.(2)∵AD,AE分別為∠MAC,∠CAN的角平分線,∴,∴,于是∠DAE=90°同理可得:,由(1)可得:∵.(3)猜想:∠H=3∠GDB.理由如下:由(1)可知:,∵3∠C=4∠E,∴6∠ADB=4∠E,∴3∠ADB=2∠E,∵∠ADB+∠E=180°,∴∠ADB=72°,∠E=108°,∵DG⊥DA,∴∠GDB=18°,∵∠FDA=2∠FDB,∴∠ADF=144°,∴∠HDA=36°,∵DA⊥AE,∴∠H=54°,∴∠H=3∠GDB.【點(diǎn)睛】考查平行線中角度的關(guān)系,學(xué)生要熟悉掌握平行線的性質(zhì)以及角平分線定理,結(jié)合角的和與差進(jìn)行計(jì)算,本題的關(guān)鍵是平行線的性質(zhì).3.在初中數(shù)學(xué)學(xué)習(xí)階段,我們常常會(huì)利用一些變形技巧來(lái)簡(jiǎn)化式子,解答問題.材料一:在解決某些分式問題時(shí),倒數(shù)法是常用的變形技巧之一,所謂倒數(shù)法,即把式子變成其倒數(shù)形式,從而運(yùn)用約分化簡(jiǎn),以達(dá)到計(jì)算目的.例:已知:,求代數(shù)式x2+的值.解:∵,∴=4即=4∴x+=4∴x2+=(x+)2﹣2=16﹣2=14材料二:在解決某些連等式問題時(shí),通??梢砸?yún)?shù)“k”,將連等式變成幾個(gè)值為k的等式,這樣就可以通過適當(dāng)變形解決問題.例:若2x=3y=4z,且xyz≠0,求的值.解:令2x=3y=4z=k(k≠0)則根據(jù)材料回答問題:(1)已知,求x+的值.(2)已知,(abc≠0),求的值.(3)若,x≠0,y≠0,z≠0,且abc=7,求xyz的值.解析:(1)5;(2);(3)【解析】【分析】(1)仿照材料一,取倒數(shù),再約分,利用等式的性質(zhì)求解即可;(2)仿照材料二,設(shè)===k(k≠0),則a=5k,b=2k,c=3k,代入所求式子即可;(3)本題介紹兩種解法:解法一:(3)解法一:設(shè)===(k≠0),化簡(jiǎn)得:①,②,③,相加變形可得x、y、z的代入=中,可得k的值,從而得結(jié)論;解法二:取倒數(shù)得:==,拆項(xiàng)得,從而得x=,z=,代入已知可得結(jié)論.【詳解】解:(1)∵=,∴=4,∴x﹣1+=4,∴x+=5;(2)∵設(shè)===k(k≠0),則a=5k,b=2k,c=3k,∴===;(3)解法一:設(shè)===(k≠0),∴①,②,③,①+②+③得:2()=3k,=k④,④﹣①得:=k,④﹣②得:,④﹣③得:k,∴x=,y=,z=代入=中,得:=,,k=4,∴x=,y=,z=,∴xyz===;解法二:∵,∴,∴,∴,∴,將其代入中得:==,y=,∴x=,z==,∴xyz==.【點(diǎn)睛】本題考查了以新運(yùn)算的方式求一個(gè)式子的值,題目中涉及了求一個(gè)數(shù)的倒數(shù),約分,等式的基本性質(zhì),求代數(shù)式的值,解決本題的關(guān)鍵是正確理解新運(yùn)算的內(nèi)涵,確定一個(gè)數(shù)的倒數(shù)并能夠根據(jù)等式的基本性質(zhì)將原式變?yōu)槟軌蜻M(jìn)一步運(yùn)算的式子.4.在△ABC中,已知∠A=α.(1)如圖1,∠ABC、∠ACB的平分線相交于點(diǎn)D.求∠BDC的大?。ㄓ煤恋拇鷶?shù)式表示);(2)如圖2,若∠ABC的平分線與∠ACE的平分線交于點(diǎn)F,求∠BFC的大小(用含α的代數(shù)式表示);(3)在(2)的條件下,將△FBC以直線BC為對(duì)稱軸翻折得到△GBC,∠GBC的平分線與∠GCB的平分線交于點(diǎn)M(如圖3),求∠BMC的度數(shù)(用含α的代數(shù)式表示).解析:(1)∠BDC=90°+;(2)∠BFC=;(3)∠BMC=90°+.【解析】【分析】(1)由三角形內(nèi)角和可求∠ABC+∠ACB=180°﹣α,由角平分線的性質(zhì)可求∠DBC+∠BCD=(∠ABC+∠ACB)=90°﹣,由三角形的內(nèi)角和定理可求解;(2)由角平分線的性質(zhì)可得∠FBC=∠ABC,∠FCE=∠ACE,由三角形的外角性質(zhì)可求解;(3)由折疊的性質(zhì)可得∠G=∠BFC=,方法同(1)可求∠BMC=90°+,即可求解.【詳解】解:(1)∵∠A=α,∴∠ABC+∠ACB=180°﹣α,∵BD平分∠ABC,CD平分∠ACB,∴∠DBC=∠ABC,∠BCD=∠ACB,∴∠DBC+∠BCD=(∠ABC+∠ACB)=90°﹣,∴∠BDC=180°﹣(∠DBC+∠BCD)=90°+;(2)∵∠ABC的平分線與∠ACE的平分線交于點(diǎn)F,∴∠FBC=∠ABC,∠FCE=∠ACE,∵∠ACE=∠A+∠ABC,∠FCE=∠BFC+∠FBC,∴∠BFC=∠A=;(3)∵∠GBC的平分線與∠GCB的平分線交于點(diǎn)M,∴方法同(1)可得∠BMC=90°+,∵將△FBC以直線BC為對(duì)稱軸翻折得到△GBC,∴∠G=∠BFC=,∴∠BMC=90°+.【點(diǎn)睛】此題考查三角形的內(nèi)角和定理,三角形的外角等于與它不相鄰的兩個(gè)內(nèi)角的和,角平分線的性質(zhì)定理,折疊的性質(zhì).5.如圖1,我們定義:在四邊形ABCD中,若AD=BC,且∠ADB+∠BCA=180°,則把四邊形ABCD叫做互補(bǔ)等對(duì)邊四邊形.(1)如圖2,在等腰中,AE=BE,四邊形ABCD是互補(bǔ)等對(duì)邊四邊形,求證:∠ABD=∠BAC=∠AEB.(2)如圖3,在非等腰中,若四邊形ABCD仍是互補(bǔ)等對(duì)邊四邊形,試問∠ABD=∠BAC=∠AEB是否仍然成立?若成立,請(qǐng)加以證明;若不成立,請(qǐng)說(shuō)明理由.解析:(1)見解析;(2)仍然成立,見解析【解析】【分析】(1)根據(jù)等腰三角形的性質(zhì)和互補(bǔ)等對(duì)邊四邊形的定義可利用SAS證明△ABD≌△BAC,可得∠ADB=∠BCA,從而可推出∠ADB=∠BCA=90°,然后在△ABE中,根據(jù)三角形的內(nèi)角和定理和直角三角形的性質(zhì)可得∠ABD=∠AEB,進(jìn)一步可得結(jié)論;(2)如圖3所示:過點(diǎn)A、B分別作BD的延長(zhǎng)線與AC的垂線,垂足分別為G,F(xiàn),根據(jù)互補(bǔ)等對(duì)邊四邊形的定義可利用AAS證明△AGD≌△BFC,可得AG=BF,進(jìn)一步即可根據(jù)HL證明Rt△ABG≌Rt△BAF,可得∠ABD=∠BAC,由互補(bǔ)等對(duì)邊四邊形的定義、平角的定義和四邊形的內(nèi)角和可得∠AEB+∠DHC=180°,進(jìn)而可得∠AEB=∠BHC,再根據(jù)三角形的外角性質(zhì)即可推出結(jié)論.【詳解】(1)證明:∵AE=BE,∴∠EAB=∠EBA,∵四邊形ABCD是互補(bǔ)等對(duì)邊四邊形,∴AD=BC,在△ABD和△BAC中,AD=BC,∠DAB=∠CBA,AB=BA,∴△ABD≌△BAC(SAS),∴∠ADB=∠BCA,又∵∠ADB+∠BCA=180°,∴∠ADB=∠BCA=90°,在△ABE中,∵∠EAB=∠EBA=(180°?∠AEB)=90°?∠AEB,∴∠ABD=90°?∠EAB=90°?(90°?∠AEB)=∠AEB,同理:∠BAC=∠AEB,∴∠ABD=∠BAC=∠AEB;(2)∠ABD=∠BAC=∠AEB仍然成立;理由如下:如圖3所示:過點(diǎn)A、B分別作BD的延長(zhǎng)線與AC的垂線,垂足分別為G,F(xiàn),∵四邊形ABCD是互補(bǔ)等對(duì)邊四邊形,∴AD=BC,∠ADB+∠BCA=180°,又∠ADB+∠ADG=180°,∴∠BCA=∠ADG,又∵AG⊥BD,BF⊥AC,∴∠AGD=∠BFC=90°,在△AGD和△BFC中,∠AGD=∠BFC,∠ADG=∠BCA,AD=BC∴△AGD≌△BFC(AAS),∴AG=BF,在Rt△ABG和Rt△BAF中,∴Rt△ABG≌Rt△BAF(HL),∴∠ABD=∠BAC,∵∠ADB+∠BCA=180°,∴∠EDB+∠ECA=180°,∴∠AEB+∠DHC=180°,∵∠DHC+∠BHC=180°,∴∠AEB=∠BHC.∵∠BHC=∠BAC+∠ABD,∠ABD=∠BAC,∴∠ABD=∠BAC=∠AEB.【點(diǎn)睛】本題以新定義互補(bǔ)等對(duì)邊四邊形為載體,主要考查了全等三角形的判定與性質(zhì)、等腰三角形的性質(zhì)、三角形的內(nèi)角和定理與三角形的外角性質(zhì)以及四邊形的內(nèi)角和等知識(shí),正確添加輔助線、熟練掌握上述知識(shí)是解題的關(guān)鍵.6.已知:如圖1,直線,EF分別交AB,CD于E,F(xiàn)兩點(diǎn),,的平分線相交于點(diǎn)K.(1)求的度數(shù);(2)如圖2,,的平分線相交于點(diǎn),問與的度數(shù)是否存在某種特定的等量關(guān)系?寫出結(jié)論并證明;(3)在圖2中作,的平分線相交于點(diǎn),作,的平分線相交于點(diǎn),依此類推,作,的平分線相交于點(diǎn),請(qǐng)用含的n式子表示的度數(shù).(直接寫出答案,不必寫解答過程)解析:(1);(2),證明見解析;(3)【解析】【分析】(1)過作KG∥AB,交于,證出∥KG,得到,,根據(jù)角平分線的性質(zhì)及平行線的性質(zhì)得到,即可得到答案;(2)根據(jù)角平分線的性質(zhì)得到,,根據(jù)求出,根據(jù)求出答案;(3)根據(jù)(2)得到規(guī)律解答即可.【詳解】(1)過作KG∥AB,交于,∵,∴∥KG,,,,分別為與的平分線,,,∵,,,,則;(2),理由為:,的平分線相交于點(diǎn),,,,即,,,,;(3)由(2)知;同理可得=,∴.【點(diǎn)睛】此題考查平行線的性質(zhì):兩直線平行,內(nèi)錯(cuò)角相等;平行公理的推論:平行于同一直線的兩直線平行;角平分線的性質(zhì);(3)是難點(diǎn),注意總結(jié)前兩問的做題思路得到規(guī)律進(jìn)行解答.7.Rt△ABC中,∠C=90°,點(diǎn)D、E分別是△ABC邊AC、BC上的點(diǎn),點(diǎn)P是一動(dòng)點(diǎn).令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若點(diǎn)P在線段AB上,如圖(1)所示,且∠α=60°,則∠1+∠2=;(2)若點(diǎn)P在線段AB上運(yùn)動(dòng),如圖(2)所示,則∠α、∠1、∠2之間的關(guān)系為;(3)若點(diǎn)P運(yùn)動(dòng)到邊AB的延長(zhǎng)線上,如圖(3)所示,則∠α、∠1、∠2之間有何關(guān)系?猜想并說(shuō)明理由;(4)若點(diǎn)P運(yùn)動(dòng)到△ABC形外,如圖(4)所示,則∠α、∠1、∠2之間有何關(guān)系?猜想并說(shuō)明理由.解析:(1)150°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由詳見解析;(4)∠2=90°+∠1-α,理由詳見解析【解析】【分析】(1)先用平角的得出,∠CDP=180°-∠1,∠CEP=180°-∠2,最后用四邊形的內(nèi)角和即可;(2)同(1)方法即可;(3)利用平角的定義和三角形的內(nèi)角和即可得出結(jié)論;(4)利用三角形的內(nèi)角和和外角的性質(zhì)即可得出結(jié)論.【詳解】解:(1)∵∠1+∠CDP=180°,∴∠CDP=180°-∠1,同理:∠CEP=180°-∠2,根據(jù)四邊形的內(nèi)角和定理得,∠CDP+∠DPE+∠CEP+∠C=360°,∵∠C=90°,∴180°-∠1+α+180°-∠2+90°=360°,∴∠1+∠2=90°+α=90°+60°=150°,故答案為:150;(2)∵∠1+∠CDP=180°,∴∠CDP=180°-∠1,同理:∠CEP=180°-∠2,根據(jù)四邊形的內(nèi)角和定理得,∠CDP+∠DPE+∠CEP+∠C=360°,∵∠C=90°,∴180°-∠1+α+180°-∠2+90°=360°,∴∠1+∠2=90°+α,故答案為:∠1+∠2=90°+α;(3)∠1=90°+∠2+∠α.理由如下:如圖3,設(shè)DP與BE的交點(diǎn)為F,∵∠2+∠α=∠DFE,∠DFE+∠C=∠1,∴∠1=∠C+∠2+∠α=90°+∠2+∠α.(4)∠2=90°+∠1-∠α,理由如下:如圖4,設(shè)PE與AC的交點(diǎn)為G,∵∠PGD=∠EGC,∴∠α+180°-∠1=∠C+180°-∠2,∴∠2=90°+∠1-∠α.故答案為∠2=90°+∠1-∠α.【點(diǎn)睛】此題是三角形綜合題,主要考查了四邊形的內(nèi)角和,三角形的內(nèi)角和,三角形的外角的性質(zhì),平角的定義,解本題的關(guān)鍵是將∠1,∠2,α轉(zhuǎn)化到一個(gè)三角形或四邊形中,是一道比較簡(jiǎn)單的中考??碱}.8.(1)問題發(fā)現(xiàn):如圖1,△ACB和△DCE均為等邊三角形,點(diǎn)A、D、E在同一直線上,連接BE.①請(qǐng)直接寫出∠AEB的度數(shù)為_____;②試猜想線段AD與線段BE有怎樣的數(shù)量關(guān)系,并證明;(2)拓展探究:圖2,△ACB和△DCE均為等腰三角形,∠ACB=∠DCE=90°,點(diǎn)A、D、E在同-直線上,CM為△DCE中DE邊上的高,連接BE,請(qǐng)判斷∠AEB的度數(shù)線段CM、AE、BE之間的數(shù)量關(guān)系,并說(shuō)明理由.解析:(1)①60°;②AD=BE.證明見解析;(2)∠AEB=90°;AE=2CM+BE;理由見解析.【解析】【分析】(1)①由條件△ACB和△DCE均為等邊三角形,易證△ACD≌△BCE,從而得到:AD=BE,∠ADC=∠BEC.由點(diǎn)A,D,E在同一直線上可求出∠ADC,從而可以求出∠AEB的度數(shù).②由△ACD≌△BCE,可得AD=BE;(2)首先根據(jù)△ACB和△DCE均為等腰直角三角形,可得AC=BC,CD=CE,∠ACB=∠DCE=90°,據(jù)此判斷出∠ACD=∠BCE;然后根據(jù)全等三角形的判定方法,判斷出△ACD≌△BCE,即可判斷出BE=AD,∠BEC=∠ADC,進(jìn)而判斷出∠AEB的度數(shù)為90°;根據(jù)DCE=90°,CD=CE,CM⊥DE,可得CM=DM=EM,所以DE=DM+EM=2CM,據(jù)此判斷出AE=BE+2CM.【詳解】(1)①∵∠ACB=∠DCE,∠DCB=∠DCB,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE,∴AD=BE,∠CEB=∠ADC=180°?∠CDE=120°,∴∠AEB=∠CEB?∠CED=60°;②AD=BE.證明:∵△ACD≌△BCE,∴AD=BE.(2)∠AEB=90°;AE=2CM+BE;理由如下:∵△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,CD=CE,∠ACB=∠DCB=∠DCE-∠DCB,即∠ACD=∠BCE,∴△ACD≌△BCE,∴AD=BE,∠BEC=∠ADC=135°.∴∠AEB=∠BEC-∠CED=135°-45°=90°.在等腰直角△DCE中,CM為斜邊DE上的高,∴CM=DM=ME,∴DE=2CM.∴AE=DE+AD=2CM+BE.【點(diǎn)睛】本題考查了等邊三角形的性質(zhì)、等腰直角三角形的性質(zhì)、三角形全等的判定與性質(zhì)等知識(shí),解題時(shí)需注意運(yùn)用已有的知識(shí)和經(jīng)驗(yàn)解決相似問題.9.在等邊△ABC的頂點(diǎn)A、C處各有一只蝸牛,它們同時(shí)出發(fā),分別以每分鐘1米的速度由A向B和由C向A爬行,其中一只蝸牛爬到終點(diǎn)時(shí),另一只也停止運(yùn)動(dòng),經(jīng)過t分鐘后,它們分別爬行到D、E處,請(qǐng)問:(1)如圖1,在爬行過程中,CD和BE始終相等嗎,請(qǐng)證明?(2)如果將原題中的“由A向B和由C向A爬行”,改為“沿著AB和CA的延長(zhǎng)線爬行”,EB與CD交于點(diǎn)Q,其他條件不變,蝸牛爬行過程中∠CQE的大小保持不變,請(qǐng)利用圖2說(shuō)明:∠CQE=60°;(3)如果將原題中“由C向A爬行”改為“沿著BC的延長(zhǎng)線爬行,連接DE交AC于F”,其他條件不變,如圖3,則爬行過程中,證明:DF=EF解析:(1)相等,證明見解析;(2)證明見解析;(3)證明見解析.【解析】【分析】(1)先證明△ACD≌△CBE,再由全等三角形的性質(zhì)即可證得CD=BE;(2)先證明△BCD≌△ABE,得到∠BCD=∠ABE,求出∠DQB=∠BCQ+∠CBQ=∠ABE+∠CBQ=180°-∠ABC,∠CQE=180°-∠DQB,即可解答;(3)如圖3,過點(diǎn)D作DG∥BC交AC于點(diǎn)G,根據(jù)等邊三角形的三邊相等,可以證得AD=DG=CE;進(jìn)而證明△DGF和△ECF全等,最后根據(jù)全等三角形的性質(zhì)即可證明.【詳解】(1)解:CD和BE始終相等,理由如下:如圖1,AB=BC=CA,兩只蝸牛速度相同,且同時(shí)出發(fā),∴CE=AD,∠A=∠BCE=60°在△ACD與△CBE中,AC=CB,∠A=∠BCE,AD=CE∴△ACD≌△CBE(SAS),∴CD=BE,即CD和BE始終相等;(2)證明:根據(jù)題意得:CE=AD,∵AB=AC,∴AE=BD,∴△ABC是等邊三角形,∴AB=BC,∠BAC=∠ACB=60°,∵∠EAB+∠ABC=180°,∠DBC+∠ABC=180°,∴∠EAB=∠DBC,在△BCD和△ABE中,BC=AB,∠DBC=∠EAB,BD=AE∴△BCD≌△ABE(SAS),∴∠BCD=∠ABE∴∠DQB=∠BCQ+∠CBQ=∠ABE+∠CBQ=180°-∠ABC=180°-60°=120°,∴∠CQE=180°-∠DQB=60°,即CQE=60°;(3)解:爬行過程中,DF始終等于EF是正確的,理由如下:如圖,過點(diǎn)D作DG∥BC交AC于點(diǎn)G,∴∠ADG=∠B=∠AGD=60°,∠GDF=∠E,∴△ADG為等邊三角形,∴AD=DG=CE,在△DGF和△ECF中,∠GFD=∠CFE,∠GDF=∠E,DG=EC∴△DGF≌△EDF(AAS),∴DF=EF.【點(diǎn)睛】本題主要考查了全等三角形的判定與性質(zhì)和等邊三角形的性質(zhì);題弄懂題中所給的信息,再根據(jù)所提供的思路尋找證明條件是解答本題的關(guān)鍵.10.如圖所示,在平面直角坐標(biāo)系中,已知點(diǎn)的坐標(biāo),過點(diǎn)作軸,垂足為點(diǎn),過點(diǎn)作直線軸,點(diǎn)從點(diǎn)出發(fā)在軸上沿著軸的正方向運(yùn)動(dòng).(1)當(dāng)點(diǎn)運(yùn)動(dòng)到點(diǎn)處,過點(diǎn)作的垂線交直線于點(diǎn),證明,并求此時(shí)點(diǎn)的坐標(biāo);(2)點(diǎn)是直線上的動(dòng)點(diǎn),問是否存在點(diǎn),使得以為頂點(diǎn)的三角形和全等,若存在求點(diǎn)的坐標(biāo)以及此時(shí)對(duì)應(yīng)的點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.解析:(1)證明見解析;;(2)存在,,或,或,或,或,或,.【解析】【分析】(1)通過全等三角形的判定定理ASA證得△ABP≌△PCD,由全等三角形的對(duì)應(yīng)邊相等證得AP=DP,DC=PB=3,易得點(diǎn)D的坐標(biāo);(2)設(shè)P(a,0),Q(2,b).需要分類討論:①AB=PC,BP=CQ;②AB=CQ,BP=PC.結(jié)合兩點(diǎn)間的距離公式列出方程組,通過解方程組求得a、b的值,得解.【詳解】(1)軸在和中,(2)設(shè),①,,解得或,或,或,或,②,,,解得,或,綜上:,或,或,或,或,或,【點(diǎn)睛】考查了三角形綜合題.涉及到了全等三角形的判定與性質(zhì),兩點(diǎn)間的距離公式,一元一次絕對(duì)值方程組的解法等知識(shí)點(diǎn).解答(2)題時(shí),由于沒有指明全等三角形的對(duì)應(yīng)邊(角),所以需要分類討論,以防漏解.11.探究:如圖①,在△ABC中,∠ACB=90°,CD⊥AB于點(diǎn)D,若∠B=30°,則∠ACD的度數(shù)是度;拓展:如圖②,∠MCN=90°,射線CP在∠MCN的內(nèi)部,點(diǎn)A、B分別在CM、CN上,分別過點(diǎn)A、B作AD⊥CP、BE⊥CP,垂足分別為D、E,若∠CBE=70°,求∠CAD的度數(shù);應(yīng)用:如圖③,點(diǎn)A、B分別在∠MCN的邊CM、CN上,射線CP在∠MCN的內(nèi)部,點(diǎn)D、E在射線CP上,連接AD、BE,若∠ADP=∠BEP=60°,則∠CAD+∠CBE+∠ACB=度.解析:探究:30;(2)拓展:20°;(3)應(yīng)用:120【解析】【分析】(1)利用直角三角形的性質(zhì)依次求出∠A,∠ACD即可;(2)利用直角三角形的性質(zhì)直接計(jì)算得出即可;(3)利用三角形的外角的性質(zhì)得出結(jié)論,直接轉(zhuǎn)化即可得出結(jié)論.【詳解】(1)在△ABC中,∠ACB=90°,∠B=30°,∴∠A=60°,∵CD⊥AB,∴∠ADC=90°,∴∠ACD=90°﹣∠A=30°;故答案為:30,(2)∵BE⊥CP,∴∠BEC=90°,∵∠CBE=70°,∴∠BCE=90°﹣∠CBE=20°,∵∠ACB=90°,∴∠ACD=90°﹣∠BCE=70°,∵AD⊥CP,∴∠CAD=90°﹣∠ACD=20°;(3)∵∠ADP是△ACD的外角,∴∠ADP=∠ACD+∠CAD=60°,同理,∠BEP=∠BCE+∠CBE=60°,∴∠CAD+∠CBE+∠ACB=∠CAD+∠CBE+∠ACD+∠BCE=(∠CAD+∠ACD)+(∠CBE+∠BCE)=120°,故答案為120.【點(diǎn)睛】此題是三角形的綜合題,主要考查了直角三角形的性質(zhì),三角形的外角的性質(zhì),垂直的定義,解本題的關(guān)鍵是充分利用直角三角形的性質(zhì):兩銳角互余,是一道比較簡(jiǎn)單的綜合題.12.(1)填空①把一張長(zhǎng)方形的紙片按如圖①所示的方式折疊,,為折痕,折疊后的點(diǎn)落在或的延長(zhǎng)線上,那么的度數(shù)是________;②把一張長(zhǎng)方形的紙片按如圖②所示的方式折疊,點(diǎn)與點(diǎn)重合,,為折痕,折疊后的點(diǎn)落在或的延長(zhǎng)線上,那么的度數(shù)是_______.(2)解答:①把一張長(zhǎng)方形的紙片按如圖③所示的方式折疊,,為折痕,折疊后的點(diǎn)落在或的延長(zhǎng)線上左側(cè),且,求的度數(shù);②把一張長(zhǎng)方形的紙片按如圖④所示的方式折疊,點(diǎn)與點(diǎn)重合,,為折痕,折疊后的點(diǎn)落在或的延長(zhǎng)線右側(cè),且,求的度數(shù).(3)探究:把一張四邊形的紙片按如圖⑤所示的方式折疊,,為折痕,設(shè),,,求,,之間的數(shù)量關(guān)系.解析:,;,;,.【解析】【分析】(1)①如圖①知,得可求出解.②由圖②知得可求出解.(2)①由圖③折疊知,可推出,即可求出解.②由圖④中折疊知,可推出,即可求出解.(3)如圖⑤-1、⑤-2中分別由折疊可知,、,即可求得、.【詳解】解:(1)①如圖①中,,,,故答案為.②如圖②中,,,故答案為.(2)①如圖③中由折疊可知,,,,,;②如圖④中根據(jù)折疊可知,,,,,,;(3)如圖⑤-1中,由折疊可知,,;如圖⑤-2中,由折疊可知,,.【點(diǎn)睛】本題考查了圖形的變換中折疊屬全等變換,圖形的角度及邊長(zhǎng)不變及一些角度的計(jì)算問題,突出考查學(xué)生的觀察能力、思維能力以及動(dòng)手操作能力,本題是代數(shù)、幾何知識(shí)的綜合運(yùn)用典型題目.13.(閱讀材科)小明同學(xué)發(fā)現(xiàn)這樣一個(gè)規(guī)律:兩個(gè)頂角相等的等腰三角形,如果具有公共的項(xiàng)角的頂點(diǎn),并把它們的底角頂點(diǎn)連接起來(lái)則形成一組全等的三角形,小明把具有這個(gè)規(guī)律的圖形稱為“手拉手”圖形.如圖1,在“手拉手”圖形中,小明發(fā)現(xiàn)若∠BAC=∠DAE,AB=AC,AD=AE,則△ABD≌△ACE.(材料理解)(1)在圖1中證明小明的發(fā)現(xiàn).(深入探究)(2)如圖2,△ABC和△AED是等邊三角形,連接BD,EC交于點(diǎn)O,連接AO,下列結(jié)論:①BD=EC;②∠BOC=60°;③∠AOE=60°;④EO=CO,其中正確的有.(將所有正確的序號(hào)填在橫線上).(延伸應(yīng)用)(3)如圖3,AB=BC,∠ABC=∠BDC=60°,試探究∠A與∠C的數(shù)量關(guān)系.解析:(1)證明見解析;(2)①②③;(3)∠A+∠C=180°.【解析】【分析】(1)利用等式的性質(zhì)得出∠BAD=∠CAE,即可得出結(jié)論;(2)同(1)的方法判斷出△ABD≌△ACE,得出BD=CE,再利用對(duì)頂角和三角形的內(nèi)角和定理判斷出∠BOC=60°,再判斷出△BCF≌△ACO,得出∠AOC=120°,進(jìn)而得出∠AOE=60°,再判斷出BF<CF,進(jìn)而判斷出∠OBC>30°,即可得出結(jié)論;(3)先判斷出△BDP是等邊三角形,得出BD=BP,∠DBP=60°,進(jìn)而判斷出△ABD≌△CBP(SAS),即可得出結(jié)論.【詳解】(1)證明:∵∠BAC=∠DAE,∴∠BAC+∠CAD=∠DAE+∠CAD,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE;(2)如圖2,∵△ABC和△ADE是等邊三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE,∴BD=CE,①正確,∠ADB=∠AEC,記AD與CE的交點(diǎn)為G,∵∠AGE=∠DGO,∴180°-∠ADB-∠DGO=180°-∠AEC-∠AGE,∴∠DOE=∠DAE=60°,∴∠BOC=60°,②正確,在OB上取一點(diǎn)F,使OF=OC,∴△OCF是等邊三角形,∴CF=OC,∠OFC=∠OCF=60°=∠ACB,∴∠BCF=∠ACO,∵AB=AC,∴△BCF≌△ACO(SAS),∴∠AOC=∠BFC=180°-∠OFC=120°,∴∠AOE=180°-∠AOC=60°,③正確,連接AF,要使OC=OE,則有OC=CE,∵BD=CE,∴CF=OF=BD,∴OF=BF+OD,∴BF<CF,∴∠OBC>∠BCF,∵∠OBC+∠BCF=∠OFC=60°,∴∠OBC>30°,而沒辦法判斷∠OBC大于30度,所以,④不一定正確,即:正確的有①②③,故答案為①②③;(3)如圖3,延長(zhǎng)DC至P,使DP=DB,∵∠BDC=60°,∴△BDP是等邊三角形,∴BD=BP,∠DBP=60°,∵∠BAC=60°=∠DBP,∴∠ABD=∠CBP,∵AB=CB,∴△ABD≌△CBP(SAS),∴∠BCP=∠A,∵∠BCD+∠BCP=180°,∴∠A+∠BCD=180°.【點(diǎn)睛】此題考查三角形綜合題,等腰三角形的性質(zhì),等邊三角形的性質(zhì),全等三角形的判定和性質(zhì),構(gòu)造等邊三角形是解題的關(guān)鍵.14.已知在△ABC中,AB=AC,射線BM、BN在∠ABC內(nèi)部,分別交線段AC于點(diǎn)G、H.(1)如圖1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于點(diǎn)D,分別交BC、BM于點(diǎn)E、F.①求證:∠1=∠2;②如圖2,若BF=2AF,連接CF,求證:BF⊥CF;(2)如圖3,點(diǎn)E為BC上一點(diǎn),AE交BM于點(diǎn)F,連接CF,若∠BFE=∠BAC=2∠CFE,求的值.解析:(1)①見解析;②見解析;(2)2【解析】【分析】(1)①只要證明∠2+∠BAF=∠1+∠BAF=60°即可解決問題;②只要證明△BFC≌△ADB,即可推出∠BFC=∠ADB=90°;(2)在BF上截取BK=AF,連接AK.只要證明△ABK≌CAF,可得S△ABK=S△AFC,再證明AF=FK=BK,可得S△ABK=S△AFK,即可解決問題;【詳解】(1)①證明:如圖1中,∵AB=AC,∠ABC=60°∴△ABC是等邊三角形,∴∠BAC=60°,∵AD⊥BN,∴∠ADB=90°,∵∠MBN=30°,∠BFD=60°=∠1+∠BAF=∠2+∠BAF,∴∠1=∠2②證明:如圖2中,在Rt△BFD中,∵∠FBD=30°,∴BF=2DF,∵BF=2AF,∴BF=AD,∵∠BAE=∠FBC,AB=BC,∴△BFC≌△ADB,∴∠BFC=∠ADB=90°,∴BF⊥CF(2)在BF上截取BK=AF,連接AK.∵∠BFE=∠2+∠BAF,∠CFE=∠4+∠1,∴∠CFB=∠2+∠4+∠BAC,∵∠BFE=∠BAC=2∠EFC,∴∠1+∠4=∠2+∠4∴∠1=∠2,∵AB=AC,∴△ABK≌CAF,∴∠3=∠4,S△ABK=S△AFC,∵∠1+∠3=∠2+∠3=∠CFE=∠AKB,∠BAC=2∠CEF,∴∠KAF=∠1+∠3=∠AKF,∴AF=FK=BK,∴S△ABK=S△AFK,∴.【點(diǎn)睛】本題考查全等三角形的判定和性質(zhì)、等邊三角形的性質(zhì)、等腰三角形的判定和性質(zhì)、直角三角形30度角性質(zhì)等知識(shí),解題的關(guān)鍵是能夠正確添加常用輔助線,構(gòu)造全等三角形解決問題,屬于中考?jí)狠S題.15.如圖,中,,,點(diǎn)為射線上一動(dòng)點(diǎn),連結(jié),作且.(1)如圖1,過點(diǎn)作交于點(diǎn),求證:;(2)如圖2,連結(jié)交于點(diǎn),若,,求證:點(diǎn)為中點(diǎn).(3)當(dāng)點(diǎn)在射線上,連結(jié)與直線交于點(diǎn),若,,則______.(直接寫出結(jié)果)解析:(1)見解析;(2)見解析;(3)或【解析】【分析】(1)證明△AFD≌△EAC,根據(jù)全等三角形的性質(zhì)得到DF=AC,等量代換證明結(jié)論;(2)作FD⊥AC于D,證明△FDG≌△BCG,得到DG=CG,求出CE,CB的長(zhǎng),得到答案;(3)過F作FD⊥AG的延長(zhǎng)線交于點(diǎn)D,根據(jù)全等三角形的性質(zhì)得到CG=GD,AD=CE=7,代入計(jì)算即可.【詳解】解:(1)證明:∵FD⊥AC,∴∠FDA=90°,∴∠DFA+∠DAF=90°,同理,∠CAE+∠DAF=90°,∴∠DFA=∠CAE,在△AFD和△EAC中,,∴△AFD≌△EAC(AAS),∴DF=AC,∵AC=BC,∴FD=BC;(2)作FD⊥AC于D,由(1)得,F(xiàn)D=AC=BC,AD=CE,在△FDG和△BCG中,,∴△FDG≌△BCG(AAS),∴DG=CG=1,∴AD=2,∴CE=2,∵BC=AC=AG+CG=4,∴E點(diǎn)為BC中點(diǎn);(3)當(dāng)點(diǎn)E在CB的延長(zhǎng)線上時(shí),過F作FD⊥AG的延長(zhǎng)線交于點(diǎn)D,BC=AC=4,CE=CB+BE=7,由(1)(2)知:△ADF≌△ECA,△GDF≌△GCB,∴CG=GD,AD=CE=7,∴CG=DG=1.5,∴,同理,當(dāng)點(diǎn)E在線段BC上時(shí),,故答案為:或.【點(diǎn)睛】本題考查的是全等三角形的判定和性質(zhì),掌握全等三角形的判定定理和性質(zhì)定理是解題的關(guān)鍵.二、選擇題16.近年來(lái),國(guó)家重視精準(zhǔn)扶貧,收效顯著.據(jù)統(tǒng)計(jì)約有65000000人脫貧,把65000000用科學(xué)記數(shù)法表示,正確的是()A.0.65×108 B.6.5×107 C.6.5×108 D.65×106解析:B【解析】分析:科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值大于10時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值小于1時(shí),n是負(fù)數(shù).詳解:65000000=6.5×107.故選B.點(diǎn)睛:此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.17.以下選項(xiàng)中比-2小的是()A.0 B.1 C.-1.5 D.-2.5解析:D【解析】【分析】根據(jù)有理數(shù)比較大小法則:負(fù)數(shù)的絕對(duì)值越大反而越小可得答案.【詳解】根據(jù)題意可得:,故答案為:D.【點(diǎn)睛】本題考查的是有理數(shù)的大小比較,解題關(guān)鍵在于負(fù)數(shù)的絕對(duì)值越大值越小.18.地球與月球的平均距離為384000km,將384000這個(gè)數(shù)用科學(xué)記數(shù)法表示為()A.3.84×103 B.3.84×104 C.3.84×105 D.3.84×106解析:C【解析】【分析】科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù).【詳解】試題分析:384000=3.84×105.故選C.【點(diǎn)睛】此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.19.如圖,已知在一條直線上,是銳角,則的余角是()A. B.C. D.解析:C【解析】【分析】由圖知:∠1和∠2互補(bǔ),可得∠1+∠2=180°,即(∠1+∠2)=90°①;而∠1的余角為90°-∠1②,可將①中的90°所表示的(∠1+∠2)代入②中,即可求得結(jié)果.【詳解】解:由圖知:∠1+∠2=180°,∴(∠1+∠2)=90°,∴90°-∠1=(∠1+∠2)-∠1=(∠2-∠1).故選:C.【點(diǎn)睛】此題綜合考查余角與補(bǔ)角,難點(diǎn)在于將∠1+∠2=180°進(jìn)行適當(dāng)?shù)淖冃?,從而與∠1的余角產(chǎn)生聯(lián)系.20.在,,,這四個(gè)數(shù)中,最小的數(shù)是()A. B. C. D.解析:C【解析】【分析】由題意先根據(jù)有理數(shù)的大小比較法則比較大小,再選出選項(xiàng)即可.【詳解】解:∵<<<,∴最小的數(shù)是,故選:C.【點(diǎn)睛】本題考查有理數(shù)的大小比較的應(yīng)用,主要考查學(xué)生的比較能力,注意正數(shù)都大于0,負(fù)數(shù)都小于0,正數(shù)大于一切負(fù)數(shù),兩個(gè)負(fù)數(shù)比較大小,其絕對(duì)值大的反而?。?1.已知線段AB的長(zhǎng)為4,點(diǎn)C為AB的中點(diǎn),則線段AC的長(zhǎng)為()A.1 B.2 C.3 D.4解析:B【解析】【分析】根據(jù)線段中點(diǎn)的性質(zhì),可得AC的長(zhǎng).【詳解】解:由線段中點(diǎn)的性質(zhì),得AC=AB=2.故選B.【點(diǎn)睛】本題考查了兩點(diǎn)間的距離,利用了線段中點(diǎn)的性質(zhì).22.在四個(gè)數(shù)中,屬于無(wú)理數(shù)的是()A. B. C. D.解析:B【解析】【分析】根據(jù)無(wú)理數(shù)為無(wú)限不循環(huán)小數(shù)、開方開不盡的數(shù)、含π的數(shù)判斷即可.【詳解】0.23是有限小數(shù),是有理數(shù),不符合題意,是開方開不盡的數(shù),是無(wú)理數(shù),符合題意,-2是整數(shù),是有理數(shù),不符合題意,是分?jǐn)?shù),是有理數(shù),不符合題意,故選:B.【點(diǎn)睛】本題考查無(wú)理數(shù)概念,無(wú)理數(shù)為無(wú)限不循環(huán)小數(shù)、開方開不盡的數(shù)、含π的數(shù),熟練掌握無(wú)理數(shù)的定義是解題關(guān)鍵.23.將圖中的葉子平移后,可以得到的圖案是()A. B. C. D.解析:A【解析】【分析】根據(jù)平移的特征分析各圖特點(diǎn),只要符合“圖形的形狀、大小和方向都不改變”即為正確答案.【詳解】解:根據(jù)平移不改變圖形的形狀、大小和方向,將所示的圖案通過平移后可以得到的圖案是A,其它三項(xiàng)皆改變了方向,故錯(cuò)誤.故選:A.【點(diǎn)睛】本題考查了圖形的平移,圖形的平移只改變圖形的位置,而不改變圖形的形狀、大小和方向,學(xué)生易混淆圖形的平移,旋轉(zhuǎn)或翻轉(zhuǎn)而誤選.24.一張普通A4紙的厚度約為0.00
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025中銀證券面試題及答案
- 2025公務(wù)員考試維語(yǔ)考試題及答案
- 2025公務(wù)員競(jìng)聘試題及答案
- 2025公務(wù)員解決問題試題及答案
- 2025公務(wù)員基礎(chǔ)測(cè)試題及答案
- 信息框架視角下成就動(dòng)機(jī)對(duì)大學(xué)生學(xué)習(xí)投入的作用機(jī)制研究
- 以背誦輸入賦能中職英語(yǔ)寫作教學(xué):理論、實(shí)踐與成效
- 亞投行:中國(guó)構(gòu)建國(guó)際經(jīng)濟(jì)新秩序的戰(zhàn)略支點(diǎn)與實(shí)踐探索
- 中國(guó)商業(yè)銀行操作風(fēng)險(xiǎn)管理:現(xiàn)狀、挑戰(zhàn)與應(yīng)對(duì)策略研究
- 2025常用金融知識(shí)試題及答案
- 因公出國(guó)人員行前培訓(xùn)
- 滴灌施肥技能培訓(xùn)課件
- 膠原蛋白培訓(xùn)課件
- 2025至2030中國(guó)科研服務(wù)行業(yè)發(fā)展趨勢(shì)分析與未來(lái)投資戰(zhàn)略咨詢研究報(bào)告
- 腫瘤患者的臨終關(guān)懷及護(hù)理
- 2025年6月浙江省高考地理試卷真題(含答案解析)
- GB/T 45785-2025壓縮空氣站能源績(jī)效評(píng)價(jià)
- 產(chǎn)權(quán)車位轉(zhuǎn)讓協(xié)議書范本
- CCU護(hù)士進(jìn)修出科匯報(bào)
- 解表藥白芷講課件
- T/CUWA 60054-2023飲用水納濾阻垢劑性能試驗(yàn)方法
評(píng)論
0/150
提交評(píng)論