




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
京改版數(shù)學(xué)9年級上冊期末試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題26分)一、單選題(6小題,每小題2分,共計12分)1、已知點在半徑為8的外,則(
)A. B. C. D.2、如圖,四邊形OABC是平行四邊形,點A的坐標(biāo)為A(3,0),∠COA=60°,D為邊AB的中點,反比例函數(shù)y=(x>0)的圖象經(jīng)過C,D兩點,直線CD與y軸相交于點E,則點E的坐標(biāo)為(
)A.(0,2) B.(0,3) C.(0,5) D.(0,6)3、如圖,點M、N分別是正方形ABCD的邊BC、CD上的兩個動點,在運動過程中保持∠MAN=45°,連接EN、FM相交于點O,以下結(jié)論:①MN=BM+DN;②BE2+DF2=EF2;③BC2=BF?DE;④OM=OF()A.①②③ B.①②④ C.②③④ D.①②③④4、二次函數(shù)y=x2+px+q,當(dāng)0≤x≤1時,此函數(shù)最大值與最小值的差(
)A.與p、q的值都有關(guān) B.與p無關(guān),但與q有關(guān)C.與p、q的值都無關(guān) D.與p有關(guān),但與q無關(guān)5、點P(2,﹣2)在反比例函數(shù)的圖象上,則下列各點在該函數(shù)圖象上的是(
)A.(﹣4,1) B.(1,4) C.(﹣2,﹣2) D.(4,)6、為了美觀,在加工太陽鏡時將下半部分輪廓制作成拋物線的形狀(如圖所示),對應(yīng)的兩條拋物線關(guān)于軸對稱,軸,,最低點在軸上,高,,則右輪廓所在拋物線的解析式為(
)A. B. C. D.二、多選題(7小題,每小題2分,共計14分)1、如圖,AB為⊙O直徑,弦CD⊥AB于E,則下面結(jié)論中正確的是(
)A.CE=DE B.弧BC=弧BD C.∠BAC=∠BAD D.OE=BE2、如圖,在2×3的方格中,畫有格點△ABC,下列選項的方格中所畫格點三角形(陰影部分)與△ABC不相似的是()A. B. C. D.3、在△ABC中,∠C=90°,下列各式一定成立的是(
)A.a(chǎn)=b?cosA B.a(chǎn)=c?cosB C.c= D.a(chǎn)=b?tanA4、如圖,AB為半圓O的直徑,AD、BC分別切⊙O于A、B兩點,CD切⊙O于點E,AD與CD相交于D,BC與CD相交于C,連接OD、OC,下列結(jié)論正確的是(
)A.AD+BC=CD B.∠DOC=90°C.S梯形ABCD=CD?OA D.OD2=DE?CD5、已知函數(shù)y=的圖象如圖,以下結(jié)論:其中正確的有(
)A.m<0B.在每個分支上y隨x的增大而增大C.若點A(﹣1,a)、點B(2,b)在圖象上,則a<bD.若點P(x,y)在圖象上,則點P1(﹣x,﹣y)也在圖象上6、對于實數(shù)a,b,定義運算“※”:,例如:4※2,因為,所以,若函數(shù),則下列結(jié)論正確的是(
)A.方程的解為,;B.當(dāng)時,y隨x的增大而增大;C.若關(guān)于x的方程有三個解,則;D.當(dāng)時,函數(shù)的最大值為1.7、如圖,已知等邊三角形ABC的邊長為2,DE是它的中位線.則下面四個結(jié)論中正確的有()A.DE=1 B.AB邊上的高為C.△CDE∽△CAB D.△CDE的面積與△CAB面積之比為1:4第Ⅱ卷(非選擇題74分)三、填空題(7小題,每小題2分,共計14分)1、如圖,點O是正方形ABCD的對稱中心,射線OM,ON分別交正方形的邊AD,CD于E,F(xiàn)兩點,連接EF,已知,.(1)以點E,O,F(xiàn),D為頂點的圖形的面積為_________;(2)線段EF的最小值是_________.2、如圖,平行四邊形ABCD中,,點的坐標(biāo)是,以點為頂點的拋物線經(jīng)過軸上的點A,B,則此拋物線的解析式為__________________.3、已知函數(shù)y的圖象如圖所示,若直線y=kx﹣3與該圖象有公共點,則k的最大值與最小值的和為_____.4、北侖梅山所產(chǎn)的草莓柔嫩多汁,芳香味美,深受消費者喜愛.有一草莓種植大戶,每天草莓的采摘量為300千克,當(dāng)草莓的零售價為22元/千克時,剛好可以全部售完.經(jīng)調(diào)查發(fā)現(xiàn),零售價每上漲1元,每天的銷量就減少30千克,而剩余的草莓可由批發(fā)商以18元/千克的價格統(tǒng)一收購走,則當(dāng)草莓零售價為___元時,該種植戶一天的銷售收入最大.5、寫出一個滿足“當(dāng)時,隨增大而減小”的二次函數(shù)解析式______.6、如圖,△ABC內(nèi)接于☉O,∠CAB=30°,∠CBA=45°,CD⊥AB于點D,若☉O的半徑為2,則CD的長為_____7、已知二次函數(shù)y=x2+bx+c的頂點在x軸上,點A(m﹣1,n)和點B(m+3,n)均在二次函數(shù)圖象上,求n的值為____.四、解答題(6小題,每小題10分,共計60分)1、(1)方法導(dǎo)引:問題:如圖1,等邊三角形的邊長為6,點是和的角平分線交點,,繞點任意旋轉(zhuǎn),分別交的兩邊于,兩點.求四邊形面積.討論:①小明:在旋轉(zhuǎn)過程中,當(dāng)經(jīng)過點時,一定經(jīng)過點.②小穎:小明的分析有道理,這樣我們就可以利用“”證出.③小飛:因為,所以只要算出的面積就得出了四邊形的面積.老師:同學(xué)們的思路很清晰,也很正確.在分析和解決問題時,我們經(jīng)常會借用特例作輔助線來解決一般問題:請你按照討論的思路,直接寫出四邊形的面積:________.(2)應(yīng)用方法:①特例:如圖2,的頂點在等邊三角形的邊上,,,邊于點,于點,求的面積.②探究:如圖3,已知,頂點在等邊三角形的邊上,,,記的面積為,的面積為,求的值.③應(yīng)用:如圖4,已知,頂點在等邊三角形的邊的延長線上,,,記的面積為,的面積為,請直接寫出與的關(guān)系式.
2、如圖,拋物線y=a(x﹣2)2+3(a為常數(shù)且a≠0)與y軸交于點A(0,).(1)求該拋物線的解析式;(2)若直線y=kx(k≠0)與拋物線有兩個交點,交點的橫坐標(biāo)分別為x1,x2,當(dāng)x12+x22=10時,求k的值;(3)當(dāng)﹣4<x≤m時,y有最大值,求m的值.3、如圖,直角三角形中,,為中點,將繞點旋轉(zhuǎn)得到.一動點從出發(fā),以每秒1的速度沿的路線勻速運動,過點作直線,使.(1)當(dāng)點運動2秒時,另一動點也從出發(fā)沿的路線運動,且在上以每秒1的速度勻速運動,在上以每秒2的速度勻速運動,過作直線使,設(shè)點的運動時間為秒,直線與截四邊形所得圖形的面積為,求關(guān)于的函數(shù)關(guān)系式,并求出的最大值.(2)當(dāng)點開始運動的同時,另一動點從處出發(fā)沿的路線運動,且在上以每秒的速度勻速運動,在上以每秒2的速度勻度運動,是否存在這樣的,使為等腰三角形?若存在,直接寫出點運動的時間的值,若不存在請說明理由.4、某校舉行田徑運動會,學(xué)校準(zhǔn)備了某種氣球,這些氣球內(nèi)充滿了一定質(zhì)量的氣體,當(dāng)溫度不變時,氣球內(nèi)氣體的氣壓是氣體體積的反比例函數(shù),其圖象如圖所示.(1)求這一函數(shù)的解析式.(2)當(dāng)氣體的體積為時,氣壓是多少?(3)當(dāng)氣球內(nèi)的氣壓大于時,氣球會將爆炸,為了安全起見,氣體的體積應(yīng)不小于多少?5、計算:(1)(2)6、如圖,在中,,,,為的中點.動點從點出發(fā)以每秒個單位向終點勻速運動(點不與、、重合),過點作的垂線交折線于點.以、為鄰邊構(gòu)造矩形.設(shè)矩形與重疊部分圖形的面積為,點的運動時間為秒.(1)直接寫出的長(用含的代數(shù)式表示);(2)當(dāng)點落在的邊上時,求的值;(3)當(dāng)矩形與重疊部分圖形不是矩形時,求與的函數(shù)關(guān)系式,并寫出的取值范圍;(4)沿直線將矩形剪開,得到兩個圖形,用這兩個圖形拼成不重疊且無縫隙的圖形恰好是三角形.請直接寫出所有符合條件的的值.-參考答案-一、單選題1、A【解析】【分析】根據(jù)點P與⊙O的位置關(guān)系即可確定OP的范圍.【詳解】解:∵點P在圓O的外部,∴點P到圓心O的距離大于8,故選:A.【考點】本題主要考查點與圓的位置關(guān)系,關(guān)鍵是要牢記判斷點與圓的位置關(guān)系的方法.2、B【解析】【分析】作CE⊥x軸于點E,過B作BF⊥x軸于F,過D作DM⊥x軸于M,設(shè)C的坐標(biāo)為(x,x),表示出D的坐標(biāo),將C、D兩點坐標(biāo)代入反比例函數(shù)的解析式,解關(guān)于x的方程求出x即可得到點C、D的坐標(biāo),進而求得直線CD的解析式,最后計算該直線與y軸交點坐標(biāo)即可得出結(jié)果.【詳解】解:作CE⊥x軸于點E,則∠CEO=90°,過B作BF⊥x軸于F,過D作DM⊥x軸于M,則BF=CE,DM∥BF,BF=CE,∵D為AB的中點,∴AM=FM,∴DM=BF,∵∠COA=60°,∴∠OCE=30°,∴OC=2OE,CE=OE,∴設(shè)C的坐標(biāo)為(x,x),∴AF=OE=x,CE=BF=x,OE=AF=x,DM=x,∵四邊形OABC是平行四邊形,A(3,0),∴OF=3+x,OM=3+x,即D點的坐標(biāo)為(3+x,),把C、D的坐標(biāo)代入y=得:k=x?x=(3+x)?,解得:x1=2,x2=0(舍去),∴C(2,2),D(4,),設(shè)直線CD解析式為:y=ax+b,則,解得,∴直線CD解析式為:,∴當(dāng)x=0時,,∴點E的坐標(biāo)為(0,).故選:B.【考點】本題主要考查了平行四邊形的性質(zhì)、運用待定系數(shù)法求函數(shù)的解析式以及含度角的直角三角形的性質(zhì).根據(jù)反比例函數(shù)圖象經(jīng)過C、D兩點,得出關(guān)于x的方程是解決問題的關(guān)鍵.3、A【解析】【分析】由旋轉(zhuǎn)的性質(zhì)可得AM'=AM,BM=DM',∠BAM=∠DAM',∠MAM'=90°,∠ABM=∠ADM'=90°,由“SAS”可證△AMN≌△AM′N,可得MN=NM′,可得MN=BM+DN,故①正確;由“SAS”可證△AEF≌△AED',可得EF=D'E,由勾股定理可得BE2+DF2=EF2;故②正確;通過證明△DAE∽△BFA,可得,可證BC2=DE?BF,故③正確;通過證明點A,點B,點M,點F四點共圓,∠ABM=∠AFM=90°,∠AMF=∠ABF=45°,∠BAM=∠BFM,可證MO=EO,由∠BAM≠∠DAN,可得OE≠OF,故④錯誤,即可求解.【詳解】解:將△ABM繞點A逆時針旋轉(zhuǎn)90°,得到△ADM′,將△ADF繞點A順時針旋轉(zhuǎn)90°,得到△ABD',∴AM'=AM,BM=DM',∠BAM=∠DAM',∠MAM'=90°,∠ABM=∠ADM'=90°,∴∠ADM'+∠ADC=180°,∴點M'在直線CD上,∵∠MAN=45°,∴∠DAN+∠MAB=45°=∠DAN+∠DAM'=∠M'AN,∴∠M′AN=∠MAN=45°,又∵AN=AN,AM=AM',∴△AMN≌△AM′N(SAS),∴MN=NM′,∴M′N=M′D+DN=BM+DN,∴MN=BM+DN;故①正確;∵將△ADF繞點A順時針旋轉(zhuǎn)90°,得到△ABD',∴AF=AD',DF=D'B,∠ADF=∠ABD'=45°,∠DAF=∠BAD',∴∠D'BE=90°,∵∠MAN=45°,∴∠BAE+∠DAF=45°=∠BAD'+∠BAE=∠D'AE,∴∠D'AE=∠EAF=45°,又∵AE=AE,AF=AD',∴△AEF≌△AED'(SAS),∴EF=D'E,∵D'E2=BE2+D'B2,∴BE2+DF2=EF2;故②正確;∵∠BAF=∠BAE+∠EAF=∠BAE+45°,∠AEF=∠BAE+∠ABE=45°+∠BAE,∴∠BAF=∠AEF,又∵∠ABF=∠ADE=45°,∴△DAE∽△BFA,∴,又∵AB=AD=BC,∴BC2=DE?BF,故③正確;∵∠FBM=∠FAM=45°,∴點A,點B,點M,點F四點共圓,∴∠ABM=∠AFM=90°,∠AMF=∠ABF=45°,∠BAM=∠BFM,同理可求∠AEN=90°,∠DAN=∠DEN,∴∠EOM=45°=∠EMO,∴EO=EM,∴MO=EO,∵∠BAM≠∠DAN,∴∠BFM≠∠DEN,∴EO≠FO,∴OM≠FO,故④錯誤,故選:A.【考點】本題考查了全等三角形的判定和性質(zhì),正方形的性質(zhì),相似三角形的判定和性質(zhì),旋轉(zhuǎn)的性質(zhì)等知識,添加恰當(dāng)輔助線構(gòu)造全等三角形是解題的關(guān)鍵.4、D【解析】【分析】分別求出函數(shù)解析式的最小值、當(dāng)0≤x≤1時端點值即:當(dāng)x=0和x=1時的函數(shù)值.由二次函數(shù)性質(zhì)可知此函數(shù)最大值與最小值必是其中的兩個,通過比較可知差值與p有關(guān),但與q無關(guān)【詳解】解:依題意得:當(dāng)時,端點值,當(dāng)時,端點值,當(dāng)時,函數(shù)最小值,由二次函數(shù)的最值性質(zhì)可知,當(dāng)0≤x≤1時,此函數(shù)最大值和最小值是、、其中的兩個,所以最大值與最小值的差可能是或或,故其差只含p不含q,故與p有關(guān),但與q無關(guān)故選:.【考點】本題考查了二次函數(shù)的最值問題,掌握二次函數(shù)的性質(zhì)、靈活運用配方法是解題的關(guān)鍵.5、A【解析】【分析】根據(jù)點(2,-2)在反比例函數(shù)的圖象上,可以求得的值,從而可以判斷各個選項中的點是否在該函數(shù)的圖象上,本題得以解決.【詳解】解:∵點P(2,﹣2)在反比例函數(shù)的圖象上,∴A.(﹣4,1),,故該選項正確,符合題意,
B.(1,4),,故該選項不符合題意,C.(﹣2,﹣2),,故該選項不符合題意,
D.(4,),,故該選項不符合題意,故選A【考點】本題考查了反比例函數(shù)圖象上點的坐標(biāo)特征,解題的關(guān)鍵是求出反比例系數(shù),解決該題型題目時,結(jié)合點的坐標(biāo)利用反比例函數(shù)圖象上點的坐標(biāo)特征求出值是關(guān)鍵.6、B【解析】【分析】利用B、D關(guān)于y軸對稱,CH=1cm,BD=2cm可得到D點坐標(biāo)為(1,1),由AB=4cm,最低點C在x軸上,則AB關(guān)于直線CH對稱,可得到左邊拋物線的頂點C的坐標(biāo)為(-3,0),于是得到右邊拋物線的頂點C的坐標(biāo)為(3,0),然后設(shè)頂點式利用待定系數(shù)法求拋物線的解析式.【詳解】∵高CH=1cm,BD=2cm,且B、D關(guān)于y軸對稱,∴D點坐標(biāo)為(1,1),∵AB∥x軸,AB=4cm,最低點C在x軸上,∴AB關(guān)于直線CH對稱,∴左邊拋物線的頂點C的坐標(biāo)為(-3,0),∴右邊拋物線的頂點F的坐標(biāo)為(3,0),設(shè)右邊拋物線的解析式為y=a(x-3)2,把D(1,1)代入得1=a×(1-3)2,解得a=,∴右邊拋物線的解析式為y=(x-3)2,故選:B.【考點】本題考查了二次函數(shù)的應(yīng)用:利用實際問題中的數(shù)量關(guān)系與直角坐標(biāo)系中線段對應(yīng)起來,再確定某些點的坐標(biāo),然后利用待定系數(shù)法確定拋物線的解析式,再利用拋物線的性質(zhì)解決問題.二、多選題1、ABC【解析】【分析】根據(jù)垂徑定理知,垂直于弦的直徑平分弦,并且平分線所對的兩條弧,即可判斷A選項、B選項正確,由圓周角定理知,在同圓或等圓中,同弧所對的圓周角相等,可判斷C選項正確,題目中并沒有提到E是OB中點,所以不能證明OE=BE.【詳解】A.AB為⊙O直徑,弦CD⊥AB于E,由垂徑定理得:CE=DE,A選項正確;B.由垂徑定理得:,B選項正確;C.,由圓周角定理得:∠BAC=∠BAD,C選項正確;D.E不一定是OB中點,所以不能證明OE=BE,D錯誤.故選:ABC.【考點】本題考查垂徑定理和圓周角定理,熟知垂直于弦的直徑平分弦,并且平分線所對的兩條弧是解題的關(guān)鍵.2、BCD【解析】【分析】先判斷格中所畫格點三角形為直角三角形,利用兩組對應(yīng)邊的比相等且夾角對應(yīng)相等的兩個三角形相似,否則不相似,對各選項進行判斷.【詳解】解:由圖知:∠ACB=90°,AC=2,BC=1,AC:BC=2,A選項中,三條線段的長為,因為,此三角形為直角三角形,長直角邊與短直角邊的比為2,所以A選項的方格中所畫格點三角形(陰影部分)與△ABC相似,不符合題意;B選項中,長直角邊與短直角邊的比為3,所以B中格點三角形與△ABC不相似,符合題意;C選項中,三條線段的長為√,因為,此三角形為直角三角形,兩直角邊的比為1,所以C選項的方格中所畫格點三角形(陰影部分)與△ABC不相似,符合題意;D選項中,三角形的兩直角邊的比為1:1.所以D中格點三角形與△ABC不相似,符合題意,故選:BCD.【考點】本題考查相似三角形的判定,能在格點中表示各個線段的長度和掌握相似三角形的判定定理是解決此題的關(guān)鍵.3、BCD【解析】【分析】作出圖形,然后根據(jù)三角函數(shù)的定義對各選項分析判斷后利用排除法求解.【詳解】解:如圖,A、a=b?tanA,故選項A錯誤,不符合題意;B、a=c?cosB正確,故關(guān)系式一定成立;C、c=正確,故關(guān)系式一定成立;D、a=b?tanA正確,故關(guān)系式一定成立;故選BCD.【考點】本題考查銳角三角函數(shù)的定義及運用:在直角三角形中,銳角的正弦為對邊比斜邊,余弦為鄰邊比斜邊,正切為對邊比鄰邊.4、ABCD【解析】【分析】選項A:連接OE,利用切線長定理得到AD=ED,CE=CB,可得AD+BC=CD.選項B:OD、OC分別為角平分線,利用平角的定義及等式性質(zhì)得到∠COD為直角,選項C:由梯形的面積公式可知S梯形ABCD=(AD+BC)AB,再根據(jù)等量代換即可得出C選項正確.選項D:由上述分析可確定出三角形ODE與三角形COD相似,由相似得比例列出關(guān)系式,根據(jù)CD=DE+EC,等量代換得到AD+BC=CD,即可得到D正確.【詳解】解:連接OE,∵DA、DE為圓O的切線,∴AD=ED,∠AOD=∠EOD,∵CE、CB為圓O的切線,∴CE=CB,∠EOC=∠BOC,∴CD=DE+EC=AD+BC,∴選項A正確;∵∠AOD+∠DOE+∠EOC+∠BOC=180°,∴∠DOE+∠EOC=90°,即∠DOC=90°,∴選項B正確;∵S梯形ABCD=(AD+BC)AB,由上述解析可知CD=AD+BC,OA=AB,等量代換可得,S梯形ABCD=CD?OA∴選項C正確;∵OE⊥CD,∴∠OED=∠COD=90°,∵∠EDO=∠ODC,∴△DOE∽△DCO,∴,∴OD2=DE?CD,選項D正確;故答案為:ABCD.【考點】牢記切線的性質(zhì),相似三角形的判定與性質(zhì),熟練掌握切線的性質(zhì)是解本題的關(guān)鍵.5、ABD【解析】【分析】利用反比例函數(shù)的性質(zhì)及反比例函數(shù)的圖象上的點的坐標(biāo)特征逐項判定即可.【詳解】解:①根據(jù)反比例函數(shù)的圖象的兩個分支分別位于二、四象限,可得m<0,故①正確;②在每個分支上y隨x的增大而增大,故②正確;③若點A(﹣1,a)、點B(2,b)在圖象上,則a>b,故③錯誤;④若點P(x,y)在圖象上,則點P1(﹣x,﹣y)也在圖象上,正確.故選:ABD.【考點】本題主要考查了反比例函數(shù)的性質(zhì)及反比例函數(shù)的圖象上的點的坐標(biāo)特征,掌握反比例函數(shù)的圖象上的點的坐標(biāo)特征成為解答本題的關(guān)鍵.6、ABD【解析】【分析】根據(jù)題干定義求出y=(2x)※(x+1)的解析式,根據(jù)2x≥x+1及2x<x+1可得x≥1時y=2x2﹣2x,x<1時,y=﹣x2+1,進而求解.【詳解】解:根據(jù)題意得:當(dāng)2x≥x+1,即x≥1時,y=(2x)2﹣2x(x+1)=2x2﹣2x,當(dāng)2x<x+1,即x<1時,y=(x+1)2﹣2x(x+1)=﹣x2+1,∴當(dāng)x≥1時,2x2﹣2x=0,解得x=0(舍去)或x=1,當(dāng)x<1時,﹣x2+1=0,解得x=1(舍去)或x=﹣1,∴(2x)※(x+1)=0的解是x1=﹣1,x2=1;故A正確,B、當(dāng)x>1時,y=2x2﹣2x,拋物線開口向上,對稱軸是直線x=,∴x>1時,y隨x的增大而增大,∴B選項正確.當(dāng)x≥1時,y=2x2﹣2x=2(x﹣)2﹣,∴x=1時,y取最小值為y=0,當(dāng)x<1時,y=﹣x2+1=0,當(dāng)x=0時,y取最大值為y=1,如圖,當(dāng)0<m<1時,方程(2x)※(x+1)=m有三個解,∴選項C錯誤,選項D正確.故答案為:ABD.【考點】本題考查二次函數(shù)的新定義問題,解題關(guān)鍵是掌握二次函數(shù)的性質(zhì),掌握二次函數(shù)與方程的關(guān)系.7、ABCD【解析】【分析】根據(jù)圖形,利用三角形中位線定理,可得DE=1,A成立;AB邊上的高,可利用勾股定理求出等于,B成立;DE是△CAB的中位線,可得DE∥AB,利用平行線分線段成比例定理的推論,可得△CDE∽△CAB,C成立;由△CDE∽△CAB,且相似比等于1:2,那么它們的面積比等于相似比的平方,就等于1:4,D也成立.【詳解】解:∵DE是它的中位線,∴DE=AB=1,故A正確,∴DE∥AB,∴△CDE∽△CAB,故C正確,∴S△CDE:S△CAB=DE2:AB2=1:4,故D正確,∵等邊三角形的高=,故B正確.故選ABCD.【考點】本題利用了:1、三角形中位線的性質(zhì);2、相似三角形的判定:一條直線與三角形一邊平行,則它所截得三角形與原三角形相似;3、相似三角形的面積等于對應(yīng)邊的比的平方;4、等邊三角形的高=邊長×sin60°.三、填空題1、
1
【解析】【分析】(1)連接AO,DO,證明,可得,求出即可求解;(2)設(shè),則,由勾股定理可得,即可求EF的最小值.【詳解】解:(1)連接AO,DO,∵,∴,∵四邊形ABCD是正方形,O是中心,∴,,,∴,∴,∴,∴,∵,∴,∴故答案為:1;(2)設(shè),則,,在中,,∴當(dāng)時,EF有最小值,故答案為:.【考點】本題考查正方形的性質(zhì),全等三角形的判定與性質(zhì),二次函數(shù)的性質(zhì),熟練掌握二次函數(shù)求最值的方法是解題的關(guān)鍵.2、【解析】【分析】根據(jù)平行四邊形的性質(zhì)得到CD=AB=4,即C點坐標(biāo)為,進而得到A點坐標(biāo)為,B點坐標(biāo)為,利用待定系數(shù)法即可求得函數(shù)解析式.【詳解】∵四邊形ABCD為平行四邊形∴CD=AB=4∴C點坐標(biāo)為∴A點坐標(biāo)為,B點坐標(biāo)為設(shè)函數(shù)解析式為,代入C點坐標(biāo)有解得∴函數(shù)解析式為,即故答案為.【考點】本題考查了平行四邊形的性質(zhì),和待定系數(shù)法求二次函數(shù)解析式,問題的關(guān)鍵是求出A點或B點的坐標(biāo).3、17【解析】【分析】根據(jù)題意可知,當(dāng)直線經(jīng)過點(1,12)時,直線y=kx-3與該圖象有公共點;當(dāng)直線與拋物線只有一個交點時,(x-5)2+8=kx-3,可得出k的最大值是15,最小值是2,即可得它們的和為17.【詳解】解:當(dāng)直線經(jīng)過點(1,12)時,12=k-3,解得k=15;當(dāng)直線與拋物線只有一個交點時,(x-5)2+8=kx-3,整理得x2-(10+k)x+36=0,∴10+k=±12,解得k=2或k=-22(舍去),∴k的最大值是15,最小值是2,∴k的最大值與最小值的和為15+2=17.故答案為:17.【考點】本題考查分段函數(shù)的圖象與性質(zhì),一次函數(shù)圖象上點的坐標(biāo)特征,結(jié)合圖象求出k的最大值和最小值是解題的關(guān)鍵.4、25【解析】【分析】設(shè)草莓的零售價為x元/千克,銷售收入為y元,由題意得y=30x2+1500x11880,再根據(jù)二次函數(shù)的性質(zhì)解答即可.【詳解】解:設(shè)草莓的零售價為x元/千克,銷售收入為y元,由題意得,y=x[30030(x22)]+18×30(x22)=30x2+1500x11880,當(dāng)時,y最大,∴當(dāng)草莓的零售價為25元/千克時,種植戶一天的銷售收入最大.故答案為:25.【考點】本題考查二次函數(shù)的實際應(yīng)用,熟練掌握二次函數(shù)的性質(zhì)是解題關(guān)鍵.5、(答案不唯一)【解析】【分析】先根據(jù)二次函數(shù)的圖象和性質(zhì)取對稱軸x=2,設(shè)拋物線的解析式為y=a(x-2)2,由于在拋物線對稱軸的右邊,y隨x增大而減小,得出a<0,于是去a=-1,即可解答.【詳解】解:設(shè)拋物線的解析式為y=a(x-2)2,∵在拋物線對稱軸的右邊,y隨x增大而減小,∴a<0,符合上述條件的二次函數(shù)均可,可取a=-1,則y=-(x-2)2.故答案為:y=-(x-2)2.【考點】本題考查了二次函數(shù)的圖象和性質(zhì),解題的關(guān)鍵是掌握二次函數(shù)的圖象和性質(zhì).6、【解析】【分析】連接OA,OC,根據(jù)∠COA=2∠CBA=90°可求出AC=,然后在Rt△ACD中利用三角函數(shù)即可求得CD的長.【詳解】解:連接OA,OC,∵∠COA=2∠CBA=90°,∴在Rt△AOC中,AC=,∵CD⊥AB,∴在Rt△ACD中,CD=AC·sin∠CAD=,故答案為.【考點】本題考查了圓周角定理以及銳角三角函數(shù),根據(jù)題意作出常用輔助線是解題關(guān)鍵.7、4【解析】【分析】由A、B坐標(biāo)可得對稱軸,由頂點在x軸上可得,求得b=﹣2(m+1),c=(m+1)2,即可得出y=x2﹣2(m+1)x+(m+1)2,把A的坐標(biāo)代入即可求得n的值.【詳解】解:∵點A(m﹣1,n)和點B(m+3,n)均在二次函數(shù)y=x2+bx+c圖象上,∴,∴b=﹣2(m+1),∵二次函數(shù)y=x2+bx+c的頂點在x軸上,∴,∴b2﹣4c=0,∴[﹣2(m+1)]2﹣4c=0,∴c=(m+1)2,∴y=x2﹣2(m+1)x+(m+1)2,把A的坐標(biāo)代入得,n=(m﹣1)2﹣2(m+1)(m﹣1)+(m+1)2=4,故答案為:4.【考點】本題考查了二次函數(shù)的性質(zhì),二次函數(shù)的頂點坐標(biāo),表示出b、c的值是解題的關(guān)鍵.四、解答題1、(1);(2)①的面積;②xy=12;③.【解析】【分析】(1)連接、,利用ASA證出,從而得出的面積與四邊形的面積相等,過點作于點,利用銳角三角函數(shù)求出OH即可求出△OBC的面積,從而得出結(jié)論;(2)①根據(jù)等邊三角形的性質(zhì)可得,從而求出∠BOD,然后根據(jù)30°所對的直角邊是斜邊的一半和勾股定理即可求出OD和BD,從而求出結(jié)論;②過點作于,于,根據(jù)相似三角形判定定理可得,根據(jù)相似三角形的性質(zhì)列出比例式,變形可得,然后根據(jù)三角形的面積公式即可求出結(jié)論;③過點作交的延長線于,于,根據(jù)相似三角形的判定定理可得,根據(jù)相似三角形的性質(zhì)列出比例式,變形可得,分別求出OM和ON,再結(jié)合三角形的面積公式即可求出結(jié)論.【詳解】解:(1)連接、∵是等邊三角形,∴∵是和的角平分線交點∴∴,∴∴∴的面積與四邊形的面積相等過點作于點∵,∴∵,∴,∴∴四邊形的面積為.故答案為:.(2)①∵是等邊三角形,∴∵于點,∴∵,∴,,∴的面積②過點作于,于.由①得:,同理:∵是等邊三角形,∴∵,∴∴,∴∴,∴∴③過點作交的延長線于,于.∵,∴∴,∵∴,∴∴∵,,∴,∴∵,,∴,∴∴【考點】此題考查的是全等三角形的判定及性質(zhì)、等邊三角形的性質(zhì)、相似三角形的判定及性質(zhì)和銳角三角函數(shù),掌握全等三角形的判定及性質(zhì)、等邊三角形的性質(zhì)、相似三角形的判定及性質(zhì)和銳角三角函數(shù)是解決此題的關(guān)鍵.2、(1);(2);(3)【解析】【分析】(1)把代入拋物線的解析式,解方程求解即可;(2)聯(lián)立兩個函數(shù)的解析式,消去得:再利用根與系數(shù)的關(guān)系與可得關(guān)于的方程,解方程可得答案;(3)先求解拋物線的對稱軸方程,分三種情況討論,當(dāng)<<結(jié)合函數(shù)圖象,利用函數(shù)的最大值列方程,再解方程即可得到答案.【詳解】解:(1)把代入中,拋物線的解析式為:(2)聯(lián)立一次函數(shù)與拋物線的解析式得:整理得:∵x1+x2=4-3k,x1?x2=-3,∴x12+x22=(4-3k)2+6=10,解得:∴(3)∵函數(shù)的對稱軸為直線x=2,當(dāng)m<2時,當(dāng)x=m時,y有最大值,=-(m-2)2+3,解得m=±,∴m=-,當(dāng)m≥2時,當(dāng)x=2時,y有最大值,∴=3,∴m=,綜上所述,m的值為-或.【考點】本題考查的是利用待定系數(shù)法求解拋物線的解析式,拋物線與軸的交點坐標(biāo),一元二次方程根與系數(shù)的關(guān)系,二次函數(shù)的增減性,掌握數(shù)形結(jié)合的方法與分類討論是解題的關(guān)鍵.3、(1),S的最大值為;(2)存在,m的值為或或或.【解析】【分析】(1)分、和三種情況分別表示出有關(guān)線段求得兩個變量之間的函數(shù)關(guān)系即可.(2)分兩種情形:①如圖中,由題意點在上運動的時間與點在上運動的時間相等,即.當(dāng)時,當(dāng)時,當(dāng)時,分別構(gòu)建方程求解即可.②如圖中,作于.首先證明,根據(jù)構(gòu)建方程即可解決問題.【詳解】解:(1)如圖中,當(dāng)時,點與點都在上運動,,,,,,,,,,.此時兩平行線截平行四邊形的面積為.如圖中,當(dāng)時,點在上運動,點仍在上運動.則,,,,,,,而,故此時兩平行線截平行四邊形的面積為:,如圖中,當(dāng)時,點和點都在上運動.則,,,.此時兩平行線截平行四邊形的面積為.故關(guān)于的函數(shù)關(guān)系式為,當(dāng)時,S隨t增大而增大,當(dāng)時,S隨t增大而增大,當(dāng)時,S隨t增大而減小,∴當(dāng)t=8時,S最大,代入可得S=;(2)如圖中,由題意點在上運動的時間與點在上運動的時間相等,.當(dāng)時,,則有,解得,當(dāng)時,則有,解得,當(dāng)時,,則有,解得.如圖中,作于.在Rt△CHR中,,,,,,,四邊形是平行四邊形,,四邊形是矩形,,當(dāng)時,則有,解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 基本知識培訓(xùn)課件
- 從工具理性到人的主體性:智能化新聞分發(fā)算法的傳播倫理重構(gòu)與展望
- 中鏈脂肪酸對斷奶仔豬多方面影響的深度剖析與研究
- 三株新城疫病毒抗人喉癌作用的差異解析與機制探究
- 八年級數(shù)學(xué)全等三角形綜合測試試卷及答案
- 基層班組安全知識培訓(xùn)課件
- 基層醫(yī)院消防知識培訓(xùn)課件
- 新解讀《GB-T 39710-2020電動汽車充電樁殼體用聚碳酸酯-丙烯腈-丁二烯-苯乙烯(PC-ABS)專用料》
- 新解讀《GB-T 24328.3 - 2020衛(wèi)生紙及其制品 第3部分- 抗張強度、最大力值時伸長率和抗張能量吸收的測定》
- 危急值三基考試題及答案
- 外科主治醫(yī)師考試-外科學(xué)基礎(chǔ)知識講義03外科休克
- ISO9001、ISO14001及ISO45001質(zhì)量環(huán)境及職業(yè)健康安全三體系內(nèi)審及管審資料
- 進出口企業(yè)進出口業(yè)務(wù)內(nèi)部審計制度(AEO認(rèn)證文件)
- 先學(xué)后教當(dāng)堂訓(xùn)練課堂教學(xué)模式培訓(xùn)
- 消防培訓(xùn)行業(yè)現(xiàn)狀分析報告
- 配電柜吊裝方案
- 收養(yǎng)登記證明書
- 黑土地知識科學(xué)普及-黑土地保護法宣貫課件
- 卷尺、直尺、角尺校驗規(guī)程
- Englishpod-1-365-完美打印版內(nèi)容
- 高邊坡施工監(jiān)理細(xì)則
評論
0/150
提交評論