




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖北省當陽市中考數學真題分類(平行線的證明)匯編同步練習考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、如圖,在△ABC中,∠ABC的平分線與△ABC的外角平分線相交于點D,,則∠D的度數是(
)A.44° B.24° C.22° D.20°2、將一副三角板按如圖所示的方式放置,,,,且點在上,點在上,AC∥EF,則的度數為(
)A. B. C. D.3、如圖,已知△ABC≌△DCB,∠A=75°,∠DBC=40°,則∠DCB的度數為(
)A.75° B.65°C.40° D.30°4、下列圖形中,由AB∥CD,能得到∠1=∠2的是(
)A. B.C. D.5、在中,,則為(
)三角形.A.銳角 B.直角 C.鈍角 D.等腰6、給定下列條件,不能判定三角形為直角三角形的是(
)A.∠A:∠B:∠C=1∶2∶3 B.∠A+∠B=∠CC. D.∠A=2∠B=3∠C7、下列定理中,沒有逆定理的是(
)A.等腰三角形的兩個底角相等 B.對頂角相等C.三邊對應相等的兩個三角形全等 D.直角三角形兩個銳角的和等于90°8、如圖,點D、E分別在線段BC、AC上,連接AD、BE.若∠A=35°,∠B=25°,∠1=70°,則∠C的大小為()A.40° B.50° C.75° D.85°第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、如圖,射線AB與射線CD平行,點F為射線AB上的一定點,連接CF,點P是射線CD上的一個動點(不包括端點C),將沿PF折疊,使點C落在點E處.若,當點E到點A的距離最大時,_____.2、如圖,,的平分線交于點,是上的一點,的平分線交于點,且,下列結論:①平分;②;③與互余的角有個;④若,則.其中正確的是________.(請把正確結論的序號都填上)3、如圖,下列條件中:(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5,能判定AB∥CD的條件個數有__個.4、如圖,在中,平分,DEAC,若,,那么__.5、如圖,直線AB、CD相交于點O,∠BOC=α,點F在直線AB上且在點O的右側,點E在射線OC上,連接EF,直線EM、FN交于點G.若∠MEF=n∠CEF,∠NFE=(1﹣2n)∠AFE,且∠EGF的度數與∠AFE的度數無關,則∠EGF=__.(用含有α的代數式表示)6、下列命題中,其逆命題成立的是__.(只填寫序號)①同旁內角互補,兩直線平行;②如果兩個角是直角,那么它們相等;③如果兩個實數相等,那么它們的平方相等;④如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形是直角三角形.7、如圖,將分別含有、角的一副三角板重疊,使直角頂點重合,若兩直角重疊形成的角為,則圖中角的度數為_______.三、解答題(7小題,每小題10分,共計70分)1、如圖,在中,.(1)如圖①所示,直線過點,于點,于點,且.求證:.(2)如圖②所示,直線過點,交于點,交于點,且,則是否成立?請說明理由.2、如圖,已知∠1+∠AFE=180°,∠A=∠2,求證:∠A=∠C+∠AFC證明:∵∠1+∠AFE=180°∴CD∥EF(,)∵∠A=∠2
∴()(,)∴AB∥CD∥EF(,)∴∠A=,∠C=,(,)∵∠AFE=∠EFC+∠AFC,∴=.3、如圖,在△ABC中,D是BC邊上的一點,AB=DB,BE平分∠ABC,交AC邊于點E,連接DE.(1)求證:△ABE≌△DBE,(2)若∠A=100°,∠C=50°,求∠AEB的度數.4、已知:如圖,△ABC是任意一個三角形,求證:∠A+∠B+∠C=180°.5、如圖,△ABC中,E是AB上一點,過D作DEBC交AB于E點,F(xiàn)是BC上一點,連接DF.若∠AED=∠1.(1)求證:ABDF.(2)若∠1=52°,DF平分∠CDE,求∠C的度數.6、如圖,∠ABC=31°,又∠BAC的平分線AE與∠FCB的平分線CE相交于E點,求∠AEC的度數.7、點E在射線DA上,點F、G為射線BC.上兩個動點,滿足∠DBF=∠DEF,∠BDG=∠BGD,DG平分∠BDE.(1)如圖,當點G在F右側時,求證:;(2)如圖,當點G在BF左側時,求證:;(3)如圖,在(2)的條件下,P為BD延長線上一點,DM平分∠BDG,交BC于點M,DN平分∠PDM,交EF于點N,連接NG,若DG⊥NG,,求∠B的度數.-參考答案-一、單選題1、C【解析】【分析】根據角平分線定義可得∠CBD=∠ABC,根據三角形外角性質表示出∠DCE,然后整理即可得到∠D=∠A,從而求出度數.【詳解】解:∵BD平分∠ABC,∴∠CBD=∠ABC,∵CD是△ABC的外角平分線,∴∠DCE=∠ACE,∵∠DCE=∠CBD+∠D=∠ABC+∠D,∠ACE=∠A+∠ABC,∴∠ABC+∠D=(∠ABC+∠A).∴∠D=∠A=22°.故選:C.【考點】此題考查了角平分線的計算,三角形外角的性質,熟記三角形外角性質是解題的關鍵.2、C【解析】【分析】根據平行線的性質和三角形的內角和定理即可得到結論.【詳解】∵AC∥EF,∴∠DBE=∠C=45°,∴∠FBD=135°,∵∠E=60°,∠EDF=90°,∴∠F=30°,∴∠FDC=∠F+∠FBD=30°+135°=165°,故選:C.【考點】本題考查了三角形的內角和定理,平行線的性質,正確的識別圖形是解題的關鍵.3、B【解析】【分析】直接利用全等三角形的性質得出對應角相等進而求出答案.【詳解】解:∵△ABC≌△DCB,∴∠D=∠A=75°,∠ACB=∠DBC=40°,∴∠DCB=180°-75°-40°=65°,故選:B.【考點】此題主要考查了全等三角形的性質,正確得出對應角的度數是解題關鍵.4、B【解析】【分析】根據平行四邊形的性質逐項判斷即可.【詳解】A、∵AB//CD,∴∠1+∠2=180°.故本選項不符合題意;B、如圖,∵AB//CD,∴∠1=∠3.∵∠2=∠3,∴∠1=∠2.故本選項正確.C、∵AB//CD,∴∠BAD=∠CDA,不能得到∠1=∠2.故本選項不符合題意;D、當梯形ABDC是等腰梯形時才有,∠1=∠2.故本選項不符合題意.故選:B.【考點】本題考查平行線的性質,熟練掌握平行線的性質是解答的關鍵.5、B【解析】【分析】根據分別設出三個角的度數,再根據三角形的內角和為180°列出一個方程,解此方程即可得出答案.【詳解】∵∴可設∠A=x,∠B=2x,∠C=3x根據三角形的內角和可得:x+2x+3x=180°解得:x=30°∴∠A=30°,∠B=60°,∠C=90°因此△ABC是直角三角形故答案選擇B.【考點】本題主要考查的是三角形的基本概念.6、D【解析】【分析】根據三角形的內角和等于180°求出最大角,然后選擇即可.【詳解】解:A、最大角∠C=×180°=90°,是直角三角形,不符合題意;B、最大角∠C=180°÷2=90°,是直角三角形,不符合題意;C、設∠A=x,則∠B=2x,∠C=3x,所以,x+2x+3x=180°,解得x=30°,最大角∠C=3×30°=90°,是直角三角形,不符合題意;D、設∠A=x,則∠B=x,∠C=x,所以,,解得,是鈍角三角形,符合題意.故選:D.【考點】本題考查了三角形的內角和定理,求出各選項中的最大角是解題的關鍵.7、B【解析】【詳解】解:A、等腰三角形的兩個底角相等的逆命題為:有兩個角相等的三角形為等腰三角形,此逆命題為真命題,所以A選項有逆定理;B、對頂角相等的逆命題為:相等的角為對頂角,此命題為假命題,所以B選項沒有逆定理;C、三邊對應相等的兩個三角形全等的逆命題為:全等的兩個三角形的三邊對應相等,此逆命題為真命題,所以C選項有逆定理;D、直角三角形的兩銳角的和為90°的逆命題為:兩銳角的和為90°的三角形為直角三角形,此逆命題為真命題,所以D選項有逆定理.故選B.8、B【解析】【分析】根據三角形內角和定理可求出的大小,再根據三角形外角性質即可求出的大?。驹斀狻俊?,,∴,∴.故選B.【考點】本題考查三角形內角和定理和三角形外角的性質.利用數形結合的思想是解答本題的關鍵.二、填空題1、##59度【解析】【分析】利用三角形三邊關系可知:當E落在AB上時,AE距離最大,利用且,得到,再根據折疊性質可知:,利用補角可知,進一步可求出.【詳解】解:利用兩邊之和大于第三邊可知:當E落在AB上時,AE距離最大,如圖:∵且,∴,∵折疊得到,∴,∵,∴.故答案為:【考點】本題考查三角形的三邊關系,平行線的性質,折疊的性質,補角,角平分線,解題的關鍵是找出:當E落在AB上時,AE距離最大,再解答即可.2、①②【解析】【分析】由BD⊥BC及BD平分∠GBE,可判斷①正確;由CB平分∠ACF、AE∥CF及①的結論可判斷②正確;由前兩個的結論可對③作出判斷;由AE∥CF及AC∥BG、三角形外角的性質可求得∠BDF,從而可對④作出判斷.【詳解】∵BD平分∠GBE∴∠EBD=∠GBD=∠GBE∵BD⊥BC∴∠GBD+∠GBC=∠CBD=90°∴∠DBE+∠ABC=90°∴∠GBC=∠ABC∴BC平分∠ABG故①正確∵CB平分∠ACF∴∠ACB=∠GCB∵AE∥CF∴∠ABC=∠GCB∴∠ACB=∠GCB=∠ABC=∠GBC∴AC∥BG故②正確∵∠DBE+∠ABC=90°,∠ACB=∠GCB=∠ABC=∠GBC∴與∠DBE互余的角共有4個故③錯誤∵AC∥BG,∠A=α∴∠GBE=α∴∵AE∥CF∴∠BGD=180°-∠GBE=180°?α∴∠BDF=∠GBD+∠BGD=故④錯誤即正確的結論有①②故答案為:①②【考點】本題考查了平行線的判定與性質,互余概念,垂直的定義,角平分線的性質等知識,掌握這些知識并正確運用是關鍵.3、3【解析】【分析】根據平行線的判定定理即可判斷.【詳解】解:(1)∠B+∠BCD=180°,則AB∥CD;(2)∠1=∠2,則AD∥BC;(3)∠3=∠4,則AB∥CD;(4)∠B=∠5,則AB∥CD,故能判定AB∥CD的條件個數有3個.故答案為:3.【考點】本題主要考查了平行線的判定,同位角相等,兩直線平行;內錯角相等,兩直線平行;同旁內角互補,兩直線平行.4、30°##30度【解析】【分析】由三角形的內角和定理可求解∠BAC的度數,結合角平分線的定義可得∠CAD的度數,利用平行線的性質可求解.【詳解】解:∵∠C=75°,∠B=45°,∴∠BAC=180°﹣∠B﹣∠C=60°,∵AD平分∠BAC,∴∠CAD∠BAC=30°,∵DE∥AC,∴∠ADE=∠CAD=30°.故答案為30°.【考點】本題主要考查三角形的內角和定理,平行線的性質,角平分線的定義,求解∠CAD的度數.5、α##α3【解析】【分析】利用三角形外角的性質:三角形的一個外角等于和它不相鄰的兩個內角和,以及三角形內角和定理求解.【詳解】解:∵∠CEF=∠AFE+∠BOC,∠BOC=α,∴∠CEF=α+∠AFE,∵∠MEF=n∠CEF,∴∠MEF=n(α+∠AFE),∵∠EGF=∠MEF﹣∠NFE,∴∠EGF=n(α+∠AFE)﹣(1﹣2n)∠AFE=nα+(3n﹣1)∠AFE,∵∠EGF的度數與∠AFE的度數無關,∴3n﹣1=0,即n=,∴∠EGF=α;故答案為:α.【考點】此題考查了三角形外角的性質及角度計算,解題的關鍵是理解∠EGF的度數與∠AFE的度數無關的含義.6、①④##④①【解析】【詳解】把一個命題的條件和結論互換就得到它的逆命題,再分析逆命題是否為真命題,需要分別分析各題設是否能推出結論,從而利用排除法得出答案.①兩直線平行,同旁內角互補,正確;②如果兩個角相等,那么它們是直角,錯誤;③如果兩個實數的平方相等,那么這兩個實數相等,錯誤;④如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形是直角三角形,正確.故答案為①④.7、##140度【解析】【分析】如圖,首先標注字母,利用三角形的內角和求解,再利用對頂角的相等,三角形的外角的性質可得答案.【詳解】解:如圖,標注字母,由題意得:故答案為:【考點】本題考查的是三角形的內角和定理,三角形的外角的性質,掌握以上知識是解題的關鍵.三、解答題1、(1)見解析;(2)仍然成立,理由見解析【解析】【分析】(1)首先根據同角的余角相等得到,然后證明,然后根據全等三角形對應邊相等得到,,然后通過線段之間的轉化即可證明;(2)首先根據三角形內角和定理得到,然后證明,根據全等三角形對應邊相等得到,最后通過線段之間的轉化即可證明.【詳解】證明:(1)∵,,∴,∴,∵,∴,∴,在和中,,∴,∴,,∵,∴;(2)仍然成立,理由如下:∵,∵,∴,在和中,,∴,∴,,∵,∴.【考點】此題考查了全等三角形的性質和判定,同角的與相等,三角形內角和定理等知識,解題的關鍵是根據同角的余角相等或三角形內角和定理得到.2、同旁內角互補兩直線平行;AB∥CD;同位角相等,兩直線平行;兩條直線都與第三條直線平行,則這兩直線也互相平行;∠AFE,∠EFC;兩直線平行,內錯角相等;∠A,∠C+∠AFC.【解析】【分析】根據同旁內角互補,兩直線平行可得CD∥EF,根據∠A=∠2利用同位角相等,兩直線平行,AB∥CD,根據平行同一直線的兩條直線平行可得AB∥CD∥EF根據平行線的性質可得∠A=∠AFE
,∠C=∠EFC,根據角的和可得∠AFE=∠EFC+∠AFC即可.【詳解】證明:∵∠1+∠AFE=180°∴CD∥EF(同旁內角互補,兩直線平行),∵∠A=∠2,∴(AB∥CD)(同位角相等,兩直線平行),∴AB∥CD∥EF(兩條直線都與第三條直線平行,則這兩直線也互相平行)∴∠A=∠AFE,∠C=∠EFC,(兩直線平行,內錯角相等)∵∠AFE=∠EFC+∠AFC,∴∠A=∠C+∠AFC.故答案為:同旁內角互補兩直線平行;AB∥CD;同位角相等,兩直線平行;兩條直線都與第三條直線平行,則這兩直線也互相平行;∠AFE,∠EFC;兩直線平行,內錯角相等;∠A,∠C+∠AFC.【考點】本題考查平行線的性質與判定,角的和差,掌握平行線的性質與判定是解題關鍵.3、(1)見解析(2)∠AEB=65°【解析】【分析】(1)由角平分線可得∠ABE=∠DBE,再證△ABE≌△DBE即可;(2)根據三角形內角和求出∠ABC=30°,再根據角平分線求出∠ABE=15°,根據三角形內角和可求.(1)證明:∵BE平分∠ABC,∴∠ABE=∠DBE,在△ABE和△DBE中,,∴△ABE≌△DBE(SAS),(2)解:∵∠A=100°,∠C=50°,∴∠ABC=30°,∵BE平分∠ABC,∴∠ABE=∠DBE=∠ABC=15°,在△ABE中,∠AEB=180°﹣∠A﹣∠ABE=180°﹣100°﹣15°=65°.【考點】本題考查了全等三角形的判定、角平分線的定義以及三角形內角和,掌握三角形全等的判定和運用三角形內角和求角度是解題的關鍵.4、證明見解析【解析】【分析】過點A作EFBC,利用EFBC,可得∠1=∠B,∠2=∠C,而∠1+∠2+∠BAC=180°,利用等量代換可證∠BAC+∠B+∠C=180°.【詳解】解:如圖,過點A作EFBC,∵EFBC,∴∠1=∠B,∠2=∠C,∵∠1+∠2+∠BAC=180°,∴∠BAC+∠B+∠C=180°,即∠A+∠B+∠C=180°.【考點】本題考查了三角形的內角和定理的證明,作輔助線把三角形的三個內角轉化到一個平角上是解題的關鍵.5、(1)見解析(2)【解析】【分析】(1)根據,得出,又因為,等量代換得,最后根據同位角相等,兩直線平行即可證明;(2)根據,得出,再根據平分,得出,最后在中利用三角形內角和等于即可求解.(1)解:證明:,,又,,;(2)解:,,平分,,在中,,.答:的度數為.【考點】本題考查了平行線的性質和判定,解題的關鍵是掌握題中各角之間的位置關系和數量關系.6、∠AEC的度數為15.5°.【解析】【分析】根據角平分線的定義可得∠EAC
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年谷物細粉項目提案報告
- 家居用品進銷存大數據平臺合作協(xié)議
- 環(huán)境治理承諾責任書8篇
- 2025年嘧菌酯項目提案報告
- 互聯(lián)網交易平臺誠實交易承諾書(3篇)
- 企業(yè)創(chuàng)新與質量承諾函4篇范文
- 2025年上半年內江市部分學校公開考試招聘教師、部分事業(yè)單位公開考試招聘工作人員筆試模擬試卷含答案詳解
- 電商銷售商品售后服務承諾函9篇范文
- 企業(yè)文化建設活動策劃執(zhí)行方案
- 高新技術產品使用保證承諾書4篇
- 彩票店轉讓協(xié)議書5篇
- 2025年貴州省貴陽市輔警考試題庫(附答案)
- SC/T 5017-1997丙綸裂膜夾鋼絲繩
- GB/T 19638.1-2014固定型閥控式鉛酸蓄電池第1部分:技術條件
- GB/T 14327-2009苯中噻吩含量的測定方法
- 松下panasonic-視覺說明書pv200培訓
- 先天性甲狀腺功能減低癥ppt
- 公共英語一級真題年月
- 植物生理學(全套PPT課件)
- 外科學題庫水電解質代謝和酸堿平衡失調
- 35kV輸電線路工程旋挖鉆孔專項施工方案
評論
0/150
提交評論